Multiplex analysis platform for Endocrine disruption prediction using zebrafish

Sergio Jarque<sup>1</sup>, Jone Ibarra<sup>1</sup>, María Rubio<sup>1</sup>, Jessica García<sup>1</sup>, Javier Terriente<sup>1</sup>

<sup>1</sup>ZeClinics SL, Carretera de Can Ruti, Camí de les Escoles, s/n, Edificio IGTP Muntanya, 08916, Badalona, Barcelona, Spain. sergio.jarque@zeclinics.com

Supplementary information

| Name                           | CAS number  | MW     | Water solubility | Use        | LC50     | Conc. range  |
|--------------------------------|-------------|--------|------------------|------------|----------|--------------|
|                                |             |        | (mg/L)           |            | (μΜ)     | (μM)         |
| Bisphenol A                    | 80-05-7     | 228.29 | 120.00           | industrial | 41.56    | 0.10 - 10    |
| (BPA)                          |             |        |                  | product    |          |              |
| Diethylstilbestrol             | 56-53-1     | 268.35 | 12.00            | drug       | -        | 0.001 - 0.1  |
| (DES)                          |             |        |                  |            |          |              |
| Endosulfan                     | 115-29-7    | 406.93 | 0.45             | pesticide  | -        | 0.04 - 4     |
| (END)                          |             |        |                  |            |          |              |
| 17β-estradiol                  | 50-28-2     | 272.38 | 3.90             | natural    | 35.85    | 0.01 - 1     |
| (E2)                           |             |        |                  | hormone    |          |              |
| Fulvestrant                    | 129453-61-8 | 606.77 | 6.72             | drug       | -        | 1 - 10       |
| (FUL)                          |             |        |                  |            |          |              |
| Hexaconazole                   | 79983-71-4  | 314.21 | 17.00            | fungicide  | 23.41    | 2 - 8        |
| (HEX)                          |             |        |                  |            |          |              |
| Methimazole                    | 60-56-0     | 114.17 | 277500.00        | drug       | 15851.00 | 250 - 1000   |
| (MMI)                          |             |        |                  |            |          |              |
| $17\alpha$ -Methyltestosterone | 58-18-4     | 302.45 | 33.90            | drug       | 90.21    | 0.001 - 10   |
| (17α-MT)                       |             |        |                  |            |          |              |
| Nandrolone                     | 434-22-0    | 274.40 | 3090.00          | drug       | 497.10   | 0.01 - 10    |
| (NAN)                          |             |        |                  |            |          |              |
| Nilutamide                     | 63612-50-0  | 317.22 | 4.19             | drug       | 32.85    | 1            |
| (NIL)                          |             |        |                  |            |          |              |
| Testosterone                   | 58-22-0     | 288.42 | 23.40            | natural    | 77.83    | 0.01 - 5     |
| (TES)                          |             |        |                  | hormone    |          |              |
| 3,3',5-triiodo-L-thyronin      | 6893-02-3   | 650.97 | 3.96             | natural    | 0.006    | 0.0001 - 0.1 |
| (T3)                           |             |        |                  | hormone    |          |              |
| Vinclozolin                    | 50471-44-8  | 286.11 | 2.60             | fungicide  | -        | 10           |
| (VIN)                          |             |        |                  |            |          |              |

**Table S1.** Physicochemical properties, use, toxicity (LC50) and range of concentrations tested in endocrine disruption assays of each chemical. - indicates compounds in which mortality was not achieved

**Table S2.** Primers sequences, amplicon lengths and amplification efficiencies for the genes analyzed in the study. – indicates that efficiencies were not calculated because of the low basal levels.

|          | Accession      |                          | <b>D</b>                 | Efficiency |
|----------|----------------|--------------------------|--------------------------|------------|
| Gene     | number         | Forward 5'-3'            | Keverse 5'-3'            | (%)        |
| ef1a     | L47669.1       | AGCAGCAGCTGAGGAGTGAT     | CCGCATTTGTAGATCAGATGG    | 98         |
| cyp19a1  | NM_131154.3    | TGGGTCGAATGCACAGATCC     | GATCCGAACGGCTGGAAGAA     | -          |
| cyp19a1b | AF226619.1     | TCGGCACGGCGTGCAACTAC     | CATACCTATGCATTGCAGACC    | 93         |
| vtg1     | NM_001044897.3 | CCTGCTCCATTTGACAGAACC    | GTCCAGGATTTCCCTCAGT      | 93         |
| sult2st3 | NM_001078168.2 | GACCACATCAAAAGCTGGCGAAAC | GTGCTGTTACTGACGACACGATCC | 104        |
| cyp2k22  | NM_200235.1    | CGTCAGACCAGCTGTGATGT     | TGTCAGGTGTTTCCCACTCA     | 95         |
| slco4f1  | NM_001080666.2 | GCCGTACCTTTCTTCGCTCTCAG  | GGTCACTCCATTCTCTCCACACAC | -          |
| tg       | DQ278875.1     | CTGGTCACCTGTGGTTGATG     | TCCCTGAAGCTGCTCAAAAT     | 107        |
| tpo      | XM_021467270.1 | CCAGCCAGACCTCGTTC        | CGGAGATGAGCGGAAGAAG      | 110        |

| pax8   | AF072549.1  | GAAGATCGCGGAGTACAAGC      | CTGCACTTTAGTGCGGATGA  | -  |
|--------|-------------|---------------------------|-----------------------|----|
| ttr    | BC081488.1  | CGGGTGGAGTTTGACACTTT      | GCTCAGAAGGAGAGCCAGTG  | 94 |
| trα    | NM_131396.1 | CTATGAACAGCACATCCGACAAGAG | CACACCACACACGGCTCATC  | 91 |
| trβ    | NM_131340.1 | TGGGAGATGATACGGGTTGT      | ATAGGTGCCGATCCAATGTC  | 99 |
| dio1   | BC076008.1  | GTTCAAACAGCTTGTCAAGGACT   | AGCAAGCCTCTCCTCCAAGTT | 92 |
| dio2   | NM_212789.4 | GCATAGGCAGTCGCTCATTT      | TGTGGTCTCTCATCCAACCA  | 90 |
| ugt1ab | NM_213422.2 | CCACCAAGTCTTTCCGTGTT      | GCAGTCCTTCACAGGCTTTC  | 85 |
|        |             |                           |                       |    |

**Table S3.** Stability of ef1a determined by Bestkeeper© software. Standard deviation below 1 is considered valid for a housekeeping gene. Red cells indicate standard deviations above 1 (target genes).

|                    | ef1a (HK) | cyp19a1b | vtg1   | sult2st3 | cyp2k22 |
|--------------------|-----------|----------|--------|----------|---------|
| n                  | 18        | 10       | 10     | 9        | 8       |
| geo Mean [CP]      | 20,70     | 31,39    | 31,02  | 29,80    | 34,12   |
| ar Mean [CP]       | 20,72     | 31,47    | 31,36  | 29,87    | 34,16   |
| min [CP]           | 19,63     | 28,01    | 24,87  | 26,78    | 31,93   |
| max [CP]           | 22,85     | 35,57    | 40,00  | 32,81    | 36,33   |
| std dev [± CP]     | 0,72      | 2,01     | 4,33   | 1,79     | 1,48    |
| CV [% CP]          | 3,47      | 6,39     | 13,80  | 6,01     | 4,32    |
| min [x-fold]       | -2,10     | -10,40   | -71,02 | -8,11    | -4,57   |
| max [x-fold]       | 4,43      | 18,14    | 506,04 | 8,09     | 4,62    |
| std dev [± x-fold] | 1,65      | 4,03     | 20,09  | 3,47     | 2,78    |

**Figure S1.** Dose-response curves of *cyp19a1* (left panel) and *slco1f4* (right panel) for zebrafish embryos exposed to E2 and TES, respectively from 48 to 120 hpf.



**Figure S2.** Schematic representation of the main compartments within the HPT axis, and location of the four thyroid markers finally selected (green marks) and the markers not further considered (red marks) in this study. Adapted from [1].



| Compound | ΕС50 (μΜ) | LogEC50      | Exposure phase      | endpoint                | Reference |
|----------|-----------|--------------|---------------------|-------------------------|-----------|
| E2       | 0.09      | -1.04575749  | 48-120 h            | cyp19a1b mRNA           | our study |
| E2       | 0.0034    | -2.46852108  | 0-96 h              | cyp19a1b - fluorescence | [2]       |
| E2       | 0.0024    | -2.61978876  | 0-96 h              | cyp19a1b - fluorescence | [3]       |
| E2       | 0.0041    | -2.38721614  | 0-96 h              | cyp19a1b - mRNA         | [3]       |
| E2       | 0.01*     | -2           | 0-72 h              | cyp19a1b - mRNA         | [4]       |
| E2       | 0.0055*   | -2.25963731  | 72-96 h             | cyp19a1b - mRNA         | [5]       |
| E2       | 0.01*     | -2           | 2-48 h              | cyp19a1b - mRNA         | [6]       |
| E2       | n.e.      | -            | 7 days (adults)     | cyp19a1b - mRNA         | [7]       |
| E2       | n.e.      | -            | 21 days (adults)    | cyp19a1b - mRNA         | [8]       |
| E2       | 0.0004    | -3.39794000  | 14 days (adults) Mª | cyp19a1b - mRNA         | [9]       |
| E2       | 0.19      | -0.7212464   | 48-120 h            | vtg1 mRNA               | our study |
| E2       | 0.18*     | -0.75696195  | 0-168 h             | vtg1 - mRNA             | [10]      |
| E2       | 0.03*     | -1.52287875  | 0-120 h             | vtg1 - mRNA             | [11]      |
| E2       | 0.0002    | -3.69897     | 8 days (adults)     | vtg - blood             | [12]      |
| E2       | 0.0006    | -3.22184875  | 24 days (adults)    | vtg - blood             | [13]      |
| E2       | 0.00009   | -4.04575749  | 14 days (adults)    | vtg - blood             | [14]      |
| E2       | 0.00009   | -4.04575749  | 21 days (adults)    | vtg - blood             | [15]      |
| E2       | 0.0006*   | -3.22184875  | 21 days (adults)    | vtg - blood             | [16]      |
| E2       | 0.00055*  | -3.259637311 | 21 days (adults)    | vtg1 - fluorescence     | [17]      |
| BPA      | 4.99      | 0.69810055   | 48-120 h            | cyp19a1b - mRNA         | our study |
| BPA      | 7.4       | 0.86923172   | 0-96 h              | cyp19a1b - fluorescence | [2]       |
| BPA      | 3.3       | 0.51851394   | 0-96 h              | cyp19a1b - fluorescence | [3]       |
| BPA      | 6.25*     | 0.79588002   | 0-96 h              | cyp19a1b - fluorescence | [18]      |
| BPA      | 1.23      | 0.08990511   | 0-120 h             | ERE-GFP - fluorescence  | [19]      |
| BPA      | 0.22      | -0.65757732  | 0-72 h              | cyp19a1b - mRNA         | [20]      |
| BPA      | 3*        | 0.47712125   | 72-96 h             | cyp19a1b - mRNA         | [5]       |
| BPA      | 0.024*    | -1.61978876  | 14 days (adults)    | cyp19a1b - mRNA         | [21]      |
| BPA      | n.e.      | -            | 48-120 h            | vtg1 - mRNA             | our study |
| BPA      | n.e.      | -            | 0-168 h             | vtg1 - mRNA             | [10]      |
| BPA      | 0.65      | -0.18708664  | 14 days (adults)    | vtg - blood             | [14]      |
| BPA      | 0.24*     | -0.61978876  | 14 days (juveniles) | vtg - mRNA              | [21]      |
| BPA      | 2.63*     | 0.41995575   | 28 days (juveniles) | vtg - blood             | [13]      |
| BPA      | 1.75*     | 0.24303805   | 43 days (adults)    | vtg - blood             | [22]      |
| BPA      | 4.93      | 0.64246452   | 21 days (adults)    | vtg1 - fluorescence     | [17]      |
| DES      | 0.01      | -2           | 48-120 h            | cyp19a1b mRNA           | our study |
| DES      | 0.00001   | -5           | 0-96 h              | cyp19a1b - fluorescence | [3]       |
| DES      | 0.0055*   | -2.25963731  | 2-48 h              | cyp19a1b - mRNA         | [6]       |
| DES      | 0.05      | -1.30103     | 48-120 h            | vtg1 mRNA               | our study |
| DES      | 0.03*     | -1.52287875  | 0-168 h             | vtg1 - mRNA             | [10]      |
| DES      | 0.0011*   | -2.95860731  | 21 days (juveniles) | vtg - mRNA              | [23]      |
|          |           |              |                     |                         | [0.4]     |

| Table S4. Studies evaluated | d to compare EC50s. |
|-----------------------------|---------------------|
|                             |                     |

| END    | n.e.    | -           | 0-96 h           | cyp19a1b - fluorescence | [3]       |
|--------|---------|-------------|------------------|-------------------------|-----------|
| END    | 0.33    | -0.4814860  | 48-120 h         | vtg1 mRNA               | our study |
| END    | 1.96    | 0.29225607  | 6-96 h           | vtg mRNA                | [25]      |
| END    | 0.00003 | -4.30102999 | 21 days          | vtg - Elisa             | [26]      |
| TES    | 1.11    | 0.04532298  | 48-120 h         | cyp19a1b - vtg1 mRNA    | our study |
| TES    | 1.03    | 0.01283722  | 0-96 h           | cyp19a1b - fluorescence | [3]       |
| TES    | 1*      | 0           | 0-72 h           | cyp19a1b - mRNA         | [27]      |
| 17α-MT | 0.62    | -0.20760831 | 48-120 h         | cyp19a1b mRNA           | our study |
| 17α-MT | 0.04    | -1.39794001 | 0-96 h           | cyp19a1b - fluorescence | [3]       |
| 17α-MT | 0.17*   | -0.76955108 | 0-144h           | cyp19a1b - mRNA         | [28]      |
| 17α-MT | 2       | 0.301029996 | 48-120 h         | vtg1 mRNA               | our study |
| 17α-MT | 0.002*  | -2.69897000 | 21 days (adults) | vtg1 - blood            | [29]      |
| 17α-MT | 0.66    | -0.18045606 | 12 days (adults) | vtg - blood             | [30]      |
| TES    | 0.44    | -0.35654732 | 48-120 h         | sult2st3 - cyp2k22 mRNA | our study |
| TES    | 0.06    | -1.22184875 | 96-120 h         | sult2st3 - cyp2k22 mRNA | [31]      |
| MMI    | 397     | 2.59879051  | 48-120 h         | tpo - mRNA              | our study |
| MMI    | 487     | 2.68752896  | 48-120 h         | tpo - mRNA              | [32]      |
| HEX    | 2.22    | 0.34635297  | 48-120 h         | dio2 - mRNA             | our study |
| HEX    | 3.98*   | 0.59988307  | 0-120 h          | dio2 - mRNA             | [33]      |

\* indicates the mean of an approximate range because authors did not provide specific EC50. n.e. indicates no positive effect. <sup>a</sup> effects only detected in males.

## References

- 1. Jarque S, Piña B. 2014. Deiodinases and thyroid metabolism disruption in teleost fish. *Environ. Res.* 135:361–375.
- Petersen K, Fetter E, Kah O, Brion F, Scholz S, Tollefsen KE. 2013. Transgenic (cyp19a1b-GFP) zebrafish embryos as a tool for assessing combined effects of oestrogenic chemicals. *Aquat. Toxicol.* 138–139:88–97.
- 3. Brion F, Le Page Y, Piccini B, Cardoso O, Tong S-K, Chung B, Kah O. 2012. Screening Estrogenic Activities of Chemicals or Mixtures In Vivo Using Transgenic (cyp19a1b-GFP) Zebrafish Embryos. In Vaudry, H, ed., *PLoS One*. 7:e36069.
- 4. Lassiter CS, Linney E. 2007. Embryonic Expression And Steroid Regulation of Brain Aromatase cyp19a1b in Zebrafish (Danio Rerio). *Zebrafish*. 4:49–58.
- 5. Chung E, Genco MC, Megrelis L, Ruderman J V. 2011. Effects of bisphenol A and triclocarban on brain-specific expression of aromatase in early zebrafish embryos. *Proc. Natl. Acad. Sci. U. S. A.* 108:17732–7.
- Kishida M, McLellan M, Miranda JA, Callard G V. 2001. Estrogen and xenoestrogens upregulate the brain aromatase isoform (P450aromB) and perturb markers of early development in zebrafish (Danio rerio). *Comp. Biochem. Physiol. B. Biochem. Mol. Biol.* 129:261–8.
- 7. Hinfray N, Palluel O, Turies C, Cousin C, Porcher JM, Brion F. 2006. Brain and

gonadal aromatase as potential targets of endocrine disrupting chemicals in a model species, the zebrafish (Danio rerio). *Environ. Toxicol.* 21:332–337.

- 8. Kallivretaki E, Eggen R, Neuhauss S, Alberti M, Kausch U, Segner H. 2006. Aromatase in zebrafish: A potential target for endocrine disrupting chemicals. *Mar. Environ. Res.* 62:S187–S190.
- Halm S, Pounds N, Maddix S, Rand-Weaver M, Sumpter J., Hutchinson T., Tyler C. 2002. Exposure to exogenous 17β-oestradiol disrupts P450aromB mRNA expression in the brain and gonad of adult fathead minnows (Pimephales promelas). *Aquat. Toxicol.* 60:285–299.
- 10. Chen M, Zhang J, Pang S, Wang C, Wang L, Sun Y, Song M, Liang Y. 2018. Evaluating estrogenic and anti-estrogenic effect of endocrine disrupting chemicals (EDCs) by zebrafish (Danio rerio) embryo-based vitellogenin 1 (vtg1) mRNA expression. *Comp. Biochem. Physiol. Part C Toxicol. Pharmacol.* 204:45–50.
- 11. Muncke J, Eggen RIL. 2006. Vitellogenin 1 mRNA as an early molecular biomarker for endocrine disruption in developing zebrafish (Danio rerio). *Environ. Toxicol. Chem.* 25:2734.
- Rose J, Holbech H, Lindholst C, Nørum U, Povlsen A, Korsgaard B, Bjerregaard P. 2002. Vitellogenin induction by 17beta-estradiol and 17alpha-ethinylestradiol in male zebrafish (Danio rerio). *Comp. Biochem. Physiol. C. Toxicol. Pharmacol.* 131:531–9.
- Van den Belt K, Berckmans P, Vangenechten C, Verheyen R, Witters H. 2004. Comparative study on the in vitro/in vivo estrogenic potencies of 17β-estradiol, estrone, 17α-ethynylestradiol and nonylphenol. *Aquat. Toxicol.* 66:183–195.
- Brian J V., Harris CA, Scholze M, Backhaus T, Booy P, Lamoree M, Pojana G, Jonkers N, Runnalls T, Bonfà A, Marcomini A, Sumpter JP. 2005. Accurate Prediction of the Response of Freshwater Fish to a Mixture of Estrogenic Chemicals. *Environ. Health Perspect.* 113:721–728.
- 15. Dammann AA, Shappell NW, Bartell SE, Schoenfuss HL. 2011. Comparing biological effects and potencies of estrone and 17β-estradiol in mature fathead minnows, Pimephales promelas. *Aquat. Toxicol.* 105:559–568.
- Parks LG, Cheek AO, Denslow ND, Heppell SA, McLachlan JA, LeBlanc GA, Sullivan C V. 1999. Fathead minnow (Pimephales promelas) vitellogenin: purification, characterization and quantitative immunoassay for the detection of estrogenic compounds. *Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol.* 123:113–125.
- 17. Zhiqiang Zeng, Tao Shan, Yan Tong, Siew Hong Lam and, Gong\* Z. 2005. Development of Estrogen-Responsive Transgenic Medaka for Environmental Monitoring of Endocrine Disrupters. doi:10.1021/ES050728L.
- Le Fol V, Aït-Aïssa S, Sonavane M, Porcher J-M, Balaguer P, Cravedi J-P, Zalko D, Brion F. 2017. In vitro and in vivo estrogenic activity of BPA, BPF and BPS in zebrafish-specific assays. *Ecotoxicol. Environ. Saf.* 142:150–156.

- Green JM, Metz J, Lee O, Trznadel M, Takesono A, Brown AR, Owen SF, Kudoh T, Tyler CR. 2016. High-Content and Semi-Automated Quantification of Responses to Estrogenic Chemicals Using a Novel Translucent Transgenic Zebrafish. *Environ. Sci. Technol.* 50:6536–6545.
- 20. Saeed A, Hashmi I, Zare A, Mehrabani-Zeinabad M, Achari G, Habibi HR. 2016. Efficacy of UV-C photolysis of bisphenol A on transcriptome alterations of genes in zebrafish embryos. *J. Environ. Sci. Heal. Part A*. 51:877–883.
- Molina A, Abril N, Morales-Prieto N, Monterde J, Ayala N, Lora A, Moyano R.
  2018. Hypothalamic-pituitary-ovarian axis perturbation in the basis of bisphenol A (BPA) reproductive toxicity in female zebrafish (Danio rerio). *Ecotoxicol. Environ. Saf.* 156:116–124.
- P. Sohoni †, C. R. Tyler \*,‡, K. Hurd §, J. Caunter §, M. Hetheridge §, T. Williams §, C. Woods §, M. Evans §, R. Toy *I*, M. Gargas ⊥ and, Sumpter† JP. 2001. Reproductive Effects of Long-Term Exposure to Bisphenol A in the Fathead Minnow (Pimephales promelas). doi:10.1021/ES000198N.
- 23. Zhong X, Xu Y, Liang Y, Liao T, Wang J. 2004. Vitellogenin in rare minnow (Gobiocypris rarus): identification and induction by waterborne diethylstilbestrol. *Comp. Biochem. Physiol. Part C Toxicol. Pharmacol.* 137:291–298.
- 24. Yin P, Li Y-W, Chen Q-L, Liu Z-H. 2017. Diethylstilbestrol, flutamide and their combination impaired the spermatogenesis of male adult zebrafish through disrupting HPG axis, meiosis and apoptosis. *Aquat. Toxicol.* 185:129–137.
- 25. Moon Y-S, Jeon H-J, Nam T-H, Choi S-D, Park B-J, Ok YS, Lee S-E. 2016. Acute toxicity and gene responses induced by endosulfan in zebrafish (Danio rerio) embryos. *Chem. Speciat. Bioavailab.* 28:103–109.
- Han Z, Jiao S, Kong D, Shan Z, Zhang X. 2011. Effects of β-endosulfan on the growth and reproduction of zebrafish (Danio rerio). *Environ. Toxicol. Chem.* 30:2525–2531.
- Mouriec K, Gueguen M-M, Manuel C, Percevault F, Thieulant M-L, Pakdel F, Kah O. 2009. Androgens Upregulate cyp19a1b (Aromatase B) Gene Expression in the Brain of Zebrafish (Danio rerio) Through Estrogen Receptors1. *Biol. Reprod.* 80:889–896.
- 28. Trant JM, Gavasso S, Ackers J, Chung BC, Place AR. 2001. Developmental expression of cytochrome P450 aromatase genes (CYP19a and CYP19b) in zebrafish fry (Danio rerio). *J. Exp. Zool.* 290:475–83.
- Pawlowski S, Sauer A, Shears J., Tyler C., Braunbeck T. 2004. Androgenic and estrogenic effects of the synthetic androgen 17α-methyltestosterone on sexual development and reproductive performance in the fathead minnow (Pimephales promelas) determined using the gonadal recrudescence assay. *Aquat. Toxicol.* 68:277–291.
- 30. Ankley GT, Jensen KM, Kahl MD, Korte JJ, Makynen EA. 2001. Description and evaluation of a short-term reproduction test with the fathead minnow

(Pimephales promelas). Environ. Toxicol. Chem. 20:1276–1290.

- Fetter E, Smetanová S, Baldauf L, Lidzba A, Altenburger R, Schüttler A, Scholz S.
  2015. Identification and Characterization of Androgen-Responsive Genes in Zebrafish Embryos. *Environ. Sci. Technol.* 49:11789–98.
- 32. Fetter E, Baldauf L, Da Fonte DF, Ortmann J, Scholz S. 2015. Comparative analysis of goitrogenic effects of phenylthiourea and methimazole in zebrafish embryos. *Reprod. Toxicol.* 57:10–20.
- 33. Yu L, Chen M, Liu Y, Gui W, Zhu G. 2013. Thyroid endocrine disruption in zebrafish larvae following exposure to hexaconazole and tebuconazole. *Aquat. Toxicol.* 138–139C:35–42.