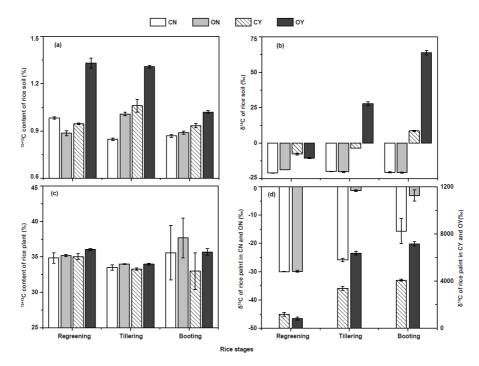

Supplementary Figures


Fig. S1 Experimental system. The chamber was set inside a sealed plastic chamber with transparent and sealed film outside. It had 490 L (70 cm × 70 cm × 100 cm), and the bottom was filled with water to prevent the leaching of the gases. The soil container was 30 cm wide (diameter) and 30 cm high. The soil inside was 20 cm high, packed two weeks before transplanting. It was 20 kg per column-shaped container. The irrigation was made after base fertilizer and maintained at 5 cm above the soil surface.

SFig. S2 ¹²⁺¹³CH₄ fluxes, δ^{13} CH₄ and rice biomass. In Supplementary Figure 2a, the ¹²⁺¹³CH₄ fluxes reached the maximum at the 30th day after transplanting, wherein CN, ON, CY and OY were 0.20, 0.46, 0.12 and 0.46 mg·m⁻²·h⁻¹, respectively. Overall, the average of ¹²⁺¹³CH₄ fluxes in organic fertilizer treatment was 0.15 mg·m⁻²·h⁻¹, significantly higher than that of no fertilizer treatment (-0.15 mg·m⁻²·h⁻¹). In Supplementary Figure 2b, δ^{13} CH₄ in CY and OY reached their maximum, and with 935.99‰ and 981.11 ‰ on the 22nd after rice transplanting. According to equation (5), the final δ^{13} CH₄ in organic fertilizer treatment (141.05 ‰). Besides, the rice biomass accumulated from 2.92 g·m⁻² to 11.58 g·m⁻² were shown in Supplementary Figure 2c. As for the accumulation rate of rice biomass (Supplementary Figure 2d), it was firstly decreased at the tillering stage, and then increased at the booting stage. The average accumulation rates for organic fertilizer and no fertilizer treatment were 0.33 and 0.29 g·m⁻²·d⁻¹, respectively.

SFig. S3 ¹²⁺¹³C emissions and atom percentage. In Supplementary Figure 3a, the total ¹²⁺¹³CH₄ emissions in organic fertilizer treatment were averaged 3.51 kg·hm⁻². It increased 75.50% compared to the no fertilizer treatment (2.00 kg·hm⁻²). The atom percentage of ¹³CH₄ (at% ¹³CH₄, Supplementary Figure 3b) in no ¹³C labelling treatments was 1.07%. However, it varied from rice growth stages for ¹³Cl labelling treatments: 1) at% ¹³CH₄ in CY and OY were both 1.07% at the regreening stage; 2) at% ¹³CH₄ in CY and OY maximized with 1.55% and 1.64% at the tillering stage; 3) and at% ¹³CH₄ in CY and OY were 1.12% and 1.17% at the booting stage. In Supplementary Figure 3c, the total ¹²⁺¹³CO₂ emissions from rice soil in CN, ON, CY and OY were 1.05, 8.57, 0.96 and 2.60 kg·hm⁻², respectively. As for the atom percentage of ¹³CO₂ (at% ¹³CO₂, Supplementary Figure 3d), the average at% ¹³CO₂ in no ¹³C labelling treatments was 1.33%. At the regreening stage, at% ¹³CO₂ in CY (18.75%) and OY (17.97%) were higher than other stages.

SFig. S4 Soil and rice plant C. In Supplementary Figure 4a, the average soil ¹²⁺¹³C in organic treatment (1.07%) was higher than that in no fertilizer treatment (0.94%). In Supplementary Figure4b, the soil δ^{13} C with no ¹³C labelling were average -20.31‰. However, the soil δ^{13} C of CY and OY were increased from regreening stage to booting stage. At the booting stage, the soil δ^{13} C were 8.60‰ in CY and 63.88‰ in OY. In Supplementary Figure 4c, the rice plant ¹²⁺¹³C was 34.81% on average. In Supplementary Figure 4d, the rice plant δ^{13} C for no ¹³C labelling was -29.91‰, but it was 1.00% for ¹³C labelling at the regreening stage. After that, the rice plant δ^{13} C of CY and OY continued increasing2. Results.