
Supplementary material to How to steer and control ERK and the

ERK signalling cascade exempli�ed by looking at cardiac

insu�ciency

In the supplementary material we explain the mathematical framework in detail that is used for
the calculations. In addition we give details about the used algorithms.

1 Introduction

The mathematical modeling of molecular biological systems is often done by regulatory networks. For
this purpose equations as in [11] can be used for instance. In a next step, the regulatory network is
analyzed with respect to its steady states, see [5, 8] in order to �nd stable expression patterns in the
network. This concept of regulatory networks is extended by external stimuli to model the observation
that external stimuli can change the expression level of certain genes and thus transfer the system
from one stable expression pattern to another one, see [2]. That means, although the external stimuli
are not active any more, the network remains in its steady state which it has been steered to by the
external stimuli. However, there are systems, which change their expression pattern just as long as
the external stimuli are active. When the external stimuli are not present any more, then the system
relaxes back to the �ground state� which it left because of the perturbation by the external stimuli.
Examples for such a framework is when a pathogen senses its host by certain agents [3, 6, 7, 16] or
other pathogens [20, 12], called quorum sensing. These agents di�er in di�erent environments and thus
serve as signals or in our framework external stimuli which change the gene expression of a bacterium
or pathogen for instance. Further external stimuli are physical ones like temperature [19], mechanical
stress [4, 18, 10] or gravity [17]. Also starvation can lead to cell cycle arrest [15] and changes the
expression pattern [14, 1] and thus acts as an external stimulus where the expression pattern changes
as soon as the stimulus decays. Also communication between cells can be modeled. For example the
secretion of interferon by T-cells can change the expression pattern of other immune cells as long as
interferon is present [9]. For this purpose, one can make usage of the advantage of our presented
framework and model each cell with its own network where the activity of certain nodes of the �rst
cell can be associated with the secretion of agents that can serve as external stimuli for the second cell.

Another external stimulus can be a pharmacological a�ection of a network in order to change the
expression pattern of a cell from a pathological state to a favorable state. Our framework �ts well to
the case, when after the treatment and the decay of the pharmacological active agents, the network
relaxes back to the pathological state. This is di�erent to [2], where the network stays in its desired
state although the pharmacological active agents decay because the treatment steered the network to
a new stable state.

An optimal expression level is that we change just the pathologically expressed genes while leaving
the normally expressed genes unperturbed to reduce side e�ects. In order to achieve such an expression
pattern we set up a framework to calculate optimal drug targets to a�ect the network in our favor.
For this purpose, we de�ne a target functional which has a small value if the nodes of interest of a
regulatory network are close to their desired expression level, that means high bene�cial e�ects and low
side e�ects. Within this framework, we can now evaluate di�erent treatment strategies, that is which
nodes of the network are to be a�ected by external stimuli, and sort them with respect to their bene�cial
and male�cent e�ects. In order to identify rewarding and e�ective drug targets, we use a mathematical
optimization framework where we minimize the mentioned target functional subject to the constraint
given by a system of ordinary di�erential equations which is used to model the interaction of the
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network's nodes. Furthermore, by this mathematical framework, the proposed method is objective
as the external stimuli are determined such that a �xed target functional is minimized. Additionally,
the optimization framework provides that we just have to care about which nodes the stimuli are
supposed to act on while the rest, like time curve of each external stimulus, is determined by the
software such that the target functional is minimized. The consequence is that the result is the lowest
target functional value which we can achieve with the chosen treatment strategy which ensures the
comparability of di�erent strategies.

This framework is a rational method to calculate candidates of drugs or combinations of them
with good prospect to have the desired e�ects on the network with low side e�ects at the same time.
Furthermore, the proposed method is a systematic way to �nd promising drug targets for a treatment
and the tightly focused development of new medicaments which cause a desired expression level of
genes. The proposed framework can be used as a preliminary study in silico in order to focus on
promising experiments in vitro or in vivo. This especially means that new drugs can be developed
where the only experiments which have to be made are the ones to prove the desired e�ect of the new
drug and the experiments used to �nd candidates which might have the desired e�ect can be fully
made in silico. This is particularly useful if one studies huge networks (more than 150 nodes) that
are made of the information of an interactom, for instance, in combination with all the drugs that are
available to interact on this network where one drug can even have several nodes to interact. By this
framework we have a powerful tool to exploit all the information coded within this interaction graph,
which can be �tted to real data by omics technology, to calculate the most e�ective drug combination.
That means maximizing bene�cial e�ects while reducing side e�ects at the same time.

In the following section, we give the mathematical changes needed to adapt the detailed discussion
of [2, Supplement Section 1] to the proposed framework here. Furthermore, we discuss a combinatorial
algorithm to determine optimal drug targets. In Section 3, we show that this framework presented in
this work can be used for the analysis of external stimuli to switch between di�erent steady states. We
show that the results are in accordance with previous work.

2 The mathematical framework

In this section, we introduce a mathematical model for the optimal control of regulatory networks
where only the activity level of certain nodes is of interest and not necessarily the expression pattern of
the whole network. The activity level of a node associated with a gene corresponds to the transcription
rate of RNA or to translation rate of the corresponding protein. If the node is a protein, then the
activity stands for the production rate for an associated agent related to available reactant. In general
the activity level of a node is the biological activity of the associated biological agent within a known
natural range where the lowest activity level is associated with inactivity and the highest activity level
with the highest biological activity that is biological reasonable and observable. An application of this
framework is optimal drug targeting which is discussed in this work. We assume that the di�erent
agents of interests of a real (biological) network are modeled by a regulatory network. Each agent
is associated with a node k ∈ {1, ..., n} where n ∈ N is the number of nodes. The activity level
xk : R+

0 → [0, 1] of the each node k with the initial value xk (0) = x0
k ∈ [0, 1] is calculated by
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the activators of node k are elements of the subset {xj | j ∈ Ak ⊆ {1, ..., n}} ⊆ {xk| k ∈ {1, ..., n}}
where Ak contains all the indices of {1, ..., n} of the nodes which activate node k and the correspond-
ing αkj > 0 weights the contribution of the activation level xj of node j to the total activation of
node k. Analogously, the inhibitors of node k are elements of the subset {xj | j ∈ Ik ⊆ {1, ..., n}} ⊆
{xk| k ∈ {1, ..., n}} where Ik contains all the indices of {1, ..., n} of the nodes which inhibit node k and
the corresponding βkj > 0 weights contribution of activation level xj of node j to the total inhibition
of node k. Furthermore, the gain h > 0 can be seen as a measure of cooperativity that means how
abruptly the activation level of node k changes if the input values reach a certain threshold value. The
decay γk > 0 for all k ∈ {1, ..., n} models how fast the activity level of node k decays if there is no
input for it.

This model is based on [11] and is extended by the framework of external stimuli and further
discussed in [2]. The set of external stimuli is given by S := {uj | j ∈ {1, ...,m}}, m ∈ N where
uj : R+

0 → [0, 1] are functions. These external stimuli e�ect the activity level xk of a node k either
by activation or inhibition. The activation is is given in the last term of (2.1). The parameter σkj
weights the coupling of the node xk and the external stimulus j. If σkj = 0, then there is no e�ect of
external stimulus uj on xk. By the parameter σkj we can adjust the model such that the activation
level xk calculated in the model �ts to the observed activation level of the corresponding agent in an
experiment when the corresponding external stimulus is applied to activate this agent with a certain
intensity uj modeled by the values between 0 and 1 where 0 means no application of external stimuli
j and 1 with the highest intensity which is possible or reasonable.

The inhibition is modeled by the term
∏m
j=1 (1− ζkjuj) where ζkj ∈ [0, 1] models the in�uence

of external stimulus j on node k. If ζkj = 0, then external stimulus j has no e�ect on node k.
Depending on uj and ζkj , k ∈ {1, ..., n}, j ∈ {1, ...,m}, the �rst term of (2.1), the activation function,
is multiplied by a factor between 0 and 1 coming from

∏m
j=1 (1− ζkjuj). This reduces the value of the

activation function and results that the decay reduces the activation level of the corresponding node.
If σkj = 1 and if there is a full activation of the corresponding external stimulus j, i.e. uj = 1, then
the activation function is zero. By the parameter ζkj we can adjust the model such that the activation
level xk calculated in the model �ts to the observed activation level of the corresponding agent in an
experiment when the corresponding external stimulus is applied to inhibit this agent with a certain
intensity uj modeled by the values between 0 and 1 where 0 means no application of external stimuli
j and 1 with the highest intensity which is possible or reasonable.

Remark 1. We remark that this method proposed in our work is in principle not restricted to that
speci�c model 2.1. The proposed method can be equipped with any well-posed system of ordinary
di�erential equations with which one would like to model a real system.

Now, once we have modeled the dynamics of the network, we have desired activation levels for
certain nodes. These desired activation levels xdk : R+

0 → [0, 1] are functions which represent the
desired activation level of node k. These functions can be constant or vary their value over time.
The set of desired activation levels is de�ned by D :=

{
xdk| k ∈ NI

}
, NI ⊆ {1, ..., n}. Notice that the

proposed method works even if we are just interested in the activation level of a subset of nodes of the
whole network which means that the cardinality of D is less then n.

The task is now to determine external stimuli from a given set S, and if necessary their temporal
curve, such that each node of interest from the set NI takes its desired value as well as possible. We

de�ne x :=

 x1
...
xn

 and u :=

 u1
...
um

 and the following target functional

J̃ (x, u) :=
1

2

n∑
k=1

gk

∫ T

0

(
xk (t)− xdk (t)

)2
dt,

where gk ∈ R+
0 is the weight of the corresponding tracking term

∫ T
0

(
xk (t)− xdk (t)

)2
dt with gk > 0

if k ∈ NI and gk = 0 else. The weights relatively weight how important it is that the corresponding
node achieves its desired value compared to the other nodes of interest. The greater the value gk for
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a certain node k is compared to the other nodes of interest, the more important it becomes that the
corresponding node k attains its desired state xdk compared with the other nodes where gk > 0.

An application can be as follows. An interaction graph can be set up where the governing ODE
model can be �tted to real data created by the omics technology. All the possibilities of intervention
by drugs can be modeled by external stimuli which can a�ect even more than just one node if one drug
has multi target e�ects. Then by our optimization framework one can calculate the most e�ective drug
combination that brings the activation level of the nodes of interest as close to the desired activity
level as possible. In general it will be not possible the meet the desired state exactly. If the user wishes
to have some certain nodes closer to a desired value as in the calculated solution because they are still
to far away from a desired value such that it is physiologically still not reasonable, they can increase
the corresponding gk and perform the calculations again. Then these nodes might get closer to the
desired state, however maybe at the cost that others might get away a little bit more form its desired
state but still close enough such that the new expression pattern caused by the external stimuli makes
physiologically sense. If the expression pattern is still not as close to the desired one then one has to
include more external stimuli and thus can identify new e�ective drug targets that have the desired
e�ect. This demonstrates how the optimization framework can be used to extract promising drug
combinations out of a huge graph containing all the available information that steer the experiment
close to a physiological desired expression pattern.

Now, we can measure by the value of J̃ (x, u) how well the desired activity levels are taken by
their corresponding nodes of interest subject to the constraint that (x, u) ful�lls (2.1). That means the
smaller J̃ is the better the desired activation levels are taken where in the best case J̃ = 0 which means
that xk = xdk for all k ∈ NI . In order to include costs of the external stimuli into the target functional,

we add the term α
∑m

j=1

∫ T
0 uj (t) dt, α ≥ 0 which extracts the most e�ective external stimuli. This

works as follows. As for large values of α it is more likely that the cost of an active external stimuli is
greater than its e�ect on steering the nodes of interest to the desired activation level and thus is set
to zero. Then, we have the following extended cost functional

Jα (x, u) :=
1

2

n∑
k=1

gk

∫ T

0

(
xk (t)− xdk (t)

)2
dt+ α

m∑
j=1

∫ T

0
uj (t) dt.

Notice that J0 (x, u) = J̃ (x, u) Summarizing, we now have the following problem

min
y,u

Jα (x, u)

subject to
d

dt
xk = fk (x, u) for all k ∈ {1, ..., n}

(2.2)

where fk (x, u) := −e
1
2h+e

−h(ωk− 1
2)(

1−e
1
2h

)(
1+e

−h(ωk− 1
2)

)∏m
j=1 (1− ζkjuj)−γkxk+

∑m
j=1 σkjuj (1− xk) is given by the

right hand-side of (2.1).

An approach for solving (2.2) is to systematically try di�erent external stimuli with constant value
over the interval [0, T ] such that there might at least be one combination that generates a smaller
target functional value than the constant zero which means that no external stimuli is active. This
idea is implemented in Algorithm 1 as follows. We choose the maximum number of active stimuli
maxNum ∈ {1, ...,m} and the number numInt ∈ N in which the image of the external stimuli [0, 1] is
divided into. Then we choose from the power set P of the set {1, ...m} that elements p with cardinality
|p| ≤ maxNum. This de�nes the set P . Next, we choose p ∈ P and val ∈

{
i 1

numInt | i = 1, ...,numInt
}

and calculate the target functional value Jα (x, u) for the corresponding external stimuli u where
uj = val if j ∈ p and uj = 0 else and(x, u) ful�lls (2.1). This is done for all p ∈ P and all val ∈{
i 1

numInt | i = 1, ...,numInt
}
.
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Algorithm 1 Combinatorial method

1. Choose numMax ∈ {1, ...,m}, numInt ∈ N

2. Choose all the elements p ∈ P ⊆ P of the power set P of {1, ...,m} such that the cardinality
|p| ≤ maxNum

3. Calculate Jα (x, u) for all p ∈ P and all val ∈
{
i 1

numInt | i = 1, ...,numInt
}
with uj = val if j ∈ p

and uj = 0 else where (x, u) ful�lls (2.1)

4. Return (x, u) with the smallest target functional value Jα (x, u)

Notice that it is worth to parallelize an implementation of Algorithm 1 as the calculation for each
combination (x, u) in step 3 is independent of the others. Furthermore, we remark the calculation time
of Algorithm 1 increases exponentially with respect to maxNum.

The output of 1 can be used as an initial guess of a local optimization methods like the sequential
quadratic Hamiltonian method, see [2]. Based on the initial guess from Algorithm 1, a local optimiza-
tion method �nds an optimal solution for (2.2) in almost linear calculation time with respect to the
number of external stimuli. As the external stimuli are functions over time, the solution of a local
optimization time is not necessary a constant function but its value can vary with time. The di�erent
time curves of the external stimuli corresponding to a minimum of (2.2) may contain further informa-
tion about the relation of each external stimulus to each other. Additionally an optimal solution from
a local optimization method can di�er with respect to the number of active external stimuli compared
with the solution from Algorithm 1. Notice that the calculation from local optimization algorithms
might be more e�cient due to the time scaling depending on the number of external stimuli.

In order to use the sequential quadratic Hamiltonian method [2, Algorithm 2], we just have to
modify some de�nitions made in [2, Supplement].

The Hamiltonian H : R× Rn × Rm × Rn now is given by

H (t, x, u, p) :=
1

2

n∑
k=1

gk

(
xk − xdk

)2
+ α

m∑
j=1

uj +
n∑
k=1

pkfk (x, u) .

The adjoint variables p̄k : R+
0 → R are given by the following adjoint equations

dp̄k
dt

= −gk
(
x̄k − xdk

)
−

n∑
i=1

p̄i
∂

∂xk
fi (x̄, ū)

if k ∈ NI and by the following equation

dp̄k
dt

= −
n∑
i=1

p̄i
∂

∂xk
fi (x̄, ū)

if k ∈ {1, ..., n} \NI with p̄ (T ) = 0 for all k ∈ {1, ..., } where ∂
∂xk

fi (x̄, ū) := ∂
∂xk

fi (x, u) |(x,u)=(x̄,ū)

that means the partial derivative of the i-th component of f with respect to the k-th component of x
evaluated at (x̄, ū) and (x̄, ū) is an optimal solution to (2.2).

Alternatively, as in [2, Supplement], we can discretize (2.2) before we optimize with a local opti-
mization method like the gradient method, see [2, Algorithmus 1] and obtain for a certain time step
size dt > 0, t = ldt, l ∈ {0, ..., N} and T = Ndt the following optimal control problem

min
x,u

J (x, u) :=
1

2

n∑
k=1

gk

N∑
l=1

(
xlk − xdk (ldt)

)2
dt+ α

m∑
j=1

N−1∑
l=0

uljdt

subject to F (x, u) = 0, x0 = x0
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where F (x, u) :=

 F1 (x, u)
...

Fn (x, u)

 ∈ RnN ,

Fk (x, u) := −

 x1
k
...
xNk

+

 x0
k
...

xN−1
k

+

 fk
(
x0, u0

)
...

fk
(
xN−1, uN−1

)
 dt ∈ RN

for all k ∈ {1, ..., n}, xk is not a function any more but a vector xk :=

 x1
k
...
xNk

 ∈ RN for all

k ∈ {1, ..., n} and x :=

 x1
...
xn

 ∈ RnN . Analogously, we have the de�nition for the vector uj :=

 u0
j
...

uN−1
j

 ∈ RN and u :=

 u1
...
um

 ∈ RmN with 0 ≤ ulj ≤ 1 for all j ∈ {1, ...,m} and l ∈

{0, ..., N − 1}. Then, we just have to modify the adjoint equation for p :=

 p1
...
pn

 ∈ RnN , pk :=

 p1
k
...
pNk

 ∈ RN which is given by

0 =



gk
(
x1
k − xdk (1dt)

)
− p1

k + p2
k +

∑n
i=1 p

2
i
∂
∂x1k

fi
(
x1, u1

)
dt

gk
(
x2
k − xdk (2dt)

)
− p2

k + p3
k +

∑n
i=1 p

3
i
∂
∂x2k

fi
(
x2, u2

)
dt

...

gk

(
xN−1
k − xdk ((N − 1) dt)

)
− pN−1

k + pNk +
∑n

i=1 p
N
i

∂
∂xN−1

k

fi
(
xN−1, uN−1

)
dt

gk
(
xNk − xdk (Ndt)

)
− pNk


∈ RN

for all k ∈ NI and

0 =



−p1
k + p2

k +
∑n

i=1 p
2
i
∂
∂x1k

fi
(
x1, u1

)
dt

−p2
k + p3

k +
∑n

i=1 p
3
i
∂
∂x2k

fi
(
x2, u2

)
dt

...

−pN−1
k + pNk +

∑n
i=1 p

N
i

∂
∂xN−1

k

fi
(
xN−1, uN−1

)
dt

−pNk


∈ RN

for all k ∈ {1, ..., n} \NI .

3 Steady state switch in a platelet network and in a T-helper cell

network

This short section is intended to show that the present framework can also be used to induce a switch
between two di�erent steady states of a network. We repeat the experiment from[2, Section 4] with
the corresponding model to demonstrate that the presented framework also calculates the receptors
that are associated with irreversible platelet aggregation if the receptors are activated. As known from
[13] the irreversible platelet aggregation is associated with a high activity of integrin. We start with
the steady state associated with the reversible platelet aggregation where the activity of integrin is
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low and chose as the node of interest the node that is associated with integrin. We desire this node
to have an activity level equal to 1. We use the result from Algorithm 1 for α = 0.01, numMax = 2
and numInt = 3 as the initial guess for the external stimuli for [2, Algorithm 2] with the recommended
parameters except κ = 10−14. The constant non zero external stimuli from Algorithm 1 are set to zero
at the interval [0, T ] from [2, Algorithm 2] and thus the network relaxes into the desired steady state.
We obtain the results in accordance to [2, Figure 2 left one] which means that the system is in the
desired steady state and the same external stimuli are active and the same are inactive.

We also repeat the experiment from [2, Section 5] with the corresponding model to induce a switch
from the steady state that is associated with a Th-17 cell to the steady state that is associated with a
regulatory Treg cell. The specifying lineage transcription factor for Treg is FOXP3. For this purpose,
we choose only FOXP3 as our only node of interest and desire it to have the value 1. We use the result
from Algorithm 1 for α = 0.1, numMax = 5 and numInt = 3 for the initial guess for the external
stimuli for [2, Algorithm 2] with the recommended parameters except κ = 10−14 and obtain results in
accordance to [2, Figure 4 left one]. This means that the network is in the same desired state at the
end of the interval [0, T ] where the non zero external stimuli from Algorithm 1 are set to zero by [2,
Algorithm 2] and still the same external stimuli are active and the same are inactive at the beginning
of the interval [0, T ].
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