Next Article in Journal
Mitochondrial Dysfunctions: A Red Thread across Neurodegenerative Diseases
Next Article in Special Issue
Effect of Berberine on Glycation, Aldose Reductase Activity, and Oxidative Stress in the Lenses of Streptozotocin-Induced Diabetic Rats In Vivo—A Preliminary Study
Previous Article in Journal
NTRK Fusions, from the Diagnostic Algorithm to Innovative Treatment in the Era of Precision Medicine
Article

Epigallocatechin 3-Gallate Has a Neuroprotective Effect in Retinas of Rabbits with Ischemia/Reperfusion through the Activation of Nrf2/HO-1

1
Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico (UNAM), Campus UNAM-Juriquilla, CP 76230 Querétaro, Mexico
2
Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección 16, Tlalpan, CP 14080 Ciudad de Mexico, Mexico
3
Departamento de Oftalmología, Centro Médico Nacional La Raza, Paseo de las Jacarandas S/N, La Raza, Azcapotzalco, CP 02990 Ciudad de Mexico, Mexico
4
División de Investigación, Hospital Juárez de Mexico, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Gustavo A. Madero, CP 07760 Ciudad de Mexico, Mexico
5
Departamento de Instrumentación Electromecánica, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección 16, Tlalpan, CP 14080 Ciudad de Mexico, Mexico
6
Laboratorio de Cultivo Celular, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomas, Miguel Hidalgo, CP 11340 Ciudad de Mexico, Mexico
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Int. J. Mol. Sci. 2020, 21(10), 3716; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21103716
Received: 8 April 2020 / Revised: 12 May 2020 / Accepted: 17 May 2020 / Published: 25 May 2020
Retinal ischemia-reperfusion (rI/R) generates an oxidative condition causing the death of neuronal cells. Epigallocatechin 3-gallate (EGCG) has antioxidant and anti-inflammatory properties. Nonetheless, its correlation with the pathway of nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) for the protection of the retina is unknown. We aimed to evaluate the neuroprotective efficacy of single-doses of EGCG in rI/R and its association with Nrf2/Ho-1 expression. In albino rabbits, rI/R was induced and single-doses of EGCG in saline (0–30 mg/kg) were intravenously administered to select an optimal EGCG concentration that protects from retina damage. To reach this goal, retinal structural changes, gliosis by glial fibrillary acidic protein (GFAP) immunostaining, and lipid peroxidation level by TBARS (thiobarbituric acid reactive substance) assay were determined. EGCG in a dose of 15 mg/kg (E15) presented the lowest levels of histological damage, gliosis, and oxidative stress in the studied groups. To determine the neuroprotective efficacy of E15 in a timeline (6, 24, and 48 h after rI/R), and its association with the Nrf2/HO-1 pathway, the following assays were done by immunofluorescence: apoptosis (TUNEL assay), necrosis (high-mobility group box-1; HMGB1), Nrf2, and HO-1. In addition, the Ho-1 mRNA (qPCR) and lipid peroxidation levels were evaluated. E15 showed a protective effect during the first 6 h, compared to 24 and 48 h after rI/R, as revealed by a decrease in the levels of all damage markers. Nuclear translocation Nrf2 and HO-1 staining were increased, including Ho-1 mRNA levels. In conclusion, a single dose of E15 decreases the death of neuronal cells induced by oxidative stress during the first 6 h after rI/R. This protective effect is associated with the nuclear translocation of Nrf2 and with an elevation of Ho-1 expression. View Full-Text
Keywords: retinal ischemia/reperfusion (rI/R); epigallocatechin-3-gallate (EGCG); high-mobility group Box 1 (HMGB1); nuclear factor erythroid 2-related factor 2 (Nrf2); heme oxygenase-1 (HO-1) retinal ischemia/reperfusion (rI/R); epigallocatechin-3-gallate (EGCG); high-mobility group Box 1 (HMGB1); nuclear factor erythroid 2-related factor 2 (Nrf2); heme oxygenase-1 (HO-1)
Show Figures

Figure 1

MDPI and ACS Style

Rivera-Pérez, J.; Martínez-Rosas, M.; Conde-Castañón, C.A.; Toscano-Garibay, J.D.; Ruiz-Pérez, N.J.; Flores, P.L.; Mera Jiménez, E.; Flores-Estrada, J. Epigallocatechin 3-Gallate Has a Neuroprotective Effect in Retinas of Rabbits with Ischemia/Reperfusion through the Activation of Nrf2/HO-1. Int. J. Mol. Sci. 2020, 21, 3716. https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21103716

AMA Style

Rivera-Pérez J, Martínez-Rosas M, Conde-Castañón CA, Toscano-Garibay JD, Ruiz-Pérez NJ, Flores PL, Mera Jiménez E, Flores-Estrada J. Epigallocatechin 3-Gallate Has a Neuroprotective Effect in Retinas of Rabbits with Ischemia/Reperfusion through the Activation of Nrf2/HO-1. International Journal of Molecular Sciences. 2020; 21(10):3716. https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21103716

Chicago/Turabian Style

Rivera-Pérez, Josué, Martín Martínez-Rosas, César A. Conde-Castañón, Julia D. Toscano-Garibay, Nancy J. Ruiz-Pérez, Pedro L. Flores, Elvia Mera Jiménez, and Javier Flores-Estrada. 2020. "Epigallocatechin 3-Gallate Has a Neuroprotective Effect in Retinas of Rabbits with Ischemia/Reperfusion through the Activation of Nrf2/HO-1" International Journal of Molecular Sciences 21, no. 10: 3716. https://0-doi-org.brum.beds.ac.uk/10.3390/ijms21103716

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop