Multifunctional Periphytic Biofilms: Polyethylene Degradation and Cd²⁺ and Pb²⁺ Bioremediation under High Methane Scenario

Muhammad Faheem ^{1,2}, Sadaf Shabbir ³, Jun Zhao ¹, Philip G Kerr ⁴, Shafaqat Ali ^{5,7}, Nasrin Sultana ^{1,2,6}, and Zhongjun Jia ^{1,*}

- ¹ State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, China; faheem.shakoor@gmail.com (M.F.); zhaojun@issas.ac.cn (J.Z.); nasrinjc@issas.ac.cn (N.S.)
- ² University of Chinese Academy of Sciences, Beijing 100049, China
- ³ College of Environment, Hohai University, 1 Xikang Road, Nanjing 210008, China; sadaf.dar83@gmail.com
- ⁴ School of biomedical Science, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; philip.kerr@gmail.com
- ⁵ Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan; shafaqataligill@gcuf.edu.pk
- ⁶ Department of Agroforestry and Environmental Science, Sher-e-Bangla Agricultural University (SAU), Sher-e-Bangla nagar, Dhaka 1207, Bangladesh
- ⁷ Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
- * Correspondence: jia@issas.ac.cn

This SOM file contains:

Supplementary Table S1 to S5

Supplementary Figure S1 to S2

Supplementary References

Treatments	Mw	Mn	M _w /M _n
Control	182366	23321	7.81982
EPX + NAM + PE	173827	22322	7.78725
$EPX + {}^{13}C + PE$	156834	19887	7.88626
$EPX + {}^{13}C + M1C2 + PE$	162739	20823	7.81535
$EPX + {}^{13}C + M2C2 + PE$	166723	21272	7.83767
EPP + NAM + PE	172345	21978	7.84171
$EPP + {}^{13}C + PE$	152395	19626	7.76495
$EPP + {}^{13}C + M1C2 + PE$	160345	20674	7.75588
$EPP + {}^{13}C + M2C2 + PE$	163623	21078	7.76274

Table S1. Molecular weight changes of polyethylene determined by GPC

Number of Treatments	Abbreviation	Treatment
1	EPP + NAM	Epiphyton + Near Atmospheric Methane (6 ppm ¹³ CH ₄)
2	$EPP + {}^{12}C$	Epiphyton + 120000 ppm ¹² CH ₄
3	$EPP + {}^{13}C$	Epiphyton + 120000 ppm ¹³ CH ₄
4	$EPP + {}^{13}C + M1C1$	Epiphyton + 120000 ppm ¹³ CH ₄ + Pb (2 mg/L)
5	$EPP + {}^{13}C + M1C2$	Epiphyton + 120000 $ppm^{13}CH_4 + Pb$ (50 mg/L)
6	$EPP + {}^{13}C + M1C3$	Epiphyton + 120000 ppm ¹³ CH ₄ + Pb (100 mg/L)
7	$EPP + {}^{13}C + M2C1$	Epiphyton + 120000 ppm ¹³ CH ₄ + Cd (2 mg/L)
8	$EPP + {}^{13}C + M2C2$	Epiphyton + 120000 ppm ¹³ CH ₄ + Cd (50 mg/L)
9	$EPP + {}^{13}C + M2C3$	Epiphyton + 120000 ppm ¹³ CH ₄ + Cd (100 mg/L)
10	EPP + NAM + PE	Epiphyton + Near Atmospheric Methane (6 ppm ¹³ CH ₄) + Polyethylene
11	$EPP + {}^{13}C + PE$	Epiphyton + 120000 ppm 13 CH ₄ + Polyethylene
12	EPP + ¹³ C + M1C2 + PE	Epiphyton + 120000 ppm 13 CH ₄ + Pb (50 mg/L) + Polyethylene
13	$\frac{EPP + {}^{13}C + M2C2 + PE}{PE}$	Epiphyton + 120000 ppm ¹³ CH ₄ + Cd (50 mg/L) + Polyethylene

Table S2: Experimental design for epiphyton containing metals, methane and polyethylene

Number of Treatments	Abbreviation	Treatment
1	EPX + NAM	Epixylon + Near Atmospheric Methane (6 ppm ¹³ CH ₄)
2	$EPX + {}^{12}C$	Epixylon + 120000 ppm ¹² CH ₄
3	$EPX + {}^{13}C$	Epixylon + 120000 ppm ¹³ CH ₄
4	$EPX + {}^{13}C + M1C1$	Epixylon + 120000 ppm ¹³ CH ₄ + Pb (2 mg/L)
5	$EPX + {}^{13}C + M1C2$	Epixylon + 120000 ppm ¹³ CH ₄ + Pb (50 mg/L)
6	$EPX + {}^{13}C + M1C3$	Epixylon + 120000 ppm ¹³ CH ₄ + Pb (100 mg/L)
7	$EPX + {}^{13}C + M2C1$	Epixylon + 120000 ppm ${}^{13}CH_4 + Cd (2 mg/L)$
8	$EPX + {}^{13}C + M2C2$	Epixylon + 120000 ppm ¹³ CH ₄ + Cd (50 mg/L)
9	$EPX + {}^{13}C + M2C3$	Epixylon + 120000 ppm ¹³ CH ₄ + Cd (100 mg/L)
10	EPX + NAM + PE	Epixylon + Near Atmospheric Methane (6 ppm ¹³ CH ₄) + Polyethylene
11	$EPX + {}^{13}C + PE$	Epixylon + 120000 ppm ¹³ CH ₄ + Polyethylene
12	EPX + ¹³ C + M1C2 + PE	Epixylon + 120000 ppm 13 CH ₄ + Pb (50 mg/L) + Polyethylene
13	EPX + ¹³ C + M2C2 + PE	Epixylon + 120000 ppm 13 CH ₄ + Cd (50 mg/L) + Polyethylene

Table S3: Experimental design for epixylon containing metals, methane and polyethylene

 Table S4. Primers and PCR amplification conditions used in this study

Name of primer	Sequence of primers (5'-3')	Target gene	Cycling conditions	Type of analysis	References
515F	GTGCCAGCMGCCGCGG	Universal bacterial 16S 95 °C, 5 min; 35× (95 °C, 30 s; 54		Illumina MiSeq	(Stubner,
907R	CCGTCAATTCMTTTRAGTTT	rRNA gene	°C, 30 s; 72 °C, 30 s); 72 °C, 8 min	sequencing	2002)
A189F	GGNGACTGGGACTTCTGG	Methanotrophic	95 °C, 3 min; 33× (95 °C,10 s; 54 °C, 30 s; 72 °C, 30 s; 80 °C, 5 s; plate read); melt curve 65 °C to 95 °C, incremental 0.5 °C, 0:05+plate read	Real-time qPCR	(Costello and Lidstrom, 1999;
mb661r	CCGGMGCAACGTCYTTACC	<i>pmoA</i> gene	95 °C,5 min; 33× (95 °C,30s; 54 °C, 30 s; 72 °C, 45 s); 72 °C, 10 min	High throughput MiSeq sequencing	- Holmes et al., 1995)

Table S5: Structure and properties of polyethylene microplastic

Туре	Specific gravity	Structure	Production 2020	Use/Application	Reference
Polyethylene	0.91– 0.96		3.3 million tones	Extensively used in huge industrial production of plastic bags and plastic bottles	(Shabbir et al., 2020)

Figure S1: Scanning Electron Microscopy at 10 μ m of epiphyton and epixylon (a) SEM micrograph of epiphyton before treatment with 120000 ppm ¹³CH₄ (b) SEM micrograph of epiphyton after treatment with 120000 ppm ¹³CH₄ (c) AWCD and diversity indices of epiphyton (d) SEM micrograph of epixylon before treatment with 120000 ppm ¹³CH₄ (e) SEM micrograph of epixylon after treatment with 120000 ppm ¹³CH₄ (f) AWCD and diversity indices of epixylon. Thread like structures are algae and dead bacterial aggregates are clearly visible in after treatments.

Figure S2: Percentage of ¹³C atoms abundance accumulated by methanotrophs under different methane, heavy metals doses along with polyethylene treatments (a) Epixylon ¹³C atom (%) assimilation (b) Epiphyton ¹³C atom (%) assimilation.

References

- Costello AM, Lidstrom ME. Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Applied and environmental microbiology 1999; 65: 5066-5074.
- Holmes AJ, Costello A, Lidstrom ME, Murrell JC. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 1995; 132: 203-8.
- Shabbir S, Faheem M, Ali N, Kerr PG, Wang L-F, Kuppusamy S, et al. Periphytic biofilm: An innovative approach for biodegradation of microplastics. Science of The Total Environment 2020; 717: 137064.
- Stubner S. Enumeration of 16S rDNA of Desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreen[™] detection. Journal of Microbiological Methods 2002; 50: 155-164.