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Abstract: Oxidative stress plays a key role for the development of cardiovascular, metabolic, and 

neurodegenerative disease. This concept has been proven by using the approach of genetic deletion 

of reactive oxygen and nitrogen species (RONS) producing, pro-oxidant enzymes as well as by the 

overexpression of RONS detoxifying, antioxidant enzymes leading to an amelioration of the 

severity of diseases. Vice versa, the development and progression of cardiovascular diseases is 

aggravated by overexpression of RONS producing enzymes as well as deletion of RONS 

detoxifying enzymes. We have previously identified cross talk mechanisms between different 

sources of RONS, which can amplify the oxidative stress-mediated damage. Here, the pathways 

and potential mechanisms leading to this cross talk are analyzed in detail and highlighted by 

selected examples from the current literature and own data including hypoxia, angiotensin II 

(AT-II)-induced hypertension, nitrate tolerance, aging, and others. The general concept of 

redox-based activation of RONS sources via “kindling radicals” and enzyme-specific “redox 

switches” as well as the interaction with redox-sensitive inflammatory pathways are discussed. 

Here, we present evidence for the existence of such cross talk mechanisms in the setting of diabetes 

and critically assess their contribution to the severity of diabetic complications. 

Keywords: redox cross talk; mitochondria; NADPH oxidase; kindling radicals; oxidative stress; 

endothelial dysfunction; eNOS uncoupling; low-grade inflammation 

 

1. Introduction 

1.1. Reactive Oxygen and Nitrogen Species in the Organism 

A molecular proof of the existence of superoxide anion radical (O2•¯) formation in the organism 

was based on the discovery of superoxide dismutases (SODs, mitochondrial Mn-SOD, and 

cytosolic/extracellular Cu,Zn-SOD) in living organisms by Fridovich and coworkers in the 1960s [1]. 

The existence of SODs in biological systems also suggests that O2•¯is a harmful species involved in 

pathophysiological processes and that the expression of SODs is mandatory to protect the organism 

from oxidative damage by superoxide. Although the degradation product of O2•¯, hydrogen 

peroxide (H2O2), may confer redox signaling by oxidation of protein thiol groups and act as an 
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important second messenger that is essentially involved in fundamental cellular processes such as 

eustress [2,3] or cell differentiation/proliferation [4], its concentrations need to be tightly controlled 

by catalase and glutathione peroxidases (GPx) to prevent oxidative stress conditions and 

exaggerated oxidative damage of cellular structures [5]. Other important physiological functions of 

hydrogen peroxide comprise the formation of disulfide bonds during “oxidative” protein folding in 

the endoplasmic reticulum [6,7] and providing the “peroxide tone” for enzymes such as 

cyclooxygenases [8]. Redox signals by hydrogen peroxide are either directly mediated by 

sulfoxidation and S-glutathionylation of thiol-dependent enzymes or via modulation of the 

oxidation state of thiols in peroxiredoxins, thioredoxins, and glutaredoxins that are all 

interconnected and coupled to their reductases using NAD(P)H as an electron-providing cofactor 

[9,10]. More examples on hydrogen peroxide-dependent redox signaling are provided in the 

position paper by the EU-ROS COST Action [11]. The beneficial effects of ROS may also represent 

the reason why most large-scale clinical trials on antioxidants failed or even turned-out negative 

[12], indicating that unspecific systemic inhibition of ROS formation may inhibit these physiological, 

beneficial functions of ROS and thereby promote adverse health effects. 

In contrast, O2•¯ seems to be more harmful than H2O2 since genetic deficiency in Mn-SOD is 

lethal at the embryonic stage or shortly after birth due to heart failure and neurological disorders 

[13,14]. The only “real” physiological role of superoxide potentially comprises its role in host defense 

as Nox2−/− mice [15] and patients with chronic granulomatous disease (Nox gene mutations) [16] are 

more susceptible to infections. The harmful or antibacterial properties of O2•¯ may be explained not 

only by the high reactivity of O2•¯ towards transition metal complexes (e.g., iron–sulfur clusters in 

mitochondrial proteins of the respiratory chain or the central phosphatase calcineurin) but also by its 

fast reaction with nitric oxide (•NO) [17,18]. After two decades of intensive research (1970s and 

1980s) •NO was identified as the ”endothelium-derived relaxing factor“ (EDRF), a potent 

vasodilator by its activation of soluble guanylyl cyclase (sGC) in the smooth muscle, which was a 

joint effort by the Noble Prize recipients Murad, Ignarro, und Furchgott [19–21]. This discovery 

changed the negative picture that scientists had of free radicals in biology and helped to understand 

that these species can also confer cellular redox signaling and thereby act as highly important 

physiological messenger molecules. The physiological role of •NO as a vasodilator and as a 

neurotransmitter was extensively reviewed [22–25]. In the 1990s, it became evident that O2•¯ reacts 

with •NO with almost diffusion-controlled kinetics leading to the formation of peroxynitrite 

(ONOO¯) [26], which leaves its footprints in vivo by nitration of protein-bound tyrosine residues 

[27–29] that can be detected by specific antibodies against 3-nitrotyrosine-positive proteins, e.g., in 

atherosclerotic plaques [30–32]. The formation of hydroxyl radicals (HO•) is a driving force of the 

oxidative potential of ONOO¯ [33] and its nitrating potential is enhanced in the presence of carbon 

monoxide [34] or transition metal centers, e.g., of manganese, heme, or heme-thiolate (P450) 

enzymes [35–40]. 

In many aspects, O2•¯ can be regarded as direct antagonist of •NO [41–43], a concept that was 

already proven in 1986 by demonstrating that SOD prevents the loss of vasodilatory effects of •NO, 

formerly known as EDRF, in denuded vessels (Figure 1) [44]. The oxidative degradation of •NO by 

O2•¯ directly contributes to endothelial dysfunction by removal of a potent vasodilator. In addition, 

the formation of ONOO¯ causes oxidative damage of important vascular proteins, e.g., endothelial 

nitric oxide synthase (eNOS) [45,46], sGC [47], and prostacyclin synthase (PGIS) [48] and thereby 

contributes to endothelial (vascular) dysfunction [49,50]. Endothelial (vascular) dysfunction of the 

micro- and macrovascular system also represents a major health risk of diabetic patients [51–53]. The 

interplay and steady-state levels of O2•¯, •NO, and their reaction product ONOO¯ as well as their 

tight control by antioxidant enzymes largely determine cellular redox state and whether RONS at 

low concentrations act as messengers in redox signaling or at high concentrations cause oxidative 

stress and damage of biomolecules (Figure 2) [11]. 
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Figure 1. Overview on the simplified model of redox biology in the vascular system. O2•¯ was 

identified as an antagonist of the EDRF (see red inhibitory bar), far before EDRF was widely accepted 

to be •NO by the famous experiment of Gryglewski, Palmer, and Moncada based on the transfer of 

the perfusate from bradykinin-stimulated endothelial cell culture to an organ bath with denuded 

(endothelium-devoid) aortic ring segments [44]. The vasodilatory potency of EDRF coming from the 

cell culture was increased by addition of SOD to the buffer on the cells conferring dismutation of O2•¯ 

(see green inhibitory bar), supporting the break-down of EDRF by O2•¯. From previous work, we 

know today that •NO and O2•¯ react in a diffusion-controlled reaction to form ONOO¯ [30,31]. 

Without this reaction, O2•¯ is dismutated either by SODs or undergoes spontaneous self-dismutation 

to form H2O2, which is largely involved in redox signaling pathways via oxidation of specific thiol 

residues, or inactivated by catalases (Cat), GPx, or peroxiredoxins (Prx). ONOO¯ can cause 

widespread oxidative damage in proteins (tyrosine nitration [3-NT] and methionine sulfoxidation 

[oxMet]) but also lipids and DNA molecules [54]. Scheme is modified from [41] with permission. 



Int. J. Mol. Sci. 2020, 21, 3405 4 of 30 

 

•O2
- •NO

ONOO-

k = 1 x 1010 M-1 s-1

H2O2

SODs
k = 2 x 109 M-1 s-1

H2O NO2
-

2GSH

GSSG

GPx

Catalase

NADP+

2 GSH

NADPH
GSSG

GSH red.

Fe2+

Fenton Chem.

•OH •OH + •NO2

Isomerization
Homolysis

Oxidative
damage

NO3
-

H+

Redox signaling

Oxidative
damage

NADP+

2 GSH

NADPH
GSSG

GSH red.

Trxred

Grxred

Trxox

Grxox

TrxR/GrxR
NAD(P)H

red.

→←
→←

NOX
Mito
XO

uc NOS
P450

eNOS
nNOS
iNOS

NO2
- Red.

Superoxide
sources

Nitric oxide
sources

low levels

high levels high levels

 

Figure 2. The major pathways of vascular oxidative stress and redox signaling. Redox signaling is 

mainly based on H2O2 that is formed by breakdown of O2•¯ via self-dismutation or catalyzed by 

SODs. Biological O2•¯ sources are NADPH oxidases (NOX), the mitochondrial respiratory chain 

(Mito), xanthine oxidase (XO), an uncoupled NOS (ucNOS), and P450 enzyme side reactions. H2O2 

modulates the thiol/disulfide equilibrium and thereby modifies enzymatic activities (e.g., in 

zinc-finger-motifs as found in transcription factors). Reaction with thiol groups is also a major route 

of detoxification for H2O2 via peroxiredoxins (Prx), glutaredoxins (Grx), and thioredoxins (Trx) or the 

low-molecular-weight thiol glutathione (GSH) that may be coupled to the faster reacting selenol in 

GPx—these systems require energy-consuming recycling by NAD(P)H-coupled reductases, are 

highly interconnected, and form a complex redox network that also affects thiol groups in other 

enzymes [9,10]. Decomposition of H2O2 is also catalyzed by catalase. Accumulation of H2O2 leads to 

the Fenton reaction and hydroxyl radical (HO•) formation, which is based on the reaction of H2O2 

with ferrous iron (Fe2+), yielding ferric iron (Fe3+) that is reduced back to ferrous form by O2•¯ (the 

sum of these reactions is called the Haber–Weiss cycle). Hydroxyl radicals cause severe oxidative 

damage at the protein, lipid, and DNA level. Biological •NO sources are neuronal, endothelial, or 

inducible NOS as well as the reduction of nitrite from nutritional sources. The diffusion-controlled 

reaction of •NO with O2•¯ yields ONOO¯ anion and is fast enough to even outcompete the extremely 

fast breakdown of O2•¯ by SOD. Kinetic considerations support the formation of ONOO¯ under 

physiological and, especially, under pathophysiological conditions. The reported inactivation of 

SOD isoforms (via nitration/dityrosine formation in SOD2 and damage of the Cu,Zn-complex in 

SOD1/3) lead to a further increase in O2•¯ levels in a positive-feedback fashion. The redox signaling 

mechanisms by ONOO¯ are similar to those mediated by H2O2, but ONOO¯ (or its conjugated acid) 

has 100–1000-fold higher reactivity. Once protonated, ONOOH can be degraded by spontaneous 

isomerization to nitrate or can be activated by homolysis to form the HO• and the nitrogen dioxide 
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(•NO2) radicals with a similar oxidative damage profile as observed for the Fenton reaction. Scheme 

is significantly modified from [55]. 

1.2. Sources of Reactive Oxygen and Nitrogen Species 

O2•¯ can be formed from different sources such as xanthine oxidase (XO), NOX, ucNOS, and the 

mitochondrial respiratory chain as well as H2O2 by specific mitochondrial enzymes such as 

monoamine oxidase (MAO) or p66Shc/cytochrome c complex. As all of these O2•¯ sources were 

extensively reviewed in the past [56], their function and isoforms are only briefly summarized here. 

XO is a molybdenum/iron enzyme that transfers electrons from hypoxanthine or xanthine (also 

other substrates, e.g., acetaldehyde) to molecular oxygen to produce O2•¯. Two meta-analyses of 

clinical studies concluded that XO inhibition may be cardioprotective [57,58]. NOX exist in different 

isoforms NOX1-5 and dual oxidase (DUOX)1-2. They are multiprotein complexes with 

transmembrane-spanning domains. The catalytic heme subunit transfers electrons from NADPH to 

molecular oxygen to produce O2•¯. Most prominent isoforms are: NOX2, the phagocytic NOX, that is 

highly regulated by cytokines as well as AT-II via protein kinase C (PKC) and that is highly 

expressed in phagocytic cells (e.g., leukocytes and macrophages) and has a role in inflammation; 

NOX1 that is highly expressed in the vasculature and regulated comparable to NOX2; and NOX4, 

the constitutive NOX that produces low levels of H2O2 for maintenance of essential cellular 

functions. NOX represent the only source of O2•¯ that has no other biological function but to produce 

O2•¯. Therefore, NOX attracted pharmacological interest and provides the basis for therapeutic 

targeting [56,59], but so far, none of these compounds reached application in the clinics. NOSs exist 

in different isoforms NOS1-3 (neuronal, inducible, and endothelial NOS). They usually produce •NO 

by conversion of the substrate L-arginine to L-citrulline by electron transfer from NADPH and 

reaction of molecular oxygen with the help of the heme-iron and the cofactor tetrahydrobiopterin 

(BH4). ucNOS isoforms produce O2•¯ instead of •NO by electron transfer from NADPH to molecular 

oxygen, e.g., upon depletion of BH4 or in the absence of L-arginine [49,60]. There is no drug in 

clinical use for recoupling of NOS but therapeutic targeting of uncoupled eNOS is highly beneficial 

in various animal models of cardiovascular and metabolic diseases [61]. Based on estimations, up to 

1% of the electrons, which are involved in mitochondrial respiration, are transferred to molecular 

oxygen [62] O2•¯ is mainly formed at complex I as well as III [63] and potentially at complex II by 

reverse electron transport [64]. Mitochondria are a rich source of O2•¯, which is also supported by 

lethality of Mn-SOD deficiency [13,14], and mitochondrial O2•¯ formation plays a central role for 

ischemia/reperfusion damage (e.g., during myocardial infarction (MI) and stroke) [65,66]. Therefore, 

mitochondria-targeted antioxidants are currently investigated for a number of different diseases, 

including cardiovascular, neurodegenerative diseases, and diabetes [67–69]. MAO-A/B isoforms are 

flavoenzymes that catalyze the oxidative deamination of both endogenous and exogenous amines, 

including neurotransmitters and several drugs [70]. They are located at the outer mitochondrial 

membrane, produce H2O2 as a byproduct during normal enzymatic function, and have been 

investigated for therapy of neuronal disease and myocardial injury [56]. Upon activation and 

association with cytochrome c, p66Shc represents an important source of H2O2 in myocardial 

ischemia/reperfusion but may also contribute to vascular abnormalities associated with diabetes and 

aging [71]. Of note, although genetic p66Shc deletion mostly conferred antioxidant protective effects, 

it also plays a role in insulin signaling (which partly depends on a basal physiological reactive 

oxygen species (ROS) level) and is potentially involved in eustress [71], an endogenous protective 

preconditioning by mild oxidative stress as introduced above. It is well established that these RONS 

sources are also activated in the diabetic setting (see Section 3 for experimental and clinical 

evidence), suggesting that RONS contribute to diabetic cardiovascular and, potentially, other 

adverse health effects. 

1.3. Preclinical/Molecular Proof of a Role of Oxidative Stress for Cardiometabolic Diseases 

First evidence for a role of oxidative stress for cardiovascular complications in an experimental 

model of hypercholesterolemia is based on reports by Harrison and Ohara [72,73]. Later, genetic 
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manipulations (e.g., knockout mice or transgenic overexpressing mice) provided a molecular proof 

of the involvement of ROS producing or detoxifying enzymes in the onset and progression of these 

cardiometabolic diseases (for review see [74]). We here just mention some prominent examples. 

Genetic deletion of the p47phox (a subunit of NOX2) improved vascular •NO bioavailability in mice 

with MI, normalized ROS formation, and improved heart function (ejection fraction) as well as 

mortality after MI by 20% [75]. The cardiovascular complications in an AT-II-induced hypertension 

model, e.g., increased blood pressure and vascular ROS formation as well as impaired endothelial 

function, were largely absent in mice with p47phox or Nox1 deficiency [76,77]. In contrast, transgenic 

mice overexpressing Nox1 [78] and mice with deletion of antioxidant enzymes, e.g., by heterozygous 

Mn-SOD deficiency (Sod2+/−) [79,80], showed aggravated cardiovascular complications, especially 

with additional stress conditions. Deletion of the Gpx1 in atherosclerosis-prone apolipoprotein 

E-deficient (ApoE−/−) mice caused accelerated atherosclerotic plaque formation and enhanced 

vascular oxidative stress [81], whereas Gpx1 deficiency in wildtype mice resulted in more 

pronounced aging-associated complications [82]. Transgenic overexpression of 

GTP-cyclohydrolase-1, the enzyme that is responsible for de novo synthesis of BH4, is associated 

with improvement of cardiovascular complications in animal models of atherosclerosis [83], 

hypertension [84], and diabetes [85] by normalizing the coupling state and function of eNOS [86]. 

Genetic endothelial- or myelomonocytic-specific deficiency of the AMP-activated protein kinase 

(AMPKfl/flTekcre or LysMcre mice) resulted in endothelial dysfunction, vascular oxidative stress, and 

inflammation in AT-II-induced hypertension [87,88]. The contribution of oxidative stress to diabetic 

complications is substantial as demonstrated by the beneficial effects of antioxidant interventions, 

targeting mitochondrial O2•¯ formation in diabetic animals that largely prevented the adverse effects 

of hyperglycemia [89]. These data provide a molecular proof of the crucial role of oxidative stress in 

causing cardiovascular disease in animals (for review and more examples see [55,74,90–92]). 

1.4. Clinical Evidence for a Role of Oxidative Stress in Cardiovascular and Metabolic Diseases 

Oxidative stress is a hallmark of all cardiovascular diseases, confers activation of endothelial 

cells, and thereby facilitates adhesion/infiltration/activation of immune cells [55]. Oxidative stress is 

known to induce endothelial dysfunction [93] and to accelerate the progression of atherosclerosis 

[94]. The link between oxidative stress and cardiovascular prognosis is widely accepted and 

supported by data from large clinical trials. A positive correlation between levels of GPx-1 and 

cardiovascular event-free survival was reported by a large clinical study (636 subjects) [95]. 

Additionally, the serum levels of D-ROM (derivatives of reactive oxygen metabolites) that are 

indicative of ROS formation and the total thiol levels (representative of the total redox state) were 

strongly and independently associated with all-cause and cardiovascular mortality (10,622 subjects) 

[96]. The levels of 8-hydroxy-2-deoxyguanosine, a marker of oxidative DNA damage, were increased 

in patients with cardiovascular disease according to the data of a meta-analysis (1900 subjects) [97]. 

Additionally, a number of small cohort clinical studies support the concept that endothelial function 

(measured by flow-mediated dilation (FMD)), which represents a subclinical marker of 

atherosclerosis and early predictor for cardiovascular events [49,50], correlates with the oxidative 

stress burden as assessed by vitamin C responsiveness [93], reduced circulating glutathione levels 

[98], SOD activity or oxidized low-density lipoprotein (oxLDL, oxidative stress marker, and initiator 

of atherosclerosis), as well as malondialdehyde (MDA) or 8-oxo-deoxyguanosine levels [99]. A 

detailed review on the impact of oxidative stress on cardiovascular disease development and 

progression with a detailed list of clinical studies can be found in references [61,74,100,101]. 

The contribution of oxidative stress to the cardiovascular complications in diabetes is widely 

accepted [102,103]. A meta-analysis of 33 studies revealed that administration of vitamin D 

significantly reduced the serum levels of high-sensitivity C-reactive protein (hs-CRP) and MDA 

levels in diabetic patients, whereas vitamin D treatment increased •NO bioavailability and the levels 

of reduced glutathione [104]. Although vitamin D is not a classical low-molecular-weight 

antioxidant compound, its beneficial effects on oxidative stress are more and more recognized 

[105–108]. A meta-analysis of 12 studies revealed that supplementation with vitamin E was 
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associated with reduced blood glucose and glycated hemoglobin and administration of vitamins C 

as well as E were associated with lower MDA levels and higher GPx as well as SOD activity [109]. 

The ADVANCE Trial revealed that 8-oxo-2'-deoxyguanosine levels were correlated with all-cause 

and cardiovascular mortality in adults with type 2 diabetes mellitus (T2DM) (n = 3766) [110]. 

Likewise, an independent prospective cohort study revealed a correlation of RNA oxidation with 

all-cause and cardiovascular mortality risk in patients with T2DM [111]. Dapagliflozin therapy 

conferred better glycemic control, endothelial function, which was associated with lower 

8-oxo-2'-deoxyguanosine urine levels in T2DM patients [112]. Oxidative degradation of BH4, the 

essential eNOS cofactor, was observed in diabetic patients and points to an uncoupled/dysfunctional 

eNOS, all of which was corrected by acute BH4 infusion [113]. In addition, treatment with the 

antioxidants lipoic acid or vitamin C normalized endothelial function in diabetic subjects [114]. A 

population-based study (631 subjects) revealed an association between T2DM and endothelial 

dysfunction as well as low-grade inflammation providing an explanation for a 43% higher 

cardiovascular mortality risk for diabetic subjects [115]. 

Despite the large body of evidence for a role of oxidative stress in disease development and 

progression, almost all large clinical trials for nonselective antioxidant therapy (mainly vitamins C 

and E, chronic high dose oral administration) failed to show any health benefit for the treatment of 

cardiovascular disease [12,116]. Only a few exceptions are published such as the European 

Prospective Investigation into Cancer (EPIC)-Norfolk study with measurement of vitamin C plasma 

levels of all participants [117] and small-cohort studies using acute high-dose administration (mainly 

infusion) of vitamins (reviewed in [49,118]). Additionally, the quite expensive development of the 

synthetic antioxidant NXY-059 is not an exception and failed to prove benefits in clinical studies 

with stroke patients [119]. The most likely explanations for the rather disappointing outcome of 

clinical antioxidant trials so far, previously discussed in very detail but comprise among others, 

were the limited up-take of classic oral antioxidants in tissues undergoing oxidative stress, access to 

intracellular sites of ROS production, the limited reactivity towards specific ROS (e.g., H2O2 or O2•¯), 

and most importantly, interference with essential physiological ROS signaling [12,49,91]. 

2. Cross talk between Different Sources of RONS 

2.1. Interaction of Different RONS Sources—the Concept of “ROS-Triggered ROS Formation” 

The concept of “ROS-triggered ROS formation” was first reported for self-amplified 

mitochondrial ROS formation envisaged by waves of enhanced ROS levels along mitochondrial 

networks (dysfunctional mitochondria release ROS that stimulate ROS release by neighbored 

mitochondria) [120]. This concept was extensively reviewed with all mechanistic details by Zorov 

and colleagues [121]. Later, this concept was extended not only to interaction of NOX and 

mitochondria in AT-II-mediated preconditioning [122] as well as adverse effects [64] but also to 

other disease settings and redox processes [92]. Kimura et al. established that AT-II-stimulated 

NOX-dependent ROS formation in the myocardium confers ischemic preconditioning [122]. These 

protective effects were blocked by the NOX inhibitor apocynin and blockade of the mitochondrial 

ATP-sensitive potassium channels (mtKATP) in cardiac myocytes by 5-hydroxydecanoate (5-HD). In 

an editorial to this original paper, Brandes proposed that cytosolic ROS generated by NOX can 

stimulate mitochondrial ROS formation [123]. The mechanism could be based on activation of 

mtKATP in the mitochondrial membrane by NOX-derived cytosolic ROS with subsequent opening of 

the permeability transition pore (mPTP, in the figure termed MPT) (Figure 3) [124]. In general, the 

concept of “kindling radicals” (or also “bonfire” hypothesis) is known for long time [125] and 

provides an attractive explanation for the activation of secondary ROS sources and functional 

damage of redox-regulated enzymes such as eNOS [55,126]. In summary, initial formation of ROS 

(most likely from NADPH oxidases or mitochondria) leads to further oxidative damage of key 

enzymes such as eNOS via different uncoupling mechanisms (see “redox switches” in Figure 4) 

[127,128]. The ROS-induced ROS production concept can be extended to almost any kind of source 

of RONS as almost all of these sources contain “redox switches.” For hypertension, it has been 
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repeatedly shown that genetic deficiency in NADPH oxidase subunits, especially knockout of the 

phagocytic isoform NOX2 eliminating the superoxide formation from phagocytes, prevents eNOS 

uncoupling and endothelial dysfunction [129]. Similar observations on eNOS uncoupling were 

made in cultured endothelial cells upon challenges with typical biological oxidants such as 

peroxynitrite or hypochlorous acid as well as in Nox2−/− mice [130]. Accordingly, NOX2 is a likely 

candidate for the generation of the “kindling radicals.” 

 

Figure 3. Cross talk of NOX and mitochondria in AT-II-triggered ROS formation. AT-II-triggered 

activation of NOX in the cytoplasmic membrane with subsequent opening of mitochondrial KATP 

channels by NOX-derived ROS and mitochondrial ROS release via mPTP opening (in the figure 

termed MPT). Upon mtKATP opening, the electrophoretic influx of potassium cations into the matrix 

causes depolarization of the mitochondrial membrane (Δψm ) along with matrix swelling and 

alkalinization [131]. Matrix alkalinization, in turn, has been suggested to be responsible for the 

increase in H2O2 formation observed in cardiomyocytes treated with the mtKATP opener diazoxide 

[132–134]. The entire process was blocked by the specific mtKATP inhibitor 5-hydroxydecanoate 

(5-HD). This concept provides an amplification mechanism for AT-II-induced oxidative stress and 

contribute to AT-II-mediated preconditioning via P38 mitogen-activated protein kinases (p38 

MAPK) and c-Jun N-terminal kinase (JNK) pathway. AT1R, angiotensin II type 1 receptor. Modified 

from [123] and adapted from [92] with permission. 

The concept of the interaction (cross talk) of different ROS sources was developed to explain the 

observation that pharmacological inhibition or genetic deletion of one specific ROS source is in 

many disease models enough to confer a complete normalization of the disease phenotype (see 

numerous examples for hypertension and myocardial infarction (MI) in reference [127]). The reports 

on a complete normalization of hypertensive complications (including higher cardiovascular ROS 

formation) upon genetic deletion of Nox1, Nox2, or Nox4 as well as pharmacological inhibition of 

mitochondrial or XO-derived ROS either mean that some of these reports are not correct or that all 

ROS sources interact in a cross talk fashion and activate each other, with the logical conclusion that 

inhibition of only one of these sources is enough to prevent oxidative damage and normalize the 

overall ROS formation [127]. However, the cross talk between different ROS sources was also 

suggested to play a role in vascular cellular redox signaling, especially when substantial local ROS 
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accumulation is required for redox-triggered processes [135]. The mechanism behind this concept is 

that each ROS source has so-called “redox switches” that confer activation upon oxidation 

[90,92,136] (Figure 4). Although this redox cross talk was initially demonstrated for the 

NOX2/mitochondrial axis in the setting of hypertension [137–139], nitrate tolerance [140], and aging 

[79,82,139], it can be extended to other ROS-producing enzymes such as uncoupled eNOS [90,139] 

and xanthine dehydrogenase/oxidase conversion [64,90] (Figure 4) as well as to other disease 

settings. Especially, the role of cyclophilin D (CypD), a small redox-sensitive regulator of the mPTP, 

in the cross talk of mitochondrial ROS and NOX2-dependent ROS formation is meanwhile well 

established in AT-II-induced hypertension, by prevention of most adverse effects in CypD knockout 

mice [139,141]. Cysteine 203 in CypD determines the activity of the mPTP regulator CypD, and 

therefore, represents a redox switch of mPTP which confers higher opening probability of the pore 

under oxidative stress conditions [142]. In contrast, S-nitros(yl)ation of cysteine 203 prevented 

H2O2-induced mPTP opening identifying nitric oxide as an antagonist of ROS in this redox process. 

 

Figure 4. Cross talk between different sources of RONS (mitochondria, NOX, XO, and uncoupled 

NOS). XO originates from oxidative stress-mediated conversion of the xanthine dehydrogenase via 

oxidation of critical thiols in cysteine535/992 [143,144]. NOS (mainly eNOS) are uncoupled upon 

oxidative depletion of BH4 [129], S-glutathionylation (-SSG) [145], adverse phosphorylation by PKC 

[146] or protein tyrosine kinase-2 [147], and other redox switches (reviewed in [90]). Mitochondrial 

O2•¯/H2O2 formation is triggered by oxidative stress from all ROS sources (including other 

damaged/activated mitochondria) via redox-activation of PKC, mitogen-activated protein kinases 

(MAPK), other kinase pathways, and potential involvement of redox-sensitive mtKATP with 

subsequent p66Shc, MAO, respiratory complex activation, or impairment of mitochondrial 

antioxidant defense (reviewed in [127]). Mitochondrial O2•¯/H2O2 is released to the cytosol via 

mitochondrial pores and channels (e.g., redox-sensitive mPTP, inner membrane anion channel 

(IMAC) or aquaporins) or by diffusion due to increased mitochondrial permeability under 

pro-inflammatory conditions (reviewed in [127]). In the cytosol, these species (along with released 

calcium) cause activation of redox-sensitive PKC and tyrosine kinases (cSrc) with subsequent 

activation of NOX and amplification of the cellular oxidative stress [139]. Adapted from [127] with 

permission. 

Ischemia/reperfusion damage is based on mitochondrial ROS formation as a central 

pathophysiological mechanism [148–150]. Rathore et al. reported a mechanism by which 

mitochondrial ROS activate PKCε (prevented by chelerythrine and PKCε deletion) with subsequent 

increase in NOX activity (prevented by apocynin and p47phox deletion) in the setting of hypoxia as a 

model of ischemia/reperfusion damage (e.g., as observed in myocardial infarction (MI) or stroke) 

[151]. The authors show that hypoxia activates most likely NOX1 isoform in pulmonary arteries as 

documented by translocation of p47phox to the plasma membrane. The involvement of mitochondrial 

ROS formation in this process was proven by lower NADPH activity in Gpx1 overexpressing mice 

and higher NADPH activity in Gpx1 knockout mice. A cross talk between mitochondria and NOX1 
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or NOX2 was also shown for cellular starvation [152], nitrate tolerance [140], the aging process 

[79,82,139,153], AGE/RAGE signaling [154], endotoxemia as a model of sepsis [155], dyspneic 

patients with uremic lung injury [156], AsO3 toxicity [157], idiopathic pulmonary fibrosis [158], and 

tumorigenesis [159]. Even a triple cross talk between NOX4, NOX2, and mitochondria as well as 

ROS-induced ROS release was described in vascular endothelial growth factor (VEGF) signaling and 

angiogenesis [160]. Oxidative stress in general and this cross talk in particular have also large impact 

on cellular calcium homeostasis and mitochondrial function in the diabetic heart [161], similar to the 

Ca2+/ROS cross talk previously described in cancer development and progression [162] and cellular 

function per se [163]. Of note, similar cross talk mechanisms are likely in the setting of diabetes as all 

major RONS sources are activated under hyperglycemic conditions as reviewed in [92,127] and 

discussed in detail in Section 3 of the present work. 

2.2. Cross Talk of Oxidative Stress and Inflammation 

The link between vascular dysfunction and cardiovascular diseases such as arterial 

hypertension, hypercholesterolemia, and coronary artery disease can be best explained by 

inflammation [100,128]. Recent data support this tight association between redox regulatory 

pathways and inflammation via redox activation of immune cells by mitochondrial O2•¯/H2O2 and 

the subsequent activation of the phagocytic NOX2 [139,164]. NOX2 is efficiently activated by 

mitochondrial O2•¯/H2O2 formation via the before described redox cross talk [90,127], a process that 

is key to the activation, recruitment, and infiltration of myelomonocytic cells [165,166] and T cells 

[167]. Likewise, blood pressure in hypertensive humanized mice was normalized when infiltration 

of immune cells was prevented [168], supporting the concept that inflammatory processes and 

NOX2 in immune cells are driving vascular dysfunction. This assumption is in accordance with 

previous observations that the cellular redox state controls the activity and inflammatory potential 

of macrophages [169,170]. Mitochondrial ROS formation can cause opening of the mPTP, which 

chronically causes disruption of mitochondria with subsequent unspecific release of (oxidized) 

mtDNA, a damage-associated molecular pattern (DAMP), leading to “sterile inflammation” 

[128,171]. Other examples for the redox regulation of inflammatory pathways are redox 

modifications of mediators of inflammation (e.g., high-mobility group protein 1 (HMGB1), S100 

proteins, and damage-associated molecular patterns (DAMPs)) and modulation of transcription 

factors related to inflammation (e.g., nuclear factor erythroid 2-related factor 2 (NRF2), activator 

protein 1 (AP-1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and 

hypoxia-inducible factor 1-alpha (HIF-1α)) [128]. A molecular basis for this cross talk between 

oxidative stress and inflammation was provided by identification of substantial redox regulation of 

the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome that controls the release of 

cytokines [172–177], the central organizer of inflammation high-mobility group box 1 (HMGB1) 

[178–182] and the antibacterial process of neutrophil extracellular traps (NETs) formation [183–188] 

as well as other processes reviewed in [128]. Another molecular proof of the large impact of 

oxidative stress on inflammation comes from animal models with genetic knockout of antioxidant 

defense enzymes, all of which displaying an inflammatory phenotype [100]. The link between 

(mitochondrial) ROS formation and inflammation [189] also disproved the previous opinion that 

ROS produced in the mitochondria are only unwanted by-products of oxidative metabolism and 

put-forward the concept that mitochondrial ROS represent a nexus of cellular homeostasis [184]. An 

aggravated cross talk between oxidative stress and inflammation may also be expected in the setting 

of diabetes as oxidative stress is increased and inflammatory markers are upregulated under 

hyperglycemic conditions as reviewed in [103]. 

2.3. Glucotoxicity and AGE/RAGE Signaling 

Hyperglycemia causes modifications of proteins by nonenzymatic glycosylation, leading to the 

formation of advanced glycation end products (AGEs) [190], which contribute to endothelial 

dysfunction [191]. AGE/RAGE signaling in diabetic rats also triggers vascular complications via 

NOX-induced oxidative stress [192], mitochondrial ROS formation [154], and inflammation with 
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atherosclerosis [193]. Macrophages from gp91phox (Nox2) null mice responded less efficiently to AGE 

stimulation, whereas cultured endothelial cells showed inflammatory activation by AGE envisaged 

by vascular cell adhesion molecule 1 (VCAM-1) upregulation [192]. Multiple-antioxidant therapy 

prevented higher expression of tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), and 

ROS-producing enzymes in a type 1 diabetes mellitus (T1DM) model [194], clearly supporting an 

association of oxidative stress, inflammation, and diabetic complications. Cardiovascular 

complications of diabetes are most probably initiated by AGE/RAGE signaling and diacylglycerol 

(DAG) formation due to higher AT-II levels (reviewed in [195]). Besides these mechanisms, 

enhanced PKC activity, hexosamine metabolism, and sorbitol production by the polyol pathway 

most likely contribute to the diabetic phenotype, which is also characterized by increased expression 

of inflammatory cytokines and plasminogen activator inhibitor-1 (PAI-1) [196]. We established 

correlations between oxidative stress, AGE/RAGE signaling, inflammation, and endothelial function 

in a model of T2DM (ZDF rats) with empagliflozin (SGLT2 inhibitor) therapy [197], pointing 

towards vital cross talk between these parameters. 

2.4. Other Redox Switches—Link between Oxidative stress, Inflammation, and Vascular Function 

The endogenous eNOS inhibitor asymmetric dimethyl arginine (ADMA) activates neutrophils 

and release of myeloperoxidase (MPO) leading to inhibition of dimethylaminohydrolases (DDAH), 

the enzyme catalyzing the breakdown of asymmetric dimethyl arginine (ADMA), and endothelial 

dysfunction [198]. Inhibition of sGC leads to decreased cGMP levels and loss of its 

anti-inflammatory effects [199,200]. Overall, the redox control of transcription factors of central 

importance represents a global redox switch that can affect almost all cellular pathways [201]. The 

sympathetic nervous system is activated under oxidative stress conditions leading to the release of 

vasoconstrictors (e.g., catecholamines) as demonstrated in different models of hypertension 

[202–204]. Likewise, the renin–angiotensin–aldosterone system (RAAS) is activated by ROS 

formation in different models of hypertension [165,205–207] and endothelin-1 generation by 

oxidative stabilization of its promoter [208]. Prostacyclin synthase (PGIS) is oxidatively inhibited 

via nitration of tyrosine 430 by ONOO¯, whereas peroxide-driven activation of cyclooxygenase-1/2 

(COX-1/2) leads to higher prostaglandin endoperoxide (PGH2) levels and cyclooxygenase-2 

(COX-2) is oxidatively inhibited via tyrosine nitration, all of which contributes to redox regulation 

of prostanoid synthesis and vascular tone with relevance for atherosclerosis, diabetes, nitrate 

tolerance, and sepsis [8,49,209–215]. Additionally, sGC is redox regulated via thiol oxidation and 

S-nitros(yl)ation, whereas oxidative activation and upregulation of phosphodiesterases lead to 

enhanced break-down of cGMP, all of which contribute to modulation of the NO/cGMP signaling 

cascade [47,49,216–220]. There are many prominent examples of well-established 

S-nitrosation-regulated enzymes such as caspase activity and initiation of apoptosis [221] as well as 

other examples reviewed elsewhere [222,223]. S-nitrosation per se is highly redox regulated as it 

requires the interaction of •NO and O2•¯ [224], and the optimal nitrosative conditions require tight 

control of the •NO/O2•¯ ratio (should be 3:1) to generate the potent nitrosating species N2O3 [225]. 

However, some evidence suggests that S-nitros(yl)ation plays not a central role in redox regulation 

[226]. There are multiple other redox switches in the cardiovascular system regulating the 

glycocalyx, thrombosis and coagulation, inflammation, vasoconstrictors such as endothelin-1, 

fibrosis, calcification, and smooth muscle cell proliferation that are all important for cardiovascular 

health and disease. It would be beyond the scope of this review to list them all since they are 

summarized in a previous review [74]. Importantly, many of these alternative redox switches are 

dysregulated in the setting of diabetes as exemplified by enhanced degradation of the glycocalyx 

[227], activation of the RAAS as supported by successful medication of diabetic patients with 

cardiovascular complications with angiotensin-converting enzyme inhibitors or AT1-receptor 

blockers [228,229], and higher endothelin-1 plasma levels in diabetic patients [230]. 
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3. Evidence for a Cross Talk between Different Sources of ROS in the Setting of Diabetes 

There is evidence for activation of multiple ROS sources in the setting of diabetes. Increased 

NOX1 but not NOX4 expression in the aorta of T1DM rats (streptozotocin (STZ) model) go hand in 

hand with enhanced eNOS uncoupling, XO activity, and mitochondrial ROS formation [231]. 

Cardiac NOX and serum XO activity are increased and NOX1/2 expression as well as eNOS 

uncoupling (measured by S-glutathionylation) are enhanced in T1DM rats (STZ model), which was 

partially normalized by treatment with an antioxidant organic nitrate (pentaerithrityl tetranitrate, 

PETN) via nuclear factor erythroid 2-related factor 2 (NRF2) activation [232]. Histone deacetylases 

HDAC1/2 interact with promoters of Nox isoforms and play a role for NOX upregulation in 

experimental diabetes, which was prevented by a pan-HDAC inhibitor and aggravated by histone 

deacetylases 2 (HDAC2) overexpression [233]. NOX activity and expression of subunits p22phox, 

p67phox, and p47phox were increased in bypass vascular tissues of diabetic patients [234]. T2DM rats 

display higher NOX activity in leukocytes with increasing hyperglycemia (higher glycated 

hemoglobin (HbA1c) levels), which was associated with more pronounced mitochondrial oxidative 

stress (decreased aldehyde dehydrogenase 2 (ALDH-2) activity) and systemic inflammation as well 

as AGE/RAGE signaling (markers such as C-reactive protein (CRP) and methylglyoxal), all of which 

was normalized by glucosuria therapy (sodium/glucose cotransporter 2 (SGLT2) inhibition) [197]. 

Similar observations were also made in a T1DM with sodium/glucose cotransporter 2 (SGLT2) 

inhibition [235]. Enhanced mitochondrial O2•¯ formation, NADPH oxidase activity in leukocytes 

(oxidative burst), and inflammatory markers interleukin-6 as well as 3-nitrotyrosine (probably from 

inducible NOS (iNOS) and ONOO¯ formation) were also recently reported (Figure 5) [236]. 
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Figure 5. Detection of mitochondria and NOX-derived ROS formation as well as inflammation and 

nitro-oxidative stress markers in T1DM rats. (A) The yield of the superoxide-specific mitoSOX 

oxidation product triphenylphosphonium 2-hydroxy ethidium (2-OH-mito-E+) in mitochondrial 

preparations of diabetic (STZ) and respective control animals. Representative chromatograms are 

shown for the HPLC-based quantification of 2-OH-mito-E+. (B) Detection of ROS formation during 

oxidative burst in whole blood from diabetic rats. Quantification of ROS formation by L-012 (100 

µM) ECL in response to stimulus by zymosan A. Representative kinetic traces are shown for 1 animal 

per group upon zymosan A (Ctr vs. STZ) stimulation with four technical replicates per data point. 

(C) Biomarkers of inflammation (IL-6) and oxidative stress by tyrosine nitration (3-NT) were 

increased in plasma of diabetic rats as compared to control animals. Each data point in the bar graphs 

represents one animal. * means p < 0.05 versus control. Adapted from [236] with permission under 

the Creative Commons Attribution License agreement. 

T1DM is associated with enhanced Nox1 and Nox2 expression and activity as well as eNOS 

uncoupling, all of which was prevented by angiotensin-1 receptor blockade [237]. In accordance to 

our cross talk concept in the setting of diabetes, NADPH oxidases produce the “kindling radicals” 

leading to uncoupling of eNOS via the above described “redox switches” (e.g., BH4 depletion and 

S-glutathionylation) and may also contribute to direct dysfunction of eNOS by PKC-dependent 

phosphorylation of eNOS at Thr495 [55]. Albuminuria, kidney damage, and other major diabetic 

complications are initiated by NOX- and mitochondria-derived ROS formation with adverse 

signaling of down-stream kinases, caspases, and redox-sensitive transcription factors [238]. Initial 
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evidence for a cross talk between different sources of ROS in the setting of diabetes comes from the 

observation that diabetic complications are prevented by specific inhibitors of single ROS sources 

(Table 1). Unfortunately, targeting the mPTP by CypD knockout in the setting of diabetes did not 

prevent diabetic renal damage [239], representing a drawback for the hypothesis that we have put 

forward above. Finally, also a cross talk between oxidative stress and inflammation may be expected 

in the setting of diabetes, as markers of inflammation are increased in diabetic patients [240,241]. 

Markers of inflammation and oxidative stress were also substantially decreased by SGLT2 inhibitor 

therapy in T1DM and T2DM animal models [197,235]. This may be also related to the fact that 

inflammation and oxidative stress are interconnected by AGE/RAGE signaling [100]. 

Table 1. Contribution of different ROS sources to the severity of diabetic complications. 

Studies and Major Outcomes Ref. 

T1DM rats (STZ model) show sevenfold increase in gp91phox (Nox2) mRNA and uncoupled 

eNOS—diabetic complications were partially normalized by inhibition of PKC by chelerythrine 
[242] 

Genetic deletion of NoxO1 or p47phox reduced blood pressure and prevented diabetes-induced vascular 

dysfunction 
[243] 

Combined NOX1/4 inhibition with GKT137831 in mice provides dose-dependent reno- and 

atheroprotection even in established micro- and macrovascular disease 
[244] 

Nox1 deficiency normalized diabetic glomerular DNA damage [245] 

NOX1 plays a key role in diabetes mellitus-accelerated atherosclerosis, which can be prevented by 

siRNA against Nox1 and GKT137831 therapy 
[246] 

Critical role for NOX2 in insulin resistance-related endothelial cell dysfunction as demonstrated by 

genetic deletion of Nox2 
[247] 

Nox2 deficiency protects against STZ-induced beta-cell destruction and development of diabetes in mice [248] 

Normalization of mitochondrial ROS formation prevents several diabetic complications 

(glucose-induced activation of protein kinase C, formation of AGEs, sorbitol accumulation, and NFkB 

activation) 

[89] 

Blocking mitochondrial ROS formation with mitoTEMPO prevented diabetic cardiomyopathy [249] 

The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in 

diabetic kidney disease via NRF2/PINK1 
[250] 

Deletion of p66Shc longevity gene protects against experimental diabetic glomerulopathy by preventing 

diabetes-induced oxidative stress 
[251] 

Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the 

p66Shc gene 
[252] 

Mammalian life-span determinant p66ShcA mediates obesity-induced insulin resistance [253] 

MAO-dependent endoplasmic reticulum-mitochondria dysfunction and mast cell degranulation lead to 

adverse cardiac remodeling in diabetes, which was supported by protective effects of MAO inhibitor 

pargyline 

[254] 

Emerging role of MAO as a therapeutic target for cardiovascular disease including treatment of diabetes [255] 

XO is activated in human and experimental T1DM, and the XO inhibitor allopurinol normalizes major 

diabetic complications 
[256] 

Atrial remodeling was prevented by allopurinol in diabetic rabbits (alloxan model) [257] 

XO inhibitor febuxostat exerts an anti-inflammatory action and protects against diabetic nephropathy 

development in KK-Ay obese diabetic mice 
[258] 

eNOS gene therapy exacerbates hepatic ischemia-reperfusion injury in diabetes, which was normalized 

by BH4 or the BH4 precursor sepiapterin providing evidence for eNOS uncoupling 
[259] 

Oxidation of the zinc–thiolate complex and uncoupling of eNOS by ONOO¯ as an explanation for 

endothelial dysfunction in the setting of diabetes 
[260] 

Overexpression of the BH4-generating enzyme GTP-cyclohydrolase-1 rescues eNOS function in diabetic 

mice indicating oxidative BH4 depletion in this model 
[85] 

4. Conclusions 

With the present review, we want to highlight redox signaling in physiology and disease 

emphasizing the cross talk of different ROS sources. NOX and mitochondria obviously represent a 

redox tandem playing a central role in many diseases [92,127]. Redox signaling may become an 
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attractive target for drug development in the future, but its complexity warrants in-depth 

mechanistic understanding and careful fine-tuning since ROS not only are by-products causing 

damage but also fulfill essential physiological signaling functions [11]. Especially, the fact that this 

cross talk is not limited to the interplay of different ROS sources but can be extended to interactions 

of ROS with inflammatory pathways, AGE/RAGE signaling, vasoconstrictor synthesis, 

thrombosis/coagulation, and very clearly endothelial function (Figure 6), makes therapeutic 

targeting complicated. Mitochondria-targeted antioxidants and specific NOX isoform inhibitors 

constitute promising present and future approaches. Control of mitochondrial channels such as the 

mPTP or the mtKATP seems to be an attractive therapeutic strategy [65,131], as also considered for 

treatment of brain disorders [261] and combatting diabetic complications [262]. In addition, the 

interplay of (mitochondrial) ROS and the NLRP3 inflammasome represents an attractive therapeutic 

target that needs to be investigated for exploitation in more detail [189]. A number of antioxidant 

treatments was suggested for the mitochondria/NOX cross talk underlying the complications of 

idiopathic pulmonary fibrosis, but further evaluation by translational approaches is necessary [158]. 

Of note, also interfering with the redox cross talk between mitochondria and NOX most likely 

requires careful fine-tuning since ROS-induced ROS release via this cross talk is also implicated in 

physiological processes such as flow-mediated dilation (FMD) of microvessels [263]. 

 

Figure 6. Extension of the cross talk concept from ROS sources to pathways initiated by 

hyperglycemia and glucotoxicity (fructose and sorbitol overproduction) such as inflammation 

(typical diabetic markers in the blue elliptic box), AGE/RAGE signaling (typical AGE members: 

precursor methylglyoxal and protein adduct Nε-(carboxylethyl)-l-lysine), synthesis of 

vasoconstrictors, regulation of thrombosis, calcification, and vascular function. Typical diabetic ROS 

and oxidative damage markers are shown in the red elliptic boxes. The major therapeutic targets of 

current antidiabetic and cardiovascular therapies are reflected by green text boxes. NETs, neutrophil 

extracellular traps; NLRP3, NLR Family Pyrin Domain Containing 3 inflammasome; HMGB1, 

high-mobility group box 1; VCAM-1, vascular cell adhesion molecule-1; IL, interleukin; TNF-α, 

tumor necrosis factor alpha; CD68, cluster of differentiation 68 (macrosialin); 8-isoPG, 8-isoprostane; 
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8-oxoG, 8-oxoguanine; RAAS, renin–angiotensin–aldosterone system; SNS, sympathetic nervous 

system; ET-1, endothelin-1; mtROS, mitochondrial ROS; DAMPs, damage-associated molecular 

patterns; PGs, prostaglandins; ALDH-2, mitochondrial aldehyde dehydrogenase; 4-HNE, 

4-hydroxynonenal; MDA, malondialdehyde; ACE, angiotensin-converting enzyme; AT1-receptor, 

angiotensin II type 1 receptor. Significantly modified from [197] under the terms and conditions of 

the Creative Commons Attribution License. 
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