Supplementary data

Biodegradation of bisphenol A by *Sphingobium* sp. YC-JY1 and the essential role of cytochrome P450 monooxygenase

Yang Jia¹, Adel Eltoukhy¹, Junhuan Wang¹, Xianjun Li¹, Thet Su Hlaing¹, Mar Mar Aung¹, May Thet Nwe¹, Imane Lamraoui², Yanchun Yan^{1,*}

¹ Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China

² Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China

*Correspondence: Yanchun Yan

Email: yanyanchun@caas.cn

Telephone: 010-82109685

Media

Luria-Bertani (LB) medium consists of 10.0 g peptone, 5.0 g yeast extract, and 10.0 g NaCl in 1.0liter deionized water. Trace element medium (TEM) was used for enrichment and purification of isolated bacteria, and it contained (per liter) (NH₄)₂SO₄, 2.0 g; Na₂HPO₄·12H₂O, 1.5 g; KH₂PO₄, 1.5 g; MgSO₄·7H₂O, 0.2 g; CaCl₂·2H₂O, 0.01 g, and trace elements (mg/L): FeSO₄·7H₂O (5), ZnSO₄·7H₂O (0.22), CuSO₄·5H₂O (0.03), Na₂MoO₄·2H₂O (0.02), MnSO₄·2H₂O (1.43), CoSO₄·7H₂O (0.12), Na₂WO₄·2H₂O (0.023).

Microbial identification using Biolog

Isolated bacterium was identified using the Biolog GEN III MicroPlate protocol. The GEN III MicroPlateTM test panel provided a standardized micromethod using 94 biochemical tests. The cells were freshly regrown on LB plate in order to avoid the loss of viability and metabolic vigor which is typical of most organisms at stationary phase. Using inoculation fluid (IF), inoculums of each target cell were prepared with Protocols A (IF-A catalog no. 72401) and B (IF-B catalog no. 72402) at turbidity range of 95–98 % T.

An 8-channel automated pipettor was used to dispense 100 µL of the suspension into each of the wells in the MicroPlate (Catalog no. 1030). The wells (Table S2) contain 71 carbon source utilization assays (columns 1–9) and 23 chemical sensitivity assays (columns 10–12); hence, they can be identified at the species levels based on the "Phenotypic Fingerprint" of the microorganisms provided by the test panel. These MicroPlates were placed in Omnilog reader, where they were read using Biolog's Microbial Identification Systems software. Identified microbes were recorded.

Protein sequences

>BisA sequence

MPHIQVTTRDGEIRELDVAASGFLMEALRDANIDGVEAICGGCCSCATCHVYIDAAPAGT

Conserved cysteine residues are indicated by bold boxes.

>BisB sequence

MNPQTLPVFPDLDIFSPEYACNREKYAARALRDYPLHFYKPLNMWIVSKHKDVRSALFTP QVFSSVAFGLLPPPDDIAPRVPDLYTDVHLPSMDPPEHTKLRVPVQQALLPGRLVGKDEVV RRIANELIDTFIDKGECDLLHDFSYKLALYLIVDMLGLPKERAEDYHRWSNCFFQLFTPKV PERADARFFVPMPEEVLRQIWEDLAEANDYLREVVENLDRNPGNNMLSNLLQLREPDGS RTITISANVRNAL<u>EFGAAGHD</u>TATLIAHLTYFVLTTPDLKDTLTEDPSLIPAAISETLRRRGS VDGLFRRTLSDVELCGQKIESGSIVYLDLTAANLDPDVFPEPETFRLNRDNIKEMVS<u>FGYG</u> <u>RHVCAGQYLSRIE</u>AKAAYEELMRRIPNMRLADGFKLEYMPSVATTVLKGLPLVWDKN The dashed line indicates the oxygen-binding region with a conserved threonine residue (bold box). The solid line

indicates the heme-binding region, including the heme-binding cysteine residue (bold box).

Table S1 Layout of assays for MicroPlate (GEN III)

A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12
Negative control	Dextrin	D-Maltose	D-Trehalose	D-Celloblose	Gentiblose	Sucrose	D-Turanose	Staychose	Positive control	рН 6	рН 5
B1	B2	B3	B4	В5	B6	B7	B8	B9	B10	B11	B12
D-Rafflinose	α-D-Lactose	D-Melibiose	β-Methvl-D-	D-Salicin	N-Acetvl-D-	N-Acetvl-β-	N-Acetvl-D-	N-Acetvl	1 % NaCl	4 % NaCl	6 % NaCl
			Glucoside		Glucosamine	Mannosamine	Galactosamine	Neuraminic			
								acid			
C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12
α-D-Glucose	D-Mannose	D-Fructose	D-Galactose	3-Methyl	D-Fucose	L-Fucose	L-Rhamnose	Inosine	1 % Sodium	Fusidic acid	D-Serine
				glucose					lactate		
D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12
D-Sorbitol	D-Mannitol	D-Arabitol	Myo-inositol	Glycerol	D-Glucose-6- PO4	D-Fructose-6-PO4	D-Aspartic acid	D-Serine	Troleandomycin	Rifamycin SV	Minocycline
E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12
Gelatin	Glycl-L-	L-Alanine	L-Arginine	L-Aspartic	L-Glutamic acid	L-Histidine	L-Pyroglutamic	L-Serine	Lincomycin	Guanidine	Niaproof 4
	Proline			acid			acid			HCl	
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12
Pectin	D-Galacturonic	L-Galactonic	D-Gluconic	D-Glucuronic	Glucuronamide	Mucic acid	Quinic acid	D-Saccharic	Vancomycin	Tetrazolium	Tetrazolium
	acid	acid lactone	acid	acid				acid		Violet	Blue
G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12
p-Hydroxy-	Methyl	D-Lactic acid	L-Lactic acid	Citric acid	α-Keto-Glutaric	D-Malic acid	L-Malic acid	Bromo-	Nalidixic acid	Lithium	Potassium
Phenlyacetic Acid	Pyruvate	methyl ester			acid			Succinic acid		Chloride	tellurite
H1	H2	Н3	H4	H5	H6	H7	Н8	H9	H10	H11	H12
Tween 40	γ-Amino-	α-Hydroxy-	β-Hydroxy-	α-Keto-	Acetoacetic acid	Propionic acid	Acetic acid	Formic acid	Aztreonam	Sodium	Sodium
	Butyric acid	Butyric acid	D,L Butyric	Butyric acid						butyrate	bromate
			acid								

Table S2 Strains, plasmids and primers used in this study

Strains, plasmids a	nd primers	Description	Source
Sphingobium sp. s	strains		
YC-JY1	wild-type bisphenol A	degrader; Nit ^{r a}	this study
YC -J $Y1\Delta bisdB$	YC-JY1 mutant with b	isdB gene replaced with kanamycin resistance gene	this study
<i>E. coli</i> strains			
Trans1-T1	$F^{-}\phi 80(lacZ)\Delta M15\Delta lac$	$X74hsdR(r_k, m_k^+)\Delta recA1398endA1tonA$	TransGen
BL21(DE3)	host strain for expressi	on vectors; F ⁻ ompT hsdS _B (r _B ⁻ m _B ⁻) gal dcm(DE3)	Tiangen
SM10λpir	donor strain for conjug	ation, thi thr leu tonA lacY supE recA::RP4-2-Tc::Mu	Zomanbio
plasmids			
pET28a(+)	expression vector; Kar	r b	Novagen
pEX18Tc	gene knockout vector,	oriT, sacB, Tc ^{r c}	Miaolingbio
pET28a-bisdB	pET-28a(+) derivative	carrying <i>bisdB</i>	this study
pET28a-bisdAB	pET-28a(+) derivative	carrying <i>bisdA</i> and <i>bisdB</i>	this study
pEX18Tc-bisdB	pEX18Tc derivative ca	rrying <i>bisdB</i>	this study
Primers			
27F	5' - AGAGTTTGATC	CTGGCTCAG-3'	this study
1492R	5'- GGTTACCTTGTT	ACGACTT-3′	this study
bisdB-F	5'-GCGC <u>GAGCTC</u> AT	GAACCCTCAGACACTGC-3'd	this study
bisdB-R	5'-GCGC <u>AAGCTT</u> GT	'TTTTGTCCCAGACCAGC-3'	this study
bisdAB-F	5'-GCGC <u>GAGCTC</u> AT	GCCTCATATCCAAGTGACT-3′	this study
bisdAB-R	5'-GCGC <u>AAGCTT</u> GT	'TTTTGTCCCAGACCAGC-3'	this study
bisdBup-F	5'-GCTATGACCATG	ATTACGAAGATACTGATCAAGCCGGTGCG-3'	this study
bisdBup-R	5'-CCCGTTGAATAT	GGCTCATGTTCGGATTCCCGCTC-3'	this study
kan-F	5'-ATGAGCCATATT	CAACGGGA-3'	this study
kan-R	5'-TTAGAAAAACTC	CATCGAGCATCA-3'	this study
bisdBdown-F	5'-TGATGCTCGATG	AGTTTTTCTAAGCCGGGCTTTCAAGTACCTG-3'	this study
bisdBdown-R	5'-AACGACGGCCA	GTGCCAGGAAGGCGAGTTTCCTATAG-3'	this study

^a Nit^r, nitrofurantoin resistant; ^b Kan^r, kanamycin resistant; ^c Tc^r, tetracycline resistant; ^d the restriction

sites in the primers $(5' \rightarrow 3')$ are underlined.

Fig. S1. HPLC-TOF-MS/MS chromatograms of intermediates during the biodegradation of BPA from 0 h to 24 h. The retention times of the identified peaks are 3.873 min (A), 5.709 min (B), 5.946 min (C), 7.203 min (D), 12.236 min (E), and 15.560 min (F).

Fig. S2. The chromatogram and mass spectra of primary ions for BPA degradation by E. coli (pET28a-

bisdAB) intermediates analyzed by HPLC-TOF-MS/MS.

Fig. S3. BPA degradation by strain YC-JY1 and strain YC-JY1 $\Delta bisdB$ in TEM medium.