Supplementary Table 1

	$\begin{gathered} P 2-5 \\ (n=24) \end{gathered}$	$\begin{aligned} & P 10-15 \\ & (n=21) \end{aligned}$	$\begin{aligned} & \hline \text { P20-25 } \\ & (\mathrm{n}=21) \end{aligned}$	$\begin{aligned} & \text { P50-56 } \\ & (n=19) \end{aligned}$	$\begin{aligned} & P>150 \\ & (n=20) \end{aligned}$	oneway ANOVA post-hoc test
Cm (nF)	$\begin{gathered} 0.04 \\ \pm 0.02 \end{gathered}$	$\begin{gathered} 0.10 \\ \pm 0.04 \end{gathered}$	$\begin{gathered} 0.16 \\ \pm 0.05 \end{gathered}$	$\begin{gathered} 0.11 \\ \pm 0.02 \end{gathered}$	$\begin{gathered} 0.14 \\ \pm 0.07 \end{gathered}$	Kruskal-Wallis test: $\mathrm{p}<0.0001$ Dunn's multiple comparisons test: P2-5 vs. P10-15: $p=0.0005$ P2-5 vs. P20-25: $p<0.0001$ P2-5 vs. P50-56: $p=0.0001$ P2-5 vs. $P>150: p<0.0001$ P10-15 vs. P 20-25: $p=0.0215$ P10-15 vs. P 50-56: $p>0.9999$ P10-15 vs. $P>150: p>0.9999$ P20-25 vs. P 50-56: $p=0.1059$ P20-25 vs. $P>150$: $p>0.9999$ P50-56 vs. P 150: $p>0.9999$
RIn (G)	$\begin{gathered} 1.61 \\ \pm 0.88 \end{gathered}$	$\begin{gathered} 0.74 \\ \pm 0.31 \end{gathered}$	$\begin{gathered} 0.37 \\ \pm 0.28 \end{gathered}$	$\begin{gathered} 0.25 \\ \pm 0.07 \end{gathered}$	$\begin{gathered} 0.36 \\ \pm 0.24 \end{gathered}$	Kruskal-Wallis test: $p<0.0001$ Dunn's multiple comparisons test: P2-5 vs. P10-15: $p>0.9999$ P2-5 vs. P20-25: p < 0.0001 P2-5 vs. P50-56: < 0.0001 P2-5 vs. $\mathrm{P}>150$: 0.0001 P10-15 vs. P 20-25: $p=0.0098$ P10-15 vs. P 50-56: $p=0.0001$ P10-15 vs. $P>150: p=0.0074$ P20-25 vs. P 50-56: p>0.9999 P20-25 vs. $P>150$: $p>0.9999$ P50-56 vs. P 150: p>0.9999
Erest (mV)	$\begin{aligned} & -58 \\ & \pm 9 \end{aligned}$	$\begin{array}{r} -68 \\ \pm 9 \end{array}$	$\begin{aligned} & -70 \\ & \pm 6 \end{aligned}$	$\begin{gathered} -72 \\ \pm 10 \end{gathered}$	$\begin{gathered} -72 \\ \pm 10 \end{gathered}$	ANOVA: $\mathrm{p}<0.0001$ Bonferroni's multiple comparisons test P2-5 vs. P10-15: $p=0.0007$ P2-5 vs. P20-25: $p<0.0001$ P2-5 vs. P50-56: < 0.0001 P2-5 vs. $\mathrm{P}>150$: <0.0001 P10-15 vs. P 20-25: $p=0.9792$ P10-15 vs. P 50-56: $p=0.7538$ P10-15 vs. $P>150: p=0.7725$ P20-25 vs. P 50-56: $p=0.9664$ P20-25 vs. $P>150: p=0.9736$

Abstract

Development of passive membrane properties in M1LV neurons. Capacitance (C_{m}), input resistance ($R_{\text {in }}$), and resting membrane potential ($E_{\text {rest }}$) are reported as average \pm standard deviation. P values for multiple comparison and post-hoc test are reported for each paired comparison. The statistical tests used for normally distributed samples were one-way ANOVA and Bonferroni's multiple comparisons test (A. + Bonferroni). Non-normally distributed samples were compared with the Kruskal-Wallis test and Dunn's multiple comparisons test (K-W + Dunn's).

Supplementary Table 2

	P1	P3	P5	P7	P10	P15	P28	P55	P150
AIS length ($\mu \mathrm{m}$)	$\begin{gathered} (\mathrm{n}=4) \\ 13.5 \\ \pm 0.8 \end{gathered}$	$\begin{gathered} (\mathrm{n}=6) \\ 15.6 \\ \pm 0.4 \end{gathered}$	$\begin{gathered} (\mathrm{n}=6) \\ 16.5 \\ \pm 0.4 \end{gathered}$	$\begin{gathered} \hline(\mathrm{n}=6) \\ 17.5 \\ \pm 0.8 \end{gathered}$	$\begin{gathered} (\mathrm{n}=6) \\ 20.6 \\ \pm 1.4 \end{gathered}$	$\begin{gathered} (\mathrm{n}=6) \\ 22.4 \\ \pm 2.1 \end{gathered}$	$\begin{gathered} \hline(\mathrm{n}=6) \\ 24.4 \\ \pm 1.7 \end{gathered}$	$\begin{gathered} \hline(\mathrm{n}=6) \\ 26.5 \\ \pm 1.2 \end{gathered}$	$\begin{gathered} (\mathrm{n}=6) \\ 28.3 \\ \pm 0.5 \end{gathered}$
AIS prox. diameter ($\mu \mathrm{m}$)	$\begin{gathered} (\mathrm{n}=3) \\ 1.34 \\ \pm 0.09 \end{gathered}$				$\begin{gathered} (\mathrm{n}=3) \\ 1.56 \\ \pm 0.15 \end{gathered}$		$\begin{gathered} (n=3) \\ 2.04 \\ \pm 0.15 \end{gathered}$		
AIS dist. diameter ($\mu \mathrm{m}$)		$\begin{gathered} 0.99 \\ \pm 0.05 \end{gathered}$						$\begin{gathered} 1.08 \\ \pm 0.04 \end{gathered}$	
AIS distance from soma ($\mu \mathrm{m}$)		$\begin{gathered} 1.79 \\ \pm 0.30 \end{gathered}$						$\begin{gathered} 1.07 \\ \pm 0.21 \end{gathered}$	

Developmental AIS elongation in M1LV pyramidal neurons. AIS length, proximal and distal diameter, and distance from soma for M1LV neurons are reported as average \pm standard deviation. Number of animals (n) used for the analysis of each age group are reported below headers, indicating each respective age group (at least 100 AIS/animal).

Supplementary Table 3

ANOVA p < 0.0001
Bonferroni's multiple comparisons test:

P1 vs. P3: $p=0.2014$ P1 vs. P5 $p=0.0143$ P1 vs. P7: $p=0.0004$ P1 vs. P10: p<0.0001 P1 vs. P15: $p<0.0001$ P1 vs. P28: p<0.0001 P1 vs. P55: p<0.0001 P1 vs. P150: p<0.0001	P3 vs. P5: $p=0.9415$ P3 vs. P7: $p=0.2174$ P3 vs. P10: $p<0.0001$ P3 vs. P15: $p<0.0001$ P3 vs. P28: $p<0.0001$ P3 vs. P55: $p<0.0001$ P3 vs. P150: p<0.0001	P5 vs. P7: $p=0.9067$ P5 vs. P10: $p<0.0001$ P5 vs. P15: $p<0.0001$ P5 vs. P28: $p<0.0001$ P5 vs. P55: $p<0.0001$ P5 vs. P150: $p<0.0001$	P07 vs. P10: $p=0.0037$ P07 vs. P15: $p<0.0001$ P07 vs. P28: $p<0.0001$ P07 vs. P55: $p<0.0001$ P07 vs. P150: $p<0.0001$	P10 vs. P15: $p=0.2318$ P10 vs. P2: $p=0.0001$ P10 vs. P55: $p<0.0001$ P10 vs. P150: $p<0.0001$	P15 vs. P28: $p=0.1485$ P15 vs. P55: $p<0.0001$ P15 vs. P150: $p<0.0001$	$\begin{aligned} & \text { P28 vs. } \\ & \text { P55: } \\ & p=0.1381 \\ & \text { P28 vs. } \\ & \text { P150: } \\ & p=0.0008 \end{aligned}$	P55 vs. P150: $p=0.4086$

Developmental AIS elongation in M1LV pyramidal neurons: AIS length; oneway ANOVA + post-hoc test. Statistical comparison of AIS length between age groups, referring to data in Supplementary Table 2. P values for post-hoc test are reported for each paired comparison. The statistical tests used for comparing these (normally distributed) samples was one-way ANOVA and Bonferroni's multiple comparisons test (A. + Bonferroni).

Supplementary Table 4

	$\begin{gathered} \text { P2-5 } \\ (n=24) \end{gathered}$	$\begin{aligned} & \text { P10-15 } \\ & (\mathrm{n}=21) \end{aligned}$	$\begin{aligned} & \text { P20-25 } \\ & (\mathrm{n}=21) \end{aligned}$	$\begin{aligned} & \text { P50-56 } \\ & \text { (} \mathrm{n}=19 \text {) } \end{aligned}$	$\begin{aligned} & P>150 \\ & (n=20) \end{aligned}$	oneway ANOVA post-hoc test
rheobase (pA)	$\begin{gathered} 11.9 \\ \pm 9.5 \end{gathered}$	$\begin{gathered} 24.5 \\ \pm 20.0 \end{gathered}$	$\begin{gathered} 57.4 \\ \pm 46.5 \end{gathered}$	$\begin{gathered} 75.8 \\ \pm 37.6 \end{gathered}$	$\begin{gathered} 51.7 \\ \pm 29.0 \end{gathered}$	Kruskal-Wallis test: $\mathrm{p}<0.0001$ (K- W + Dunn's multiple comparisons test:P2-5 vs. P10-15: $p=0.8636$ P2-5 vs. P20-25: $p<0.0001$ P2-5 vs. P50-56: < 0.0001 P2-5 vs. $P>150:<0.0001$ P10-15 vs. P 20-25: $p=0.0560$ $P 10-15$ vs. $P 50-56: p=0.0003$ $P 10-15$ vs. $P>150: p=0.0698$ P20-25 vs. P 50-56: $p>0.9999$ P20-25 vs. $P>150: p>0.9999$ P50-56 vs. P 150: $p>0.9999$
Max gain dAP frequency/ dlinput (Hz/pA)	$\begin{aligned} & 14 \times 10^{-3} \\ & \pm 7 \times 10^{-3} \end{aligned}$	$\begin{gathered} 7 \times 10^{-3} \pm \\ 3 \times 10^{-3} \end{gathered}$	$\begin{gathered} 5 \times 10^{-3} \\ \pm 1 \times 10^{-3} \end{gathered}$	$\begin{gathered} 7 \times 10^{-3} \\ \pm 2 \times 10^{-3} \end{gathered}$	$\begin{gathered} 6 \times 10^{-3} \\ \pm 2 \times 10^{-3} \end{gathered}$	ANOVA: $\mathrm{p}<0.0001$ Bonferroni's multiple comparisons test: P2-5 vs. P10-15: $p<0.0627$ P2-5 vs. $P 20-25: p=0.0001$ P2-5 vs. P50-56: $p=0.0818$ P2-5 vs. $P>150: p=0.001$ P10-15 vs. P 20-25: $p>0.5937$ P10-15 vs. P 50-56: $p>0.9999$ $P 10-15$ vs. $P>150: p>0.9999$ P20-25 vs. P 50-56: $p=0.7328$ P20-25 vs. $P>150: p>0.9999$ P50-56 vs. P 150: $p>0.9999$
$\begin{gathered} \text { max AP } \\ \text { freq. }(\mathrm{Hz}) \end{gathered}$	19 ± 14	19 ± 8	29 ± 12	30 ± 7	31 ± 8	Kruskal-Wallis test: $\mathrm{p}<0.0001$ (K- W + Dunn's multiple comparisons test:P2-5 vs. P10-15: $p>0.9999$ P2-5 vs. P20-25: $p=0.1564$ P2-5 vs. P50-56: $p=0.0065$ P2-5 vs. $P>150: p=0.0023$ P10-15 vs. P 20-25: $p=0.0555$ P10-15 vs. $P 50-56: p=0.0019$ P10-15 vs. $P>150: p=0.0006$

						P20-25 vs. P 50-56: $p>0.9999$ P20-25 vs. $P>150: p>0.9999$ P50-56 vs. P 150: $p>0.9999$
AP threshold (mV)	$\begin{aligned} & -30 \\ & \pm 7 \end{aligned}$	$\begin{aligned} & -42 \\ & \pm 7 \end{aligned}$	$\begin{gathered} -43 \\ \pm 7 \end{gathered}$	$\begin{aligned} & -42 \\ & \pm 8 \end{aligned}$	$\begin{gathered} -44 \\ \pm 7 \end{gathered}$	Kruskal-Wallis test: $\mathrm{p}<0.0001$ (K- W + Dunn's multiple comparisons test:P2-5 vs. P10-15: $p=0.0005$ P2-5 vs. P20-25: $p<0.0001$ P2-5 vs. $P 50-56: p=0.0027$ P2-5 vs. $P>150: p<0.0001$ P10-15 vs. $P 20-25: p>0.9999$ P10-15 vs. P 50-56: > 0.9999 $P 10-15$ vs. $P>150:>0.9999$ P20-25 vs. P 50-56: > 0.9999 P20-25 vs. $P>150:>0.9999$ P50-56 vs. P 150: > 0.9999
max dV/dT (V/s)	$\begin{gathered} 95 \\ \pm 41 \end{gathered}$	$\begin{gathered} 158 \\ \pm 27 \end{gathered}$	$\begin{gathered} 254 \\ \pm 61 \end{gathered}$	$\begin{gathered} 219 \\ \pm 44 \end{gathered}$	$\begin{aligned} & 218 \\ & \pm 65 \end{aligned}$	Kruskal-Wallis test: $\mathrm{p}<0.0001$ (K- W + Dunn's multiple comparisons test:P2-5 vs. P10-15: $p=0.0937$ P2-5 vs. P20-25: $p<0.0001$ P2-5 vs. P50-56: $p<0.0001$ P2-5 vs. $P>150: p<0.0001$ P10-15 vs. P 20-25: $p=0.0002$ P10-15 vs. P 50-56: $p=0.0184$ $P 10-15$ vs. $P>150: p=0.0441$ P20-25 vs. P 50-56: $p>0.9999$ P20-25 vs. $P>150: p>0.9999$ P50-56 vs. P 150: $p>0.9999$
min dV/dT (V/s)	$\begin{gathered} -21 \\ \pm 11 \end{gathered}$	$\begin{aligned} & -31 \\ & \pm 7 \end{aligned}$	$\begin{gathered} -53 \\ \pm 20 \end{gathered}$	$\begin{aligned} & -52 \\ & \pm 7 \end{aligned}$	$\begin{gathered} -61 \\ \pm 14 \end{gathered}$	Kruskal-Wallis test: $\mathrm{p}<0$. Dunn's multiple comparisons test:P2-5 vs. P10-15: $p=0.0529$ P2-5 vs. P20-25: $p<0.0001$ P2-5 vs. P50-56: $p<0.0001$ P2-5 vs. $P>150: p<0.0001$ P10-15 vs. P 20-25: $p<0.0001$ P10-15 vs. P 50-56: $p<0.0001$ $P 10-15$ vs. $P>150: p<0.0001$ P20-25 vs. P 50-56: $p>0.9999$ P20-25 vs. $P>150: p=0.1867$ P50-56 vs. P 150: $p=0.1666$

AP half- width (ms)	$\begin{gathered} 3.5 \\ \pm 1.6 \end{gathered}$	$\begin{gathered} 2.3 \\ \pm 0.4 \end{gathered}$	$\begin{gathered} 1.7 \\ \pm 0.5 \end{gathered}$	$\begin{gathered} 1.7 \\ \pm 0.2 \end{gathered}$	$\begin{gathered} 1.4 \\ \pm 0.3 \end{gathered}$	$\begin{aligned} & \text { Kruskal-Wallis test: } p<0.0001 \\ & \text { Dunn's multiple comparisons } \\ & \text { test:P2-5 vs. P10-15: } p>0.9999 \\ & \text { P2-5 vs. P20-25: } p<0.0001 \\ & \text { P2-5 vs. P50-56: } p=0.0001 \\ & \text { P2-5 vs. } P>150: p<0.0001 \\ & \text { P10-15 vs. } P 20-25: p=0.0036 \\ & \text { P10-15 vs. } P 50-56: p=0.0140 \\ & \text { P10-15 vs. } P>150: p<0.0001 \\ & \text { P20-25 vs. } P 50-56: p>0.9999 \\ & \text { P20-25 vs. } P>150: p=0.8198 \\ & \text { P50-56 vs. } P 150: p=0.3962 \end{aligned}$
Developmental changes in intrinsic membrane properties and input - output gain. Intrinsic membrane properties, maximal input-output gain, rheobase, maximal AP frequency, AP threshold, max $d V / d t$, min $d V / d t$, and AP half-width of M1LV neuron are reported as average \pm standard deviation. P values for multiple comparison and post-hoc test are reported for each paired comparison. The statistical tests used for normally distributed samples were one-way ANOVA and Bonferroni's multiple comparisons test (A. + Bonferroni). Non-normally distributed samples were compared with the Kruskal-Wallis test and Dunn's multiple comparisons test (K-W + Dunn's).						

Supplementary Table 5.

	$\begin{gathered} \text { P2-5 } \\ (n=24) \end{gathered}$	$\begin{aligned} & P 10-15 \\ & (n=21) \end{aligned}$	$\begin{aligned} & \text { P20-25 } \\ & (\mathrm{n}=21) \end{aligned}$	$\begin{aligned} & \text { P50-56 } \\ & (\mathrm{n}=19) \end{aligned}$	$\begin{aligned} & \hline P>150 \\ & (n=20) \end{aligned}$	oneway ANOVA post-hoc test
$\begin{gathered} \text { IS } \\ (\mathrm{V} / \mathrm{s}) \end{gathered}$	$\begin{gathered} 100 \\ \pm 40 \end{gathered}$	$\begin{gathered} 150 \\ \pm 31 \end{gathered}$	$\begin{gathered} 179 \\ \pm 60 \end{gathered}$	$\begin{gathered} 180 \\ \pm 31 \end{gathered}$	$\begin{gathered} 190 \\ \pm 47 \end{gathered}$	Kruskal-Wallis test: $\mathrm{p}<0.0001$ Dunn's multiple comparisons test:P2-5 vs. P10-15: $p=0.1341$ P2-5 vs. P20-25: $p=0.0002$ P2-5 vs. P50-56: $p<0.0001$ P2-5 vs. $P>150: p<0.0001$ $P 10-15$ vs. P 20-25: $p=0.5839$ $P 10-15$ vs. $P 50-56: p=0.2295$ $P 10-15$ vs. $P>150: p=0.0797$ P20-25 vs. P 50-56: $p>0.9999$ P20-25 vs. $P>150: p>0.9999$ $P 50-56$ vs. P 150: $p>0.9999$
$\begin{aligned} & \text { SD } \\ & (\mathrm{V} / \mathrm{s}) \end{aligned}$	n.a.	$\begin{array}{r} 130 \\ \pm 31 \end{array}$	$\begin{gathered} 248 \\ \pm 66 \end{gathered}$	$\begin{gathered} 250 \\ \pm 50 \end{gathered}$	$\begin{gathered} 274 \\ \pm 52 \end{gathered}$	Kruskal-Wallis test: $p<0.0001$ Dunn's multiple comparisons test:P10-15 vs. P 20-25: $p<$ 0.0001 P10-15 vs. P 50-56: $p<0.0001$ P10-15 vs. $P>150: p<0.0001$ P20-25 vs. $P 50-56: p=0.9998$ P20-25 vs. $P>150: p>0.4143$ P50-56 vs. P 150: $p>0.4942$
$\begin{aligned} & \text { Est } I_{\mathrm{n} \text {-AIS }} \\ & \quad(\mathrm{pA}) \end{aligned}$	$\begin{array}{r} 126 \\ \pm 50 \end{array}$	$\begin{gathered} 273 \\ \pm 58 \end{gathered}$	$\begin{gathered} 451 \\ \pm 148 \end{gathered}$	$\begin{gathered} 490.5 \\ \pm 84.98 \end{gathered}$	$\begin{gathered} 550.6 \\ \pm 136.7 \end{gathered}$	Kruskal-Wallis test: $\mathrm{p}<0.0001$ Dunn's multiple comparisons test:P2-5 vs. P10-15: $p<0.0001$ P2-5 vs. P20-25: $p<0.0001$ P2-5 vs. P50-56: $p<0.0001$ P2-5 vs. $P>150: p<0.0001$ $P 10-15$ vs. $P 20-25: p=0.0009$ P10-15 vs. P 50-56: $p<0.0001$ $P 10-15$ vs. $P>150: p<0.0001$ P20-25 vs. P 50-56: $p=0.9778$ $P 20-25$ vs. $P>150: p>0.3143$

				P50-56 vs. P 150: $p>0.6648$
Developmental changes in IS and SD component. AP IS and SD component, and estimated inward				
current at the AIS (Est In-AIS) of M1LV neuron are reported as average \pm standard deviation. P values for				
multiple comparison and post-hoc test are reported for each paired comparison. These (non-normally				
distributed) samples were compared with the Kruskal-Wallis test and Dunn's multiple comparisons test				
(K-W + Dunn's).				

Supplementary Table 6.

	$\begin{gathered} \text { P2-5 } \\ \left(n_{\text {mono }} / n_{\text {tri }}\right. \\ =21 / 0) \end{gathered}$	$\begin{gathered} \text { P10-15 } \\ \left(n_{\text {mono }} / n_{t}\right. \\ \text { ri }=19 / 0) \end{gathered}$	$\begin{aligned} & \text { P20-25 } \\ & \left(n_{\text {mono }} / n_{t}\right. \\ & \text { ri }=20 / 7) \end{aligned}$	$\begin{gathered} \text { P50-56 } \\ \left(n_{\text {mono }} / n_{t}\right. \\ \text { ri }=18 / 6) \end{gathered}$	$\begin{gathered} \hline P>150 \\ \left(n_{\text {mono }} / n_{t}\right. \\ \text { ri }= \\ 16 / 14) \end{gathered}$	oneway ANOVA post-hoc test
$\begin{gathered} \text { AHP }_{\text {mono/sI }} \\ \text { ow } \\ (\mathrm{mV}) \end{gathered}$	$\begin{array}{r} 19 \\ \pm 3 \end{array}$	$\begin{array}{r} 17 \\ \pm 3 \end{array}$	$\begin{array}{r} 13 \\ \pm 3 \end{array}$	$\begin{gathered} 11 \\ \pm 3 \end{gathered}$	$\begin{array}{r} 14 \\ \pm 4 \end{array}$	ANOVA: $\mathrm{p}<0.0001$ Bonferroni's multiple comparisons test:P2-5 vs. P1015: $p=0.2449$ P2-5 vs. P20-25: $p<0.0001$ P2-5 vs. P50-56: $p<0.0001$ $P 2-5$ vs. $P>150: p=0.0002$ $P 10-15$ vs. $P 20-25: p=0.0010$ $P 10-15$ vs. P 50-56: $p<0.0001$ $P 10-15$ vs. $P>150: p=0.2480$ P20-25 vs. P 50-56: $p>0.9999$ $P 20-25$ vs. $P>150: p>0.9999$ $P 50-56$ vs. P 150: $p=0.0817$
$\mathrm{AHP}_{\text {fast }}$ (mV)	n.a.	n.a.	$\begin{gathered} 6.1 \pm \\ 2.6 \end{gathered}$	$\begin{gathered} 13.2 \pm \\ 2.9 \end{gathered}$	$\begin{gathered} 9.1 \pm \\ 3.7 \end{gathered}$	ANOVA: $\mathrm{p}<0.0001$ Bonferroni's multiple comparisons test: P20-25 vs. $P 50-56: p=0.0025$ P20-25 vs. $P>150: p=0.1773$ P50-56 vs. P 150: $p=0.0619$
$\begin{aligned} & \text { ADP } \\ & (\mathrm{mV}) \end{aligned}$	n.a.	n.a.	$\begin{gathered} 2.2 \\ \pm 1.8 \end{gathered}$	$\begin{gathered} 1.8 \\ \pm 1.0 \end{gathered}$	$\begin{gathered} 3.9 \\ \pm 2.8 \end{gathered}$	ANOVA: $\mathrm{p}<0.0968$ Bonferroni's multiple comparisons test:P20-25 vs. P $\begin{aligned} & 50-56: p>0.9999 \\ & P 20-25 \text { vs. } P>150: p=0.3324 \\ & P 50-56 \text { vs. } P 150: p=0.1771 \end{aligned}$

Developmental changes of AHP and ADP. Average amplitude of AHP monoslow, AHP fast and ADP of M1LV neurons are reported as average \pm standard deviation. P values for multiple comparison and post-hoc test are reported for each paired comparison. Below the table headers indicating age groups, the number of neurons showing mono-phasic events ($n_{\text {mono }}$) and tri-phasic events ($n_{\text {tri }}$) are reported side by side ($\mathrm{n}_{\text {mono }} / \mathrm{n}_{\text {tri }}$). The statistical tests used for comparing these (normally distributed) samples was one-way ANOVA and Bonferroni's multiple comparisons test (A. + Bonferroni).

Supplementary Table 7.

	$\begin{gathered} P 2-5 \\ (n=21) \end{gathered}$	$\begin{aligned} & P 10-15 \\ & (n=19) \end{aligned}$	$\begin{aligned} & P 20-25 \\ & (n=14) \end{aligned}$	$\begin{aligned} & P 50-56 \\ & (n=15) \end{aligned}$	$\begin{aligned} & \hline P>150 \\ & (n=13) \end{aligned}$	oneway ANOVA post-hoc test
In (nA)	$\begin{gathered} -2.0 \\ \pm 0.7 \end{gathered}$	$\begin{gathered} -4.6 \\ \pm 1.4 \end{gathered}$	$\begin{gathered} -7.5 \\ \pm 1.9 \end{gathered}$	$\begin{gathered} -5.4 \\ \pm 2.8 \end{gathered}$	$\begin{gathered} -6.6 \\ \pm 2.6 \end{gathered}$	ANOVA: $\mathrm{p}<0.0001$ Bonferroni's multiple comparisons test:P2-5 vs. P1015: $p=0.0005$ P2-5 vs. P20-25: $p<0.0001$ P2-5 vs. P50-56: $p<0.0001$ P2-5 vs. $P>150: p<0.0001$ $P 10-15$ vs. $P 20-25: p=0.0005$ $P 10-15$ vs. $P 50-56: p=0.7067$ $P 10-15$ vs. $P>150: p=0.0303$ $P 20-25$ vs. $P 50-56: p=0.0412$ $P 20-25$ vs. $P>150: p=0.7935$ P50-56 vs. P 150: $p=0.4575$
$I_{\text {In }} V_{\text {Half }}$ (mV)	$\begin{aligned} & -34 \\ & \pm 7 \end{aligned}$	$\begin{aligned} & -47 \\ & \pm 7 \end{aligned}$	$\begin{aligned} & -51 \\ & \pm 9 \end{aligned}$	$\begin{aligned} & -48 \\ & \pm 6 \end{aligned}$	$\begin{gathered} -46 \\ \pm 11 \end{gathered}$	Kruskal-Wallis test: $\mathrm{p}<0.0001$ Dunn's multiple comparisons test:P2-5 vs. P10-15: $p=0.0002$ P2-5 vs. P20-25: $p<0.0001$ P2-5 vs. P50-56: $p=0.0001$ P2-5 vs. $P>150: p=0.0062$ P10-15 vs. P 20-25: $p>0.9999$ P10-15 vs. P 50-56: $p>0.9999$ P10-15 vs. $P>150: p>0.9999$ P20-25 vs. P 50-56: $p>0.9999$ P20-25 vs. $P>150: p>0.9999$ P50-56 vs. P 150: $p>0.9999$
Iout (nA)	$\begin{gathered} 1.3 \\ \pm 0.6 \end{gathered}$	$\begin{gathered} 3.9 \\ \pm 2.3 \end{gathered}$	$\begin{gathered} 4.4 \\ \pm 2.0 \end{gathered}$	$\begin{gathered} 3.6 \\ \pm 3.1 \end{gathered}$	$\begin{gathered} 4.0 \\ \pm 1.9 \end{gathered}$	$\begin{aligned} & \text { Kruskal-Wallis test: } \mathrm{p}<0.0001 \\ & \text { Dunn's multiple comparisons } \\ & \text { test: } P 2-5 \text { vs. } P 10-15: p<0.0001 \\ & P 2-5 \text { vs. } P 20-25: p<0.0001 \\ & P 2-5 \text { vs. } P 50-56: p=0.0378 \\ & P 2-5 \text { vs. } P>150: p<0.0001 \\ & P 10-15 \text { vs. } P 20-25: p>0.9999 \end{aligned}$

Supplementary Fig. 1 Development of voltage-activated currents. A. Typical inward current (ln) of P2-5 neurons (black) and P50-56 neurons (green) upon depolarization $(-70 \mathrm{mV}$ to $-40 \mathrm{mV})$. Peak $l_{\text {in }}$ is highlighted by arrowheads. B. Current - voltage relation of peak \ln elicited by depolarizing steps (500 ms) of increasing voltage (from -90 mV to +20 mV , holding potential: -70 mV). C. Maximal amplitude of \ln.
D. Inward current half-maximal activation $\left(\ln _{n} V_{\text {nati }}\right.$. E. Fractional activation of \ln for different age groups. Note the smaller voltage sensitivity at P2-5. F. Relation between amplitude of peak \ln and $\ln _{\ln } V_{\text {nat, }}$, samples are color coded as in panel B. G.

Current - voltage relation of outward currents elicited by depolarizing voltage steps $(500 \mathrm{~ms})$ of increasing amplitude (from -90 mV to +20 mV , holding potential: -70 $\mathrm{mV})$. Note reduced amplitude and voltage dependence at P2-5. ** $p<0.01$; P2-5: n $=21 ; P 10-15: n=19 ; P 20-25: n=14 ; P 50-56: n=15 ; P>150: n=13$.

