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Abstract: To date, extensive studies have identified many classes of hormones in plants and revealed
the specific, nonredundant signaling pathways for each hormone. However, plant hormone functions
largely overlap in many aspects of plant development and environmental responses, suggesting that
studying the crosstalk among plant hormones is key to understanding hormonal responses in plants.
The phytohormone jasmonic acid (JA) is deeply involved in the regulation of plant responses to biotic
and abiotic stresses. In addition, a growing number of studies suggest that JA plays an essential role
in the modulation of plant growth and development under stress conditions, and crosstalk between
JA and other phytohormones involved in growth and development, such as gibberellic acid (GA),
cytokinin, and auxin modulate various developmental processes. This review summarizes recent
findings of JA crosstalk in the modulation of plant growth and development, focusing on JA–GA,
JA–cytokinin, and JA–auxin crosstalk. The molecular mechanisms underlying this crosstalk are
also discussed.
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1. Introduction

Plant growth and physiology are regulated by endogenous processes and environmental signals;
phytohormones govern these processes by controlling transcriptional and translational networks.
Jasmonates, including jasmonic acid (JA) and its derivatives, were initially isolated as a methyl ester
form of JA in Jasminum grandiflorum. JA is classified as a cyclopentane fatty acid and is biosynthesized
from linolenic acid, a major fatty acid of membranes in plant cells. Details of the JA biosynthetic
pathway have been well reviewed [1,2]. Briefly, JA biosynthesis is regulated by enzymes such as
lipoxygenase, allene oxide synthase, and allene oxide cyclase, which mediate the octadecanoid pathway.
The free acid JA can be further metabolized into methyl jasmonate or the JA-isoleucine conjugate
(JA-Ile) via the activity of jasmonate methyl transferase and jasmonate-amido synthetase, respectively.
In response to environmental signals, the expression of the genes involved in JA metabolism is
dynamically regulated, leading to changes in endogenous JA levels and stress responses, supporting
the view that JA is a key hormone mediating plant responses to environmental stresses [3].

Early studies on JA showed that JA treatment rapidly and dynamically regulates genes involved
in plant defense, suggesting the existence of a JA-specific signaling pathway and the integral role
of JA in regulating gene expression networks [4,5]. In 1994, Arabidopsis thaliana coronatine insensitive
1 (coi1) mutants, in which the JA response is blocked, were identified [6] and a series of studies on coi1
extended our understanding of the JA signaling pathway. COI1 encodes an F-box protein that acts as
the JA receptor and functions in E3-ubiquitin ligase-mediated proteolysis of target proteins [7–9] such

Int. J. Mol. Sci. 2020, 21, 305; doi:10.3390/ijms21010305 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://www.mdpi.com/1422-0067/21/1/305?type=check_update&version=1
http://dx.doi.org/10.3390/ijms21010305
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2020, 21, 305 2 of 15

as the JASMONATE ZIM-DOMAIN (JAZ) proteins. Further identification of JA signaling components,
including JA-responsive MYC transcription factors, revealed a JA signaling pathway that includes
JA perception and JA-dependent gene regulation. Briefly, the expression of JA-dependent genes and
activation of the JA response are inhibited in plant cells with low JA levels. In these cells, the MYC2
transcription factors, which are responsible for the expression of JA-responsive genes, stay inactive
through the direct interaction with JAZ proteins, which are JA signaling repressors. JAZ proteins
contain two domains, ZIM and Jas, and these domains mediate the interaction of JAZs with other
proteins. The ZIM domain is responsible for its dimerization and interaction with NINJA, which
connects the transcriptional suppressor TOPLESS to JA signaling, and the Jas domain mediates the
JAZ–COI1 interaction [10,11].

When JA biosynthesis is activated in response to endogenous or environmental signals, and
JA, especially JA-Ile, accumulates in cells, JA-Ile activates JA signaling through interaction with
the COI1 receptor. This direct interaction induces proteolysis of the JAZ proteins and activates the
expression of JA-responsive genes by releasing the MYC2 transcription factor from the JAZ–MYC2
complex [8]. Unlike the JAZ repressors, the MYC2 transcription factor activates the transcription of
JA-responsive genes and promotes the JA response. As JAZs and MYC2 are key factors in plant growth
and development as positive and negative regulators, respectively, they may mediate JA-dependent
growth inhibition under stress conditions [12–14].

Plant hormones have their own specific biosynthetic and signaling pathways, but their roles
in plant development and physiology overlap. This suggests that plant hormones modulate plant
growth and physiology through interactions with other hormones, and the extensive interplay between
auxin and cytokinin in the regulation of all aspects of plant growth and development supports this
idea [15,16]. JA mediates the plant response to biotic and abiotic stresses through interaction with
salicylic acid, ethylene, and abscisic acid (ABA), and details of this crosstalk and its underlying
molecular mechanisms have been well reported in previous studies [3,17–19]. JA also modulates plant
development, such as root, stamen, hypocotyl, chloroplast, and xylem development, and increasing
evidence suggests that JA-dependent modulation of plant growth and development largely depends
on the interaction of JA with other phytohormones such as gibberellins (GAs), cytokinin, and auxin that
govern endogenous developmental programs. Many studies have revealed that the crosstalk between
phytohormones is mediated through regulatory proteins controlling phytohormone metabolic and
signaling pathways [3,20]. This review briefly describes the metabolism and signaling pathways of
the phytohormones GA, cytokinin, and auxin that interact with JA in the modulation of plant growth
and development, and recent findings on JA crosstalk, focusing on the JA–GA, JA–cytokinin, and
JA–auxin interactions. The molecular mechanisms underlying the JA–GA, JA–cytokinin, and JA–auxin
interactions are also discussed in this review.

2. The JA–GA Interaction

2.1. GA Metabolism and Signaling Pathway

GAs regulate plant growth and development, such as stem elongation, seed germination, leaf
expansion, root development, and stamen and flower development [21]. Due to the essential role
of GAs in plant growth, the GA response affects plant growth and productivity [22], and many
studies suggest that GA is fundamental to stress-related growth inhibition through interactions with
stress-response hormones [23–30].

GAs are a large class of tetracyclic diterpenoid compounds, and approximately 136 forms have
been identified in higher plants and fungi. However, only a few of them, including GA1, GA3, GA4,
and GA7, are biologically active, while other GAs are intermediate forms in the GA biosynthetic
process or inactive forms of GAs. Therefore, GA metabolism, including its biosynthesis, is integral to
GA homeostasis and the GA response in plants [31,32]. The biosynthetic pathway of GAs includes
the biosynthesis of ent-kaurene, the conversion of ent-kaurene to GA12, and the formation of C20-
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and C19-GAs in the cytosol, and three different classes of enzymes, terpene synthases, cytochrome
P450 monooxygenases, and 2-oxoglutarate-dependent dioxygenases, mediate this process [20,33,34].
Further metabolic processes are required for the formation of active GAs and the deactivation
of bioactive GAs, and GA 20-oxidase, GA 3-oxidase, and GA 2-oxidase mediate these metabolic
process [35–38].

GA signaling is another key step controlling the transcription of GA-dependent genes and
the regulation of the GA response, and, similar to other plant hormones such as JA, auxin, and
strigolactone, the GA signaling process is based on E3 ubiquitin ligase-mediated proteolysis of
DELLAs. The Arabidopsis genome encodes five DELLAs, including REPRESSOR OF GA1-3 (RGA),
which functions as an intracellular negative regulator of GA signaling [39,40]. In Arabidopsis,
direct interaction between GAs and the GA INSENSITIVE DWARF1 (GID1) receptor induces the
interaction between GID1 and DELLAs, and provokes the degradation of DELLAs through E3 ubiquitin
ligase-mediated ubiquitinylation and 26S proteasome-mediated proteolysis [39,41,42]. The proteolysis
of DELLAs leads to the release of GA-responsive transcription factors such as PHYTOCHROME
INTERACTING FACTORS (PIFs) in Arabidopsis and PIF-LIKE (PIL) proteins in rice (Oryza sativa),
and triggers the transcription of GA-responsive genes and the GA response [43–45]. The finding that
RGA-overexpressing plants displayed a reduced GA response while mutants lacking RGA expression
showed an enhanced GA response indicates a crucial role of DELLAs in GA signaling pathways [46–48].

2.2. The JA–GA Interaction and Its Underlying Molecular Mechanism

Environmental stresses strongly affect plant growth. To survive under stress conditions, plants
activate defense programs and suppress developmental programs, leading to growth inhibition.
By contrast, in the proper conditions for growth, plants activate developmental programs while
suppressing defense programs, leading to vigorous growth. This indicates that plants dynamically
coordinate growth and defense strategies in response to environmental stresses. The essential role that
GAs play in the regulation of plant growth suggests that GAs have key roles in this coordination, and the
finding that environmental stresses, such as salinity, promote the accumulation of DELLAs but reduce
endogenous levels of bioactive GAs supports this idea [24–26]. In addition, stress-induced growth
reduction was attenuated in quadruple-della mutants, while plants with reduced GA levels, such as the
GA biosynthesis mutant ga1-3, exhibited enhanced tolerance to salt stress [24]. These findings indicated
that GA plays an essential role in the coordination of plant growth and defense, and further analysis
of della mutant plants suggested that DELLAs are deeply involved in GA-dependent coordination
process [49].

Many studies reported that developmental flexibility under stress conditions largely depends on
the interplay between stress-related hormones and growth-related hormones, and increasing evidence
indicates that JA and GA antagonistically interact to coordinate plant growth and defense [50–52].
Extensive studies on the JAZ JA signaling repressor proteins, and the DELLA GA signaling repressor
proteins revealed that direct interaction between JAZs and DELLAs mediates the antagonistic interaction
between JA and GA (Figure 1) [27,28]. In the “relief of repression” model, the JAZ–DELLA interaction
attenuates the functions of JAZs and DELLAs as signaling repressors. For example, in GA-free
conditions, DELLAs directly interact with JAZs and allow MYC2 to promote the JA response, while in
the presence of GA, JAZs are released from the DELLA–JAZ complex by degradation of DELLAs, and
the free JAZs attenuate the JA response through direct interact with MYC2. The model explained the
DELLA-mediated upregulation of the JA response and the antagonistic interaction between JA and
GA [27]. This model was supported by studies showing that JA promotes transcription of RGA3, and
the JA-responsive MYC2 transcription factor directly binds to the promoter of RGA3 [29].
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Figure 1. A schematic of crosstalk between jasmonic acid (JA) and gibberellic acid (GA) in 
coordination between plant growth and defense. JA and GA antagonistically interact to coordinate 
plant growth and defense, and the crosstalk is mediated by direct interaction between JA signaling 
repressors, JASMONATE ZIM-DOMAIN (JAZs), and GA signaling repressors, DELLAs. MYCs and 
PHYTOCHROME INTERACTING FACTORS (PIFs) indicates transcription factors responsible for 
transcription of JA-responsive and GA-responsive genes, respectively. The arrows and T bars indicate 
positive and negative regulation, respectively. 

A recent study using overexpression plants and knock-out mutants of OsJAZ9 revealed that 
OsJAZ9 is a key JAZ protein that mediates the antagonistic interaction of JA and GA [21]. In this 
study, they identified OsJAZ9 proteins that directly interact with the rice DELLA protein SLENDER 
RICE 1 (SLR1), and demonstrated that the OsJAZ9–SLR1 interaction mediates the antagonistic 
interaction of JA and GA in rice by showing that overexpression of OsJAZ9 promotes the GA response 
while knock-out of OsJAZ9 reduces the GA response. Together, these data suggest that JA is an 
essential hormone that modulates plant growth under stress conditions, and its antagonistic 
interaction with GA mediates this process. 

3. The JA–Cytokinin Interaction 

3.1. Cytokinin Metabolism and Signaling 

Cytokinin regulates the maintenance of stem cell identity and cell proliferation; therefore, 
cytokinin affects most aspects of plant growth and development [53]. The expression of genes 
involved in cytokinin responses is largely affected by the stress-response hormone JA or JA-
dependent stress responses [54–56]. Furthermore, cytokinin-deficient mutant plants displayed 
increased tolerance to stresses, similar to transgenic plants with higher JA responses [57–60]. These 
studies suggested that the cytokinin response is integral to the JA-dependent stress response and 
growth modulation. 

Figure 1. A schematic of crosstalk between jasmonic acid (JA) and gibberellic acid (GA) in
coordination between plant growth and defense. JA and GA antagonistically interact to coordinate
plant growth and defense, and the crosstalk is mediated by direct interaction between JA signaling
repressors, JASMONATE ZIM-DOMAIN (JAZs), and GA signaling repressors, DELLAs. MYCs and
PHYTOCHROME INTERACTING FACTORS (PIFs) indicates transcription factors responsible for
transcription of JA-responsive and GA-responsive genes, respectively. The arrows and T bars indicate
positive and negative regulation, respectively.

A recent study using overexpression plants and knock-out mutants of OsJAZ9 revealed that
OsJAZ9 is a key JAZ protein that mediates the antagonistic interaction of JA and GA [21]. In this study,
they identified OsJAZ9 proteins that directly interact with the rice DELLA protein SLENDER RICE 1
(SLR1), and demonstrated that the OsJAZ9–SLR1 interaction mediates the antagonistic interaction
of JA and GA in rice by showing that overexpression of OsJAZ9 promotes the GA response while
knock-out of OsJAZ9 reduces the GA response. Together, these data suggest that JA is an essential
hormone that modulates plant growth under stress conditions, and its antagonistic interaction with
GA mediates this process.

3. The JA–Cytokinin Interaction

3.1. Cytokinin Metabolism and Signaling

Cytokinin regulates the maintenance of stem cell identity and cell proliferation; therefore, cytokinin
affects most aspects of plant growth and development [53]. The expression of genes involved in
cytokinin responses is largely affected by the stress-response hormone JA or JA-dependent stress
responses [54–56]. Furthermore, cytokinin-deficient mutant plants displayed increased tolerance to
stresses, similar to transgenic plants with higher JA responses [57–60]. These studies suggested that
the cytokinin response is integral to the JA-dependent stress response and growth modulation.
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Most naturally occurring cytokinins are derivatives of isopentenyladenine, and zeatin is the
ubiquitous form of cytokinins in higher plants [53,61]. Zeatin occurs as two isomers, trans-zeatin
(tZ) and cis-zeatin (cZ); tZ is the active form of cytokinin in all plant species and cZ is less active
than tZ [62,63]. Isopentenyl transferases (IPTs), and cytochrome P450 CYP735A1 and CYP735A2
mediate the production of tZ cytokinin [53]. The IPT-catalyzed reaction is the rate limiting step in
cytokinin biosynthesis process, and the results showing that overexpression of AtIPT1, 3, 4, 5, 7, or
8 promoted cytokinin production and shoot growth support this [61,64,65]. The biological activity
and homeostasis of cytokinins can be regulated by conjugation with glucose or amino acids, or by
degradation. For example, glucosyl-conjugated cytokinins, which do not interact with cytokinin
receptors, are inactive, and overexpression of cytokinin oxidase, which is responsible for cytokinin
cleavage, reduces endogenous levels of cytokinins [66,67].

The cytokinin signaling pathway, which is composed of cytokinin receptors, histidine
phosphotransfer proteins, and transcription factors, regulates cytokinin responses in plants.
In Arabidopsis, three histidine kinases (AHK2, AHK3, and AHK4/WOODEN LEG) function as
cytokinin receptors [53,68]. Direct interaction between cytokinins and the histidine kinase receptors
activates the kinase activity of the receptors, leading to autophosphorylation on the conserved histidine
residue. The phosphate is transferred to the histidine phosphotransfer proteins (AHPs) via the
conserved aspartate residue of the receptors. In Arabidopsis, five genes encode AHPs that normally
function as histidine phosphotransferases and one gene (AHP6) encodes a pseudo-AHP that negatively
regulates cytokinin signaling. The AHPs activated by phosphorylation move into the nucleus and
sequentially activate B-type ARABIDOPSIS RESPONSE REGULATOR (ARR) transcription factors
responsible for the transcription of cytokinin-responsive genes [69,70]. Genes encoding components of
the cytokinin signaling pathways, such as AHKs, AHPs, and ARRs, are affected by JA or environmental
stresses such as drought, salt, and cold, suggesting that the cytokinin response is involved in plant
stress responses [50,56,71,72].

3.2. The JA–Cytokinin Interaction and Its Underlying Molecular Mechanism

Previous studies have proposed that JA antagonistically interacts with cytokinin in various
aspects of plant development. For example, JA inhibits cytokinin-induced soybean (Glycine max) callus
growth [73], and nullifies the effect of cytokinin on chlorophyll development [74,75]. Furthermore, JA
and cytokinin differently regulate the expression of the genes involved in the chlorophyll development,
indicating the existence of an antagonistic interaction between JA and cytokinin. A recent study revealed
that xylem differentiation is regulated by JA in Arabidopsis roots, and an antagonistic interaction
between JA and cytokinin is fundamentally important for JA-dependent xylem development [50].
Xylem is responsible for water and nutrient transport and it develops from procambial/cambial cells,
which are stem cells of the vascular system [76,77]. In Arabidopsis roots, cytokinin maintains stem
cell identity and functions as a negative regulator of xylem differentiation. The role of cytokinin
in xylem differentiation was demonstrated by showing that exogenous cytokinin treatment inhibits
xylem development, and the wooden leg mutants with defects in cytokinin signaling strongly exhibit
an all-xylem phenotype and lack procambial cells in their roots. Additionally, mutants that lack
transcription of Type-B ARRs, such as ARR1, ARR10, and ARR12, or transgenic plants overexpressing
AHP6, a negative regulator of cytokinin signaling, form extra xylem [50,78]. Similar to the cytokinin
signaling mutants, the wild-type plants or JA-deficient OPDA reductase 3 (opr3) mutants treated
with exogenous JA showed an extra xylem phenotype, whereas JA signaling mutants, such as
coi1 and jasmonate resistant 1 (jar1), did not [50]. Together with the results that JA suppresses the
procambium-specific cytokinin response, and that the effect of JA on extra xylem formation is nullified
by cytokinin, suggest that the stress hormone JA antagonistically interacts with cytokinin in xylem
development in Arabidopsis roots.

These findings were supported by the results that JA reduces the expression of the
cytokinin-responsive PIN-FORMED 7 (PIN7) gene, which is responsible for xylem development,
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and the finding that drought stress induces the formation of extra xylem in Arabidopsis roots further
supported this idea [50,79]. Furthermore, myc2 mutant did not form extra xylem in response to
exogenous JA, and the expression of AHP6, encoding a cytokinin signaling inhibitor, was reduced
in myc2 mutant, suggesting that the JA-responsive MYC2 transcription factor mediates this process
by promoting AHP6 expression (Figure 2). It is likely that an antagonistic interaction between JA
and cytokinin is also involved in the regulation of JA-dependent stress responses. A recent study
by Nitschke et al. (2016) showed that plants with reduced cytokinin levels or defective cytokinin
signaling exhibited a JA-dependent cell death phenotype in response to circadian stress, unlike
wild-type plants [80], suggesting that JA and cytokinin antagonistically interact in the plant response
to circadian stress.
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Figure 2. A schematic of crosstalk between JA and cytokinin in xylem development. JA antagonistically
interacts with cytokinin in xylem development and the JA-responsive MYC2 transcription factor
mediates this process. MYC2 negatively regulates cytokinin response by promoting expression
of AHP6, a cytokinin signaling inhibitor. The arrows and T bars indicate positive and negative
regulation, respectively.

Despite many studies supporting an antagonistic interaction between JA and cytokinin in
modulation of plant development and physiology, the molecular mechanisms underlying the JA–GA
crosstalk remain largely unknown. Regulation of AHP6 expression by MYC2 transcription suggests
that components of JA and cytokinin signaling pathways might mediate the interaction between JA
and cytokinin. However, the observation that cytokinin levels were affected by stress conditions also
suggests that regulation of JA and cytokinin metabolism might also be involved in the JA–cytokinin
interaction [60,81,82].

4. The JA–Auxin Interaction

4.1. Auxin Metabolism and Signaling

Auxin has essential functions in cell fate determination and cell division, thus mediating most
aspects of plant growth and development [83]. Indole-3-acetic acid (IAA) is the predominant
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form of natural auxins in plants. IAA can be produced through tryptophan-dependent and
-independent pathways, and the tryptophan-dependent pathway is currently the best understood
auxin biosynthetic pathway in plants [84,85]. The tryptophan-dependent pathway is mediated by
tryptophan aminotransferase (TAA), and the flavin monooxygenase YUCCA (YUC). TAA and YUC
are responsible for the conversion of tryptophan to indole-3-pyruvate (IPA) and the conversion of IPA
to IAA, respectively. Similar to other plant hormones, IAA can be deactivated by conjugation with
amino acids or sugars, and by oxidation [86].

Auxin-mediated regulation of gene expression is crucial for auxin-dependent regulation of plant
growth and development, and this process is regulated by the auxin signaling pathway. Similar
to JA and GA, auxin signaling is based on E3 ubiquitin ligase-mediated proteolysis of signaling
repressor proteins [87]. AUXIN RESPONSE FACTORS (ARFs) are transcription factors responsible for
the transcription of auxin-responsive genes, and they regulate the transcription of auxin-responsive
genes by directly binding auxin responsive elements through their B3-like DNA binding motif.
The transcriptional activity of ARFs depends on the interaction with the auxin signaling repressor
Aux/IAAs, and degradation of Aux/IAAs induces the release of ARFs with transcriptional activity
and activates the transcription of auxin-responsive genes. The degradation of Aux/IAAs is provoked
by the SCFTIR1 E3 ubiquitin ligase, and the direct interaction between auxin and the TIR1 auxin
receptor enhances the physical association between TIR1 and Aux/IAAs and sequential ubiquitination
of Aux/IAAs [88].

4.2. Interaction of JA and Auxin and the Underlying Molecular Mechanism

The interaction of JA and auxin in plant development and physiology plays a role in processes
such as cell elongation, tendril coiling, and the production of secondary metabolites [89,90], but this
interaction has not been elucidated at the molecular level. The identification of genes involved in JA
and auxin metabolism and signaling pathways have revealed that JA and auxin interact to modulate
plant development.

The interaction between JA and auxin has been well demonstrated in the regulation of root
development. JA inhibits apical growth of roots; JA-treated wild-type plants form much shorter
roots than untreated wild-type plants, while mutant plants with defects in JA signaling form similar
roots in length to the roots of wild-type plants even in JA-treated conditions [50]. By contrast, auxin
is essential for root growth and auxin deficiency or signaling mutants, such as (trp2-12) and auxin
resistant 3 (arx3-1), develop very short roots compared to wild-type plants [91,92]. This suggests that
JA-induced inhibition of root growth might be mediated by an interaction with auxin, and a study by
Chen et al. (2011) demonstrated this [93]. In the study, they showed that the JA-mediated inhibition of
root growth is caused by a reduction of root meristem activity, and exogenous JA treatment suppresses
the expression of the auxin-responsive transcription factors PLETHORAs (PLTs), which are responsible
for maintenance of the stem cell niche and cell proliferation [94]. However, the expression levels of PLTs
was not suppressed in JA-signaling mutants, such as coi1-1 and myc2, suggesting that COI1-dependent
JA signaling mediates the JA-induced root phenotype, and the MYC2 transcription factor suppresses
the expression of PLTs. Together with the result that MYC2 directly binds to the promoters of PLTs,
indicate that JA-responsive MYC2 mediates JA-induced inhibition of root growth by directly repressing
the expression of auxin-responsive PLTs (Figure 3), and suggest that JA and auxin antagonistically
interact in the regulation of apical root growth.

The JA–auxin interaction is involved in various aspects of plant development as well as root
development. The development of floral organs, such as petals and stamens, is coordinated as flowers
mature, and a study by Reeves et al. (2012) showed that an interaction between auxin-responsive
transcription factors and JA biosynthesis modulates this process [95]. The R2R3 MYB transcription
factors MYB21 and MYB24 are key regulators of petal and stamen growth, and the auxin-responsive
transcription factors ARF6 and ARF8 regulate the expression of JA-responsive MYB21 and MYB24



Int. J. Mol. Sci. 2020, 21, 305 8 of 15

by controlling JA biosynthesis, indicating that auxin interacts with JA to regulate the development of
floral organs [95,96]. The JA-auxin interaction was also observed in the regulation of leaf senescence.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 8 of 14 
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factors are key regulators of root development downstream auxin. JA inhibits root growth, and MYC2
transcription factor mediates this development process by reducing expression of PLT1 and 2. The
arrows and T bars indicate positive and negative regulation, respectively.

JA plays an essential role as a positive regulator of leaf senescence. JAZ7 suppresses dark-induced
leaf senescence, while MYCs, including MYC2, promote senescence by activating the expression of
senescence-associated genes and chlorophyll degradation-related genes, indicating that JA activates
leaf senescence through a COI1-dependent JA signaling pathway [97–99]. In JA-dependent leaf
senescence, the JA signaling repressors JAZ4 and JAZ8 function as negative regulators while the
auxin signaling repressor IAA29 functions as a positive regulator. In JA-dependent leaf senescence,
WRKY57 is another negative regulator that negatively affects the expression of senescence-associated
genes. More importantly, WRKY57 interacts with JAZ4/8 and IAA29. These results suggest that
competition between the WRKY57–JAZ4/8 and WRKY57–IAA29 interactions mediates JA-dependent
leaf senescence, suggesting that an antagonistic interaction of JA and auxin is involved in leaf
senescence [100].

5. Complexity of JA Crosstalk

Hormonal interactions are a critical component of plant growth and physiology [3]. This review
described the role of JA crosstalk with other phytohormones in the modulation of plant growth
and development, focusing on JA–GA, JA–cytokinin, and JA–auxin interactions and the molecular
mechanisms underlying these processes. JA interacts with most plant hormones, and as shown
in previous studies, JA extensively interacts with salicylic acid to modulate plant defenses against
pathogen attacks. The interaction between JA, which mediates disease resistance to necrotrophic
pathogens, and salicylic acid, which mediates broad-spectrum resistance to biotrophic pathogens,
allows plants to establish an efficient defense system against a variety of pathogen attacks, and ethylene
is also involved in this process [17,101]. In addition, ABA interacts with JA to regulate cellular metabolic
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processes, and ABA receptor PYRABACTIN RESISTANCE1-Like proteins with the ability to interact
with JAZs mediate this process by modulating JA signaling [102].

Brassinosteroids (BR) mediate various aspects of plant growth and development and modulate
JA signaling and JA-dependent growth inhibition. For example, DWARF4 encodes a key enzyme
responsible for BR biosynthesis and a leaky mutation of DWARF4 restored JA sensitivity in the coi1
mutant background and showed JA hypersensitivity in the wild-type background. Furthermore,
expression of DWARF4 was downregulated by JA in a COI1-dependent manner, and exogenous BR
treatment attenuated the effects of JA on root growth inhibition [103]. These results indicate that a
BR–JA interaction is involved in the modulation of JA signaling.

As described in this review, JA interacts with a variety of hormones involved in growth regulation,
such as GA, cytokinin, auxin, and BR, to modulate plant growth and development, and the nature
of the interaction is generally antagonistic. These interactions may help optimize plant growth
and development under stress conditions. However, the nature of the interaction appears to differ
depending on the type of cell and tissue. For example, JA and GA antagonistically interact in stem
elongation, while they interact synergistically in stamen development [21,104]. JA antagonistically
interacts with auxin to modulate apical growth of roots, but synergistically to promote lateral root
growth [93,105].

6. Future Perspectives

Identification and characterization of the components involved in plant hormone metabolism
and signaling have provided important clues to understand the hormonal interactions underlying
the regulation of plant growth and physiology in response to endogenous and exogenous signals.
JA is a key hormone that mediates the plant response to biotic and abiotic stresses, and is deeply
involved in stress-induced modulation of plant growth and development. Increasing evidence
indicates that JA-dependent growth regulation largely depends on the crosstalk of JA with other
growth-related hormones such as auxin, cytokinin, GA, and BR. Although some of the molecular
mechanisms underlying these processes have been revealed, including protein–protein interactions
between hormone signaling components, many of the questions about the complexity and dynamics
of hormonal interactions still remain unanswered. Further molecular and genetic studies will expand
our understanding of the mechanisms underlying JA crosstalk in the modulation of plant growth and
development under stress conditions.
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