

RMSD: 0.317

Fig. S9

В

Supplementary figure legends

Fig. S1 Alignment of predicted (blue) and crystallographic (grey) structures of Baxα. The structures were aligned using VMD 1.9.0.

Fig. S2 RMSDs of backbone atoms in the core (upper left), $\alpha 1$ (upper right), $\alpha 2$ (lower left), and $\alpha 9$ (lower right), relative to the initial structure, during the second repetition of 200 ns of MD simulations. Coloring is by variant: Baxa (grey), Baxa[L26P/L27P] (blue), Bax $\Delta 2$ (red), and Bax $\Delta 2$ [L164P] (orange). Shaded lines show RMSDs for all recorded points and solid lines are smoothed as described in section 4.4.

Fig. S3 RMSDs of backbone atoms in the core (upper left), $\alpha 1$ (upper right), $\alpha 2$ (lower left), and $\alpha 9$ (lower right), relative to the initial structure, during the third repetition of 200 ns of MD simulations. Coloring is by variant: Baxa (grey), Baxa[L26P/L27P] (blue), Bax $\Delta 2$ (red), and Bax $\Delta 2$ [L164P] (orange). Shaded lines show RMSDs for all recorded points and solid lines are smoothed as described in section 4.4.

Fig. S4 A dihedral plot of L25. (**A**) The dihedral plot of L25 at helix α1 kink position along the simulation trajectory. Baxα (grey), Baxα[L26P/L27P] (blue). (**B**) The dihedral plot of L25 along the second (**B**) and third (**C**) repeated simulation trajectories.

Fig. S5 (A) RMSDs of backbone atoms, relative to the initial structure, of the top and bottom half of helix $\alpha 1$ during 200 ns of simulation. For each snapshot, the same α carbons are used for alignment and RMSD calculation. The second repeated (**B**) and third repeated (**C**) simulations. Coloring is by variant: Bax α (grey), Bax α [L26P/L27P] (blue).

Fig. S6 RMSDs of backbone atoms, relative to the initial structure, of helix α 3, α 4, α 5, α 6, α 7, α 8, during 200 ns of simulation are shown. Coloring is by variant: Bax α (grey), Bax α [L26P/L27P] (blue), Bax Δ 2 (red), and Bax Δ 2[L164P] (orange).

Fig. S7/S8 RMSDs of backbone atoms, relative to the initial structure, of helix α 3, α 4, α 5, α 6, α 7, α 8, during the second repeatd (**S7**) and third repeated (**S8**) simulations are shown. Coloring is by variant: Bax α (grey), Bax α [L26P/L27P] (blue), Bax Δ 2 (red), and Bax Δ 2[L164P] (orange).

Fig. S9 Calculation of dihedral angles. The $\chi 1$ and $\chi 2$ of Amino acids L42, L46, F97, Y98 (from top to bottom) were analyzed by using MDTraj 1.9.3. Bax $\Delta 2$ colored as blue, Bax $\Delta 2$ [L164P] colored as red.

Fig. S10/S11 Calculation of dihedral angles. The χ 1 and χ 2 of Amino acids L42, L46, F97, Y98 (from top to bottom) in the second (**S10**) and third (**S11**) repeated simulations were analyzed by using MDTraj 1.9.3. Bax Δ 2 colored as blue, Bax Δ 2[L164P] colored as red.

Fig. S12 Principal component analysis (PCA). (**A**) PCA landscapes of Bax $\Delta 2$ (left) and Bax $\Delta 2$ [L164P]. The blue spot pointed at the location of Bax $\Delta 2$ or Bax $\Delta 2$ [L164P] docking structure which were shown in figure 7. PC, principal component. PCA landscapes of the second (**B**) and third (**C**) repeated MD simulation.