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Abstract: Fabry Disease (FD) is a rare, X-linked, lysosomal storage disease that mainly causes renal, 

cardiac and cerebral complications. Enzyme replacement therapy (ERT) with recombinant alpha-

galactosidase A is available, but approximately 50% of male patients with classical FD develop 

inhibiting anti-drug antibodies (iADAs) that lead to reduced biochemical responses and an 

accelerated loss of renal function. Once immunization has occurred, iADAs tend to persist and 

tolerization is hard to achieve. Here we developed a pre-treatment prediction model for iADA 

development in FD using existing data from 120 classical male FD patients from three European 

centers, treated with ERT. We found that nonsense and frameshift mutations in the α-galactosidase 

A gene (p = 0.05), higher plasma lysoGb3 at baseline (p < 0.001) and agalsidase beta as first treatment 

(p = 0.006) were significantly associated with iADA development. Prediction performance of a 

Random Forest model, using multiple variables (AUC-ROC: 0.77) was compared to a logistic 

regression (LR) model using the three significantly associated variables (AUC-ROC: 0.77). The LR 

model can be used to determine iADA risk in individual FD patients prior to treatment initiation. 

This helps to determine in which patients adjusted treatment and/or immunomodulatory regimes 

may be considered to minimize iADA development risk. 
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1. Introduction 

Fabry disease (FD; OMIM 301500) is a rare, X-linked, lysosomal storage disease caused by 

mutations in the alpha-galactosidase A (GLA) gene. This leads to absent or reduced alpha-

galactosidase A enzyme activity and the subsequent accumulation of its substrate 

globotriaosylceramide (Gb3). Accumulation of Gb3 and its deacylated form globotriaosylsphingosine 

(lysoGb3) results in progressive damage to heart, kidneys and brain [1]. The disease is most often 

treated with biweekly infusions of recombinant alpha-galactosidase A (r-αGAL A), also referred to 

as enzyme replacement therapy (ERT). Two ERT preparations are currently available. One is 

agalsidase beta (Fabrazyme, Sanofi Genzyme), produced in Chinese hamster ovary cells (CHO) and 

most often dosed at 1 mg/kg biweekly. The other is agalsidase-alfa (Replagal, Takeda), produced in 

human fibroblasts and dosed at 0.2 mg/kg biweekly. In patients with the most severe disease 

phenotype, male patients with classical FD, treatment with ERT often results in the development of 

anti-drug antibodies (ADAs). Because these patients have little to no native enzyme, the immune 

system recognizes the exogenously administered enzyme as foreign. ADAs are thought to be 

responsible for both the infusion-related reactions including fever, chills and chest pain as well as the 

more classical allergic reactions with edema, dyspnea, rash, itching and (rarely) anaphylactic shock 

[2–4]. In approximately half of the classical male FD patients, the formed ADAs are capable of 

inhibiting αGAL A activity (iADAs) in vitro [5,6] as well as inhibiting enzyme uptake into cells [7]. 

In vivo, iADAs negatively influence pharmacokinetics of the recombinant enzyme [5,8,9] and -titer 

dependently- limit the biochemical response to treatment with ERT [6]. Additionally, the 

development of ADAs is linked to incomplete clearance of substrate in endothelial cells or re-

accumulation after initial clearance [10,11]. Clinically, male FD patients with established iADAs had 

higher disease severity scores [12], although the inclusion of male patients with classical as well as 

non-classical disease may have influenced the outcome. The negative effect of iADAs on disease 

outcome was confirmed in classical male patients, as iADA positive patients had an accelerated renal 

decline compared to iADA negative patients [6]. 

Experience in other disorders in which treatment with recombinant proteins is hampered by 

iADA formation (e.g., hemophilia, Pompe disease and MPS1) [13–16], shows that once iADAs occur, 

they tend to persist despite treatment with immunosuppressants or tolerization protocols (e.g., 

immune tolerance is hard to achieve) [17–20]. Therefore, it is important to develop protocols that can 

prevent or treat iADAs. Methods to prevent iADA development should primarily be tested in 

patients with a high risk of developing these antibodies. Comparing different pre-treatment 

immunomodulatory interventions on high-risk patients, rather than all Fabry patients, is expected to 

improve the efficiency and interpretation of these future studies, and reduce the required sample 

sizes. 

Several variables were found to be related to the immunogenicity of other biotherapeutics. These 

included: the dose and frequency of administration [21], the origin and glycosylation of the product 

(e.g., in which cell line is the product produced) [22,23], the age of the recipient [21,24], mutation type 

(nonsense vs. missense) [25] and the presence of residual native protein in the patient, also referred 

to as cross- reactive immunologic material (CRIM) status [15,25]. These factors may play a role in 

iADA formation in Fabry disease as well. Within our population of male Fabry patients with classical 

disease we noticed disparity in the risk of iADA formation, with families with high and low risk, 

suggesting genetic predilection. In this study we set out to answer the following two questions: 1) 

Which factors predispose male patients with classical FD for iADA development? 2). How accurately 

can the development of iADAs be predicted prior to treatment initiation in an individual patient? To 

address these questions we used previously collected [23] demographic, medical and biochemical 

data from 120 classical male FD patients and used these data to build and validate predictive models. 
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2. Results 

2.1. Patient Characteristics 

Patient characteristics of the 120 included patients are outlined in Table 1. 

Table 1. Characteristics of 120 male patients with classic Fabry disease. 

 iADA+ iADA− 

Site (N, % of total) 

- Amsterdam UMC 

- The Royal Free Hospital 

- Universitätsklinikum Würzburg 

23 (40%) 

24 (41%) 

11 (19%) 

16 (26%) 

26 (42%) 

20 (32%) 

Mutation type (N, % of total) 

- Nonsense/frameshift 

- Missense 

- Other 

33 (57%) 

21 (36%) 

4 (7%) 

17 (27%) 

37 (60%) 

8 (13%) 

Age at ERT start (years, median, range) 37 (9–58) 35 (13–63) 

LysoGb3 (nmol/L, median, range) 123 (38–178) 96 (48–149) 

First treatment (N, % of total) 

- Agalsidase alfa 0.2 mg/kg 

- Agalsidase beta 0.2 mg/kg 

- Agalsidase beta 0.5 mg/kg 

- Agalsidase beta 1.0mg/kg 

14 (24%) 

4 (7%) 

2 (3%) 

38 (66%) 

31 (50%) 

2 (3%) 

2 (3%) 

27 (44%) 

Inhibition titer (median, range) 113 (7–32645) 0 (0–5) 

2.2. Logistic Regression Model 

To identify factors associated with iADAs and assess their ability to predict iADA formation, we 

built a logistic regression (LR) model, using backwards selection of variables. The final model was 

validated internally using repeated cross validation. In this model, three variables were included that 

were found to be associated with an increased risk for iADA development: higher levels of the 

biomarker lysoGb3 before start of treatment (p < 0.001), the presence of a nonsense or frameshift 

mutation (p = 0.053) and starting treatment with agalsidase beta (p = 0.006). Distribution of individual 

variables is visualized in Figure 1a–c. Predictive performance was assessed with the area under the 

receiver operating characteristic curve (AUC-ROC) which was 0.77 (Figure 2a). Optimal accuracy 

(0.73, Figure 2b) was determined at a cutoff of 0.53 (sensitivity: 0.69, specificity: 0.76, Figure 2c,d). 

Figure 2e shows the predicted vs. observed outcome for each patient. 

Age at start treatment did not influence the risk of iADA development. Both initial treatment 

type (agalsidase alfa vs. agalsidase beta) and treatment dose (0.2, 0.5 or 1.0 mg/kg every other week) 

were significantly associated with a higher risk for iADA development. Since these variables are 

strongly related, only treatment type was included in the model. Location of the mutation as a 

numeric factor was not associated with an increased risk. However one location of missense 

mutations seemed especially prone for iADA development and is explored separately in a post-hoc 

analysis. 
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Figure 1. Distribution of variables significantly associated with an increased risk of iADA 

development in male Fabry patients with classical disease. Color represents iADA status. (a) Baseline 

plasma lysoGb3 levels. (b) Mutation type (n.b. eight out of 25 iADA positive patients in the missense 

group had a mutation at location c.1025). (c) Treatment type at start of treatment: agalsidase beta (0.2–

1 mg/kg) versus agalsidase alfa (0.2 mg/kg). 
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Figure 2. Results from the LR model. (a) ROC curve, AUC = 0.77. Colors represent the different 

possible cutoff* values; (b) Accuracy of the model at different cutoffs* (maximum of 0.73 at cutoff 

0.53); (c) Sensitivity of the model. At the chosen cutoff sensitivity is 0.69; (d) Specificity of the model 

at the chosen cutoff is 0.76; (e) Visualization of the predicted (Y axis) versus observed outcome (color 

coded) per patient. The line drawn shows the chosen cutoff. * The cutoff is a chosen decision threshold 

above which patients are predicted as positive (will develop ADAs). Lower cutoffs favor sensitivity, 

higher cutoffs favor specificity. 
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2.3. Random Forest Model 

A second model was built using the ensemble learning method ‘Random Forest’ (RF). Ensemble 

learning models can deal with co-linearity and are able to handle many variables. Furthermore, these 

models can handle variables with relative low contribution to the calculated risk. We build a RF 

model using the following variables: baseline plasma lysoGb3, mutation type and location, age of 

start, first treatment type and first treatment dose. Compared to the LR model, the fit of the RF model 

was similar (AUC-ROC 0.77) and it did not improve prediction accuracy. For details see 

supplemental material. 

2.4. Post Hoc Analyses 

Patients with missense mutations were less likely to develop iADAs compared to patients with 

nonsense and frameshift mutations. To check whether, within the missense group, the location of the 

mutation influenced iADA risk, we visualized the location of missense mutation and the presence of 

iADAs (supplemental material). Mutation location as a numeric variable was not associated with 

iADA risk. However, eight out of 11 patients with a mutation at the c.1025 position developed iADAs 

(73%) compared to 17 out of 59 (29%) of patients with missense mutations at other positions (p = 0.01, 

OR 6.3). Most other mutations in this cohort were unique mutations, thus an effect of location for 

these mutations could not be established. In silico analysis did not suggest that variants at position 

c.1025 affected splicing of the pre-mRNA GLA. 

2.5. Second Cohort 

Due to differences in the iADA detection method (sample dilution vs. enzyme saturation) as 

well as lysoGb3 analyses (dried blood spot vs. plasma), we were not able to test our model on the 

second, independent, cohort of patients. We therefore performed the same steps for imputation and 

build a LR prediction model using the same three variables on this second cohort to check 

reproducibility of the results. In this group of 30 classical male patients, only mutation-type was 

significantly correlated (p = 0.01) to the risk of iADA development. Initial treatment type (p = 0.3) and 

baseline lysoGb3 (p = 0.4) were not significantly related to iADA risk in this smaller cohort. For details 

see supplemental material. 

3. Discussion 

Our large international Fabry cohort study identified the following variables to be associated 

with an increased risk of iADA development in male patients with classical FD: 1) having a nonsense 

or frameshift mutation. 2) starting treatment with agalsidase beta and 3) higher levels of the disease 

biomarker (lysoGb3) in plasma before start of treatment. In the second control cohort, the importance 

of mutation type was confirmed, but type of recombinant enzyme and plasma lysoGb3 levels showed 

only a trend, which may have been due to the smaller sample size and/or the differences in lysoGb3 

measurements. 

Mutation type has previously been found to be related to iADA risk in FD [6,26], which is in 

accordance with observations in Pompe disease and hemophilia [27,28]. Although all classical 

patients have minimal or no residual enzyme activity, it is possible that the mutated protein is still 

produced in small amounts. Thus, the immune system of patients with missense mutations may still 

be exposed to the protein, leading to central tolerance induction. In patients with a large deletion or 

early frameshift mutations, the protein will either not be produced at all, or it will be truncated. These 

patients are less likely to develop central tolerance and are more likely to develop an immunological 

reaction to exogenously administered enzyme. The increased occurrence of iADAs in patients who 

started treatment with agalsidase beta vs. agalsidase alfa could either be attributed to the higher dose 

(1 mg/kg vs. 0.2 mg/kg), the difference in production cell-line and thus in glycosylation pattern 

(Chinese hamster ovary cells for agalsidase beta vs. human fibroblasts for agalsidase alfa) or a 

combination of both. The group of patients that started with a lower than recommended dose of 

agalsidase beta (see Table 1) was too small to draw conclusions on the dose effect. In this study, the 
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plasma lysoGb3 level was identified as an independent predictive variable for iADA formation. We 

hypothesize that either plasma lysoGb3 levels reflect subtle differences in enzyme activity (not 

detectable in the enzyme activity assay) or that the pro-inflammatory effects of (lyso)Gb3 [29] serve 

as an adjuvant to prime the immune system. 

Detrimental effects of iADAs on treatment effectiveness in FD is becoming increasingly clear 

over the last decade [5,7,10–12]. Overcoming iADA development is therefore essential to improve 

treatment outcome and can hypothetically be achieved in two ways: 1) by achieving tolerization 

through immune tolerance induction (ITI) in iADA positive patients or 2) by preventing iADA 

formation prior to treatment. Both strategies have previously been tried in other diseases. 

The first approach, ITI, has been studied extensively in hemophilia. Most ITI protocols require 

long term, frequent (> 3 times a week) administration of the recombinant protein and are still only 

successful in 60–70% of cases for hemophilia A and only 30% of cases for hemophilia B [19,30]. In 

Pompe disease, ITI has been tried with intensive immune-modulatory protocols (including 

rituximab, methotrexate, bortezomib and intraveneus immunoglobulines) resulting in a steady 

decrease in iADAs and improvement of therapeutic effectiveness, but full tolerization was not 

achieved [17,18]. This is in accordance with the findings from Lenders et al. in FD patients who 

underwent kidney or heart transplantation (and were thus treated with immunosuppressive 

therapy). Patients with established iADAs demonstrated an initial reduction in their iADA titer [31]. 

However, after tapering of the immunosuppressive medication (specifically corticosteroids), the 

iADA titers increased again [31]. Therefore, patients would require continuous exposure to 

immunosuppressive drugs to maintain immune tolerance, with unacceptable side effects for such a 

slowly progressive disease as FD. 

The second approach (preventing iADA formation) has been tried using immunosuppressive 

medication in infantile Pompe disease and MPS1 patients simultaneously with—or shortly before— 

ERT initiation. This approach has proven to be difficult, as iADAs often still arise after tapering of 

the immunosuppressive medication [20,32,33]. This may be explained by the fact that immune 

suppression was not optimal at the time ERT was started (in infantile Pompe disease ERT initiation 

cannot be delayed). In six classical male FD patients that started ERT after a transplantation, iADAs 

did not develop [31]. 

Another approach to iADA prevention is treatment initiation with lower (and more regular) 

doses of recombinant protein. In hemophilia, starting treatment with lower-dosed prophylactic 

treatment at regular intervals was associated with a 60% lower risk of iADA development compared 

to patients that started treatment with high doses and continued to get high doses ‘on demand’ (e.g., 

at irregular intervals) [34]. This is in accordance with the findings in our study that starting treatment 

with the lower dosed agalsidase alfa is associated with a lower risk for iADA development. Thus 

starting treatment with lower than registered doses of recombinant enzyme, in combination with 

shortening administration intervals, might be a way to induce central tolerance. Once central 

tolerance is induced, doses could gradually be increased and dosing intervals reduced. Future studies 

will focus on finding an optimal build up schedule for this patient group. 

Our prediction model was built on a selective patient group (male patients with classical FD). 

We chose this approach as female patients and patients with non-classical disease do not tend to 

develop iADAs. Using this model we are able to correctly predict iADA formation in 73% of male FD 

patients with the classical disease phenotype. To further optimize predictive accuracy in future 

models other variables could be included, that were not present in our current dataset. Studies in 

Pompe disease and hemophilia describe a potential influence of certain gene polymorphisms, such 

as the HLA haplotype [35–37]. In hemophilia, the presence of so-called danger signals before or 

during the first infusions (e.g., recent surgery, bleeds, vaccinations and active infections) were 

associated with an increased risk for iADA development [38]. The explanation is that the danger or 

stress signals that are released work as an adjuvants to induce immunogenicity. Although active 

infection is already a contra-indication for ERT administration, it may be wise to avoid initiating ERT 

soon after other stressors as well (e.g., surgery or vaccinations). 
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The outcome of this model can be translated to clinical care as the individual risk of iADAs in 

new patients helps physicians to decide which patients are eligible for pre-ERT immunomodulatory 

interventions. In addition, knowing the a-priori risk aides the evaluation of the effectiveness of these 

interventions, as the pre-intervention risk can be included in the outcome analysis. 

4. Materials and Methods 

4.1. Patients 

This study was conducted in accordance with the principles of the Helsinki Declaration, as 

revised in 2013. To build the models, retrospective collected data from three European FD centers of 

excellence (Amsterdam University Medical Center, The Netherlands; Royal Free London NHS 

Foundation Trust, United Kingdom; and the University Hospital Würzburg, Germany) were used 

[39]. Data included basic diagnostic data, clinical and biochemical parameters, comorbidities and 

medication use. In this study, only male patients with a classical disease phenotype were included. 

Male patients were classified as having a classical phenotype based on both a residual enzymatic 

activity of less than 5% and the presence of one or more of the characteristic classic FD symptoms 

(acroparesthesia, clustered angiokeratoma, cornea verticillata), as described by Arends et al. [40]. All 

included patients were treated with ERT (agalsidase alfa or -beta). Patients who switched dose or 

treatment type were not excluded. Agalsidase alfa was always dosed at 0.2 mg/kg/eow, Agalsidase 

beta was predominantly dosed at 1 mg/kg/eow, but patients on 0.2 mg/kg (n = 4) and 0.5 mg/kg (n = 

6) were also included. 

4.2. Variables and Development of the Prediction Models 

The Tripod checklist for prediction model development was followed where possible [41]. The 

following variables were included and tested: age at start ERT, mutation location and type, plasma 

lysoGb3 at baseline and the initial dose and type of ERT. 

4.3. Laboratory Measurements 

Plasma lysoGb3 and iADAs were measured at the AMC. Plasma lysoGb3 values were obtained 

within one year before start of treatment with ERT. LysoGb3 levels were analyzed using tandem mass 

spectrometry, as described previously [42,43]. AMC samples from before August 2015 used a 

different internal standard than samples from later time points at the AMC as well as samples from 

the Royal Free Hospital and the University Clinic Würzburg. After application of a correction factor, 

outcomes using both internal standards correlated well [40]. 

IADAs were measured as previously described [5]. In short, patient plasma in various dilutions 

is added to the recombinant protein. The titer represents the amount of dilutions needed to recover 

at least 50% of enzymatic activity in vitro. Outcome was determined as iADA positive (iADA+) or 

iADA negative (iADA−). Patients were considered iADA+ if they tested positive at one or more time 

points for αGAL A inhibition with a titer of 6 or higher. iADA titers were measured after at least 1 

year of treatment, with the exception of two patients for whom only iADA titers at 9 months after 

ERT initiation were available. 23/120 patients had only one iADA measurement, 24/120 had two 

measurements, all other patients had three or more iADA measurements (range 3–16). 

4.4. Statistics 

For statistical analysis and model building, R (version 3.4.3) was used. A markdown file 

containing the full code and results was added as supplemental material. Package ‘MICE’ was used 

for data imputation. Package ‘caret’ was used to build and validate predictive models. Package 

‘ggplot2′ was used for data visualization. 
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4.4.1. Algorithms 

The performance of two different machine learning algorithms for the prediction of iADAs were 

compared: Logistic Regression (LR) and the most common ensemble method, i.e., Random Forest 

(RF). Overall LR and RF are known to give comparable results, but accuracy may vary depending on 

the number of subjects, number of explanatory variables and amount of noise variables [44]. LR is a 

form of binomial regression and models the probabilities for classification problems with two 

possible outcomes, in this case iADA+ and iADA−. It uses the logarithm of the odds (i.e., the 

logarithm of the probability of iADA+ divided by the probability of iADA− status), resulting in a 

linear combination of the independent variables (predictors) (Figure 3a). All assumptions for LR were 

met, details can be found in the supplemental material. 

RF utilizes “ensemble learning”. In brief, it creates many decision trees from random samples 

and averages out the results to get a clear model (Figure 3b). Unlike LR, RF does not assume a linear 

relationship between variables and therefore outcome and model are not influenced by co-linearity. 

Furthermore RF models can handle many different variables and do not require a significant 

contribution to the predicted risk for individual variables [44]. 

 

Figure 3. Visualization of used methods. (a) Logistic regression uses a combination of independent 

variables to draw a sigmoid curve that fits best with the training data. New subjects are plotted on 

the curve to calculate the risk of iADA development (in schematic presentation this is based on a 

single variable (lysoGb3), in reality all contributing variables weigh in in the predicted outcome). Blue 

stars resemble iADA negative subjects and the red stars represent iADA positive patients in the data 

set used to build the model. The blue dot represents a subject in the test set. (b) Random forest is a 
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classification algorithm. It randomly creates multiple decision trees (default is 500). Each tree results 

in a conclusion (e.g., iADA yes or no), majority voting of all trees is used to determine risk of iADA 

development; (c) Cross-validation is a resampling procedure used to evaluate predictive models with 

limited data. The goal is to optimize usage of data and minimize overestimation of predictive 

accuracy. The data was randomly split in 10 subsets. For each iteration 9 sets are used to build the 

model and one to test the model, until every subject has been in both groups. This procedure is 

repeated 10 times, until 100 models are built. Outcome of each individual patient were averaged and 

used to build the final model. 

4.4.2. Handling of Missing Data 

Missing data (3%) consisted mostly of missing lysoGb3 values (28% of lysoGb3 values were 

missing) and were imputed using multiple imputation (package MICE) [45]. It is important to note 

that the MICE algorithm assumes missing data to be either Missing At Random (MAR), meaning that 

the probability that a value is missing can be explained by the observed values, or Completely 

Missing At Random (CMAR), meaning that there is no other reason for missing data than chance. In 

our study the treatment center and date of start ERT were the main explanatory variables for missing 

lysoGb3 measurements. We assumed that the year of ERT initiations and the location where patients 

were treated did not influence the risk for iADA development and thus considered the data to be 

MAR. To assess reproducibility, imputation was repeated five times and distribution of imputed 

variables as well as differences in mean and SD for the imputed variables were visualized and added 

in the supplemental material. Five individual imputed datasets were created, each consisting of 5 

cycles. Imputation was deemed consistent based on the comparable means and low standard 

deviation for the imputed values. Imputed datasets were merged and the mean of all 5 imputations 

was used as the final imputed value. 

2.4.3. Experiment and Intrinsic Validation 

For a detailed description of steps and full code see the markdown file in supplemental material. 

In short R package CARET was used to build two prediction models. To prevent overfitting, without 

losing data, validation was done using 10-fold cross validation, meaning that the dataset was divided 

into 10 subsets. For every round nine folds were used to train the model and this model was then 

validated on the remaining folds. This was repeated until every set was used in both the training as 

the testing group. These steps were then repeated 10 times and results of each individual patient were 

aggregated to form the final model (Figure 3c). All variables used in the LR model met LR 

assumptions (visualization in SM.1). The area under the curve (AUC) of the receiver operating 

characteristic curve (ROC) was used to compare classification performance. The cutoff was decided 

based on optimal accuracy. 

2.5. External Cohort 

A second dataset of 30 classical male patients was provided by the University Hospital 

Muenster, Germany to validate the results of our model. Phenotyping was done locally and based on 

classical FD symptoms and enzyme activity. In six patients, no baseline enzyme activity was 

available, all presented with classical symptoms and had a mutation associated with classical disease. 

Patients were treated with agalsidase alfa (dosed at 0.2 mg/kg/eow) or agalsidase beta (dosed at 0.2–

1.37 mg/kg/eow). LysoGb3 measurements were performed at Centogene (Rockstock, Germany) in 

dry blood-spot. Lyso-Ceramide was used as reference (Matreya, LLC, Pleasant Gap, PA, USA) and 

D5-Fluticasone Propionate (EJY Tech, Inc., Rockville, MD, USA) served as internal standard. LysoGb3 

values at baseline were missing in 10/30 patients. IADAs were measured as described previously [29]. 

All patients with > 50% inhibition are considered iADA positive. Titers represent the amount of 

enzyme necessary to overcome the neutralizing capacity of iADAs in a patient. Due to differences in 

measuring techniques for both iADA status, lysoGb3 and differences in ERT dosing the data could 

not be used to validate the initial model, to show reproducibility model building was repeated with 

the same variables and outcome is reported separately. 
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Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/21/16/5784/s1. 

File S1: For the sake of reproduction, a markdown file containing the full R script is added as supplemental 

material. 
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Abbreviations 

ADA Anti-drug antibodies 

αGAL A Alpha-Galactosidase A (enzyme) 

ERT Enzyme replacement therapy 

FD Fabry disease 

GB3 Globotriaosylceramide 

GLA Alpha-Galactosidase A (gene) 

iADA Inhibiting anti-drug antibodies 

LR Logistic regression 

LysoGb3 Globotriaosylsphingosine 

r- αGAL A Recombinant alpha-galactosidase A (enzyme) 

RF Random forest 

ROC-AUC Area under the receiver operating characteristic curve 
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