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Abstract: Fetal membrane dysfunction in response to oxidative stress (OS) is associated with adverse
pregnancy outcomes. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is one of the regulators of
innate OS response. This study evaluated changes in Nrf2 expression and its downstream targets
heme oxygenase (HO-1) and peroxisome proliferator-activated receptor gamma (PPARγ) in fetal
membranes during OS and infection in vitro. Furthermore, we tested the roles of sulforaphane (SFN;
an extract from cruciferous vegetables) and trigonelline (TRN; an aromatic compound in coffee)
in regulating Nrf2 and its targets. Fetal membranes (n = 6) collected at term were placed in an
organ explant system were treated with water-soluble cigarette smoke extract (CSE), an OS inducer
(1:10), and lipopolysaccharide (LPS; 100 ng/mL). Nrf2 expression, expression, its enhancement by
sulforaphane (SFN, 10 µM/mL) and down regulation by TRN (10uM/mL) was determined by western
blots. Expression of Nrf2 response elements PPARγ (western) heme oxygenase (HO-1), and IL-6 were
quantified by ELISA. CSE and LPS treatment of fetal membranes increased nrf2, but reduced HO-1 and
PPARγ and increased IL-6. Co-treatment of SFN, but not with TRN, with CSE and LPS increased Nrf2
substantially, as well as increased HO-1 and PPARγ and reduced IL-6 expression. Risk factor-induced
Nrf2 increase is insufficient to generate an antioxidant response in fetal membranes. Sulforaphane may
enhance innate antioxidant and anti-inflammatory capacity by increasing NRF-2 expression.

Keywords: antioxidant; sulforaphane; coffee; green vegetables; preterm birth; nutrition; PPARγ

1. Introduction

The World Health Organization recently estimated the global preterm birth rate for singleton
gestation at 10.5% [1]. The preterm birth rate has increased in the United States by as much as
30% during the last 25 years despite advances in medical care [2]. The most common phenotype of
preterm birth is spontaneous preterm birth (PTB) of unknown etiology. Approximately 60% PTB are
spontaneous, and 30–40% of these are preceded by preterm prelabor rupture of the fetal membranes
(pPROM) [2–4]. Approximately 50% of PTB and 70% of pPROM are associated with microbial invasion
of the amniotic cavity (MIAC) and intraamniotic inflammation (IAI) [5–7]. Inflammatory changes
that precede PTB, such as leukocyte activation, increased inflammatory cytokines and chemokines,
and collagenolysis of the extracellular matrix by metalloproteinases (MMPs), resulting in loss of
membrane structural integrity, myometrial activation, and cervical ripening, are well documented
by experimental and clinical studies [8–11]. We have reported the heterogeneity in the inflammatory
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response (cytokines/chemokines, toll-like-receptors, and their interactions) associated with IAI and
PTB risk factors [12–14].

Recent literature has indicated oxidative stress (OS) and the OS-associated damage caused by
the generation of reactive oxygen species (ROS), an inseparable component of inflammation, can also
contribute to PTB and pPROM pathology-even in the absence of infection [15,16]. A healthy pregnancy
is characterized by a stable balance between ROS and antioxidants [15,17–19]. An imbalance in the
redox status is a pathologic feature underlying many pregnancy complications [20–23]. Risk factors
associated with PTB and pPROM can generate superoxide, hydrogen peroxide, hydroxyl ions, and nitric
oxide that can damage collagen matrix and consume antioxidant defenses. These events can trigger
uterine contractions (labor), leading to PTB [24,25].

Clinical trials using supplements that reduce OS and improve pregnancy outcome have had
minimal success [26–31]. Antioxidant therapy has also not been successful for PTB and pPROM
prevention, and there is little evidence to justify their clinical use for these indications [27].
Antioxidants typically target an OS pathway or a specific free radical that may vary among OS
risk factors like infection, smoking, poor nutrition or obesity. The approach of administering
antioxidants after diagnosis of preterm labor or pPROM is unlikely to delay delivery unless it can stop
pathophysiologic pathways of labor induced by OS damage [24]. This suggests that there is a need for
a better understanding of the natural response to OS and how its manipulation can affect pregnancy
outcome [32–37].

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a leucine zipper transcription factor that
regulates multitudes of antioxidant responses in mammalian cells. Nrf2 maintains intracellular
homeostasis in response to ROS through the generation of antioxidants hemeoxygenase-1 (HO-1) and
carbon monoxide (CO) in conjunction with anti-inflammatory nuclear receptors like peroxisome
proliferator-activated receptor gamma (PPARγ) [31–40]. Normally, Nrf2 is maintained in the
cytoplasm bound tightly to Kelch-like ECH-associated protein 1(keap-1) [41–44]. ROS causes Nrf2
to dissociate from keap-1, translocate to the nucleus, and transcribe genes that help restore oxidative
balance [32,35,42–46]. Nrf2 null mice show impaired induction of these antioxidant defenses and greater
oxidative damage and emphysema after exposure to cigarette smoke [38]. Activation of Nrf2-regulated
pathways may be an important part of the natural response to environmental exposures that maintain
pregnancy through induction of hemeoxygenase-1 that is upregulated by Nrf2 and makes carbon
monoxide (CO), a gas with potent anti-inflammatory properties. Administration of CO significantly
reduced adverse outcomes in a mouse model of infection-mediated PTB [39,40]. In many cases, OS is
overwhelming, and nrf2 increase is insufficient to produce redox imbalance. We postulate that
substantial enhancement of Nrf2 and its downstream targets HO-1 and anti-inflammatory signaler,
PPARγ, may be a better approach to improve pregnancy outcome.

Dietary changes may be the best approach to manipulation of Nrf2 expression because they are
generally safe enough to give to all pregnant women and would not require identifying women at
elevated risk for pPROM and preterm birth. One compound, Sulforaphane (SFN), has been widely
investigated in this capacity as an anti-inflammatory mediator. It is an isothiocyanate released from
cruciferous vegetables (broccoli, cabbages, and brussels sprouts) upon digestion and is a potent booster
of the Nrf2 response in the cell [41–43]. Trigonelline (TRN) an alkaloid present in coffee and green coffee
beans, has also been reported to affect Nrf2 expression. During the roasting process of coffee beans,
trigonelline changes into N-methylpyridinium and nicotinic acid as its major products, which makes
it a useful index of the degree of roasting [44–46] TRN, however, has been reported to reduce Nrf2
expression and activation. Numerous studies have examined the potential association of high coffee
consumption with increased risk for PTB [47], but results have been confliction perhaps. This may be
due to their focus on total caffeine consumption and reliance on food frequency questionnaires [48–51].
We hypothesize that SFN and TRN have opposite effects on the innate antioxidant/anti-inflammatory
environment to help fetal growth or in response to OS and inflammation-inducing risks during
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pregnancy. To test this, we used human fetal membrane explant cultures and tested the role of SFN
and TRN in regulating endogenous antioxidant response mediated through Nrf2.

2. Results

Western blots (Nrf2 and PPARγ) and ELISA (HO-1 and IL-6) were used to determine changes
in expression and or production of various analytes in response to treatments with CSE and LPS
either alone or in combination with SFN and TRN. Western blot data are presented as arbitrary
units, and ELISA data are reported as ng/mL (HO-1) or pg/mL (IL-6 and IL-8). All experiments were
performed using fetal membrane tissues from 6 different subjects.

2.1. CSE and LPS Increase Nrf2 Expressions in Human Fetal Membranes

Western blot analysis was used to determine the effect of CSE and LPS on Nrf2 expression in
human fetal membranes tissue explants in culture. Nuclear fractions were used for determining Nrf2
expression. Both LPS and CSE increased Nrf2 expression after 6 h of exposure. Nrf2 expression was
significantly higher after CSE treatment (1.018 ± 0.5627) compared to untreated controls maintained in
the same tissue culture conditions (0.3604 ± 0.2267; p < 0.05). Although increased, significance was not
reached after LPS treatment (0.5311 ± 0.2663) compared to control.

2.2. SFN Co-Treatment Augments CSE and LPS Response and Increase Nrf2

We next examined augmentation of Nrf2 expression by SFN treatment. As shown in Figure 1A,
co-treatment of SFN with CSE significantly increased Nrf2 expression in the fetal membrane cells
(SFN+CSE—1.941 ± 0.9195; CSE—1.018 ± 0.5627; p < 0.05). SFN alone did not change Nrf2 expression
in tissue explants compared to controls (0.7187 ± 0.2383 vs. 0.3604 ± 0.2267). Similarly, co-treatment
of SFN with LPS significantly increased Nrf2 expression (1.927 ± 1.386) compared to either LPS
(0.5311 ± 0.2663), SFN alone (0.5807 ± 0.3667 or control (0.3763 ± 0.2497) (p < 0.05 for all) (Figure 1B).
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CSE+SFN. (B): Fetal membranes treated with SFN, lipopolysaccharide (LPS) and LPS+SFN. (C): Fetal 
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Figure 1. Representative western blots of Nrf2 (100kDa) and PPARγ (53 kDa) expressions in fetal
membranes and graphical representation of data (n = 6) after 6 h of treatment with various factors.;
* p < 0.05. (A): Fetal membranes treated with sulforaphane (SFN), cigarette smoke extract (CSE)
and CSE+SFN. (B): Fetal membranes treated with SFN, lipopolysaccharide (LPS) and LPS+SFN.
(C): Fetal membranes treated with SFN, CSE and CSE+SFN. (D): Fetal membranes treated with SFN,
LPS and LPS+SFN.
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2.3. SFN Co-Treatment with CSE or LPS Increases PPARγ Expression

PPARγ is a downstream responder and activator of an anti-inflammatory response in the cell.
We tested the effect of SFN on PPARγ expression by western blot in cytosolic fractions. As shown
in Figure 1C, CSE produced an approximately 50% reduction in PPARγ expression (0.3645 ± 0.2892)
compared to control (0.6738 ± 0.2643) although this reduction was statistically not significant.
Co-treatment with SFN produced a four-fold increase in PPARγ expression (1.336 ± 0.3745; p < 0.001)
compared to CSE. Similarly, LPS did not cause any change in PPARγ expression (0.6294± 0.2779; p = ns).
However, PPARγ expression was significantly increased after co-treatment with SFN (1.376 ± 0.2974;
p < 0.05) (Figure 1D).

2.4. TRN Co-Treatment with CSE and LPS Did Not Change Nrf2 and PPARγ Expressions

NRF2 and PPARγ expressions were evaluated after co-treatment with TRN. Co-treatment with
CSE did not result in a significant change in Nrf2 expression in fetal membrane explants (Figure 2A).
Similarly, LPS+TRN also did not change Nrf2 expression levels (Figure 2B). Similar results were
obtained for PPARγ where no significant difference was observed whether TRN or alone or when
co-treated with either CSE or LPS (Figure 2C,D).
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2.5. Endogenous HO-1 Levels are Increased by SFN Co-Treatment of CSE and LPS 

To determine the effect of Nrf2 increase associated changes in the OS response elements, we 
measured tissue levels of HO-1. As shown in Figure 3A, reduction of HO-1 after CSE treatment was 
not significant compared to control (458.7 ± 151.2 vs. 531.3 ± 100.7); however, co-treatment of CSE 
with SFN significantly increased HO-1 levels (830.6 ± 160.5; p < 0.01). We also noticed that SFN alone 

Figure 2. Representative western blots of Nrf2 (100 kDa) and PPARγ (53 kDa) expressions in fetal
membranes and its graphical representation of data (n = 6) after 6 h of treatment with various factors;
* p < 0.05. (A): Fetal membranes treated with trigonelline (TRN), cigarette smoke extract (CSE)
and CSE+TRN. (B): Fetal membranes treated with trigonelline (TRN), lipopolysaccharide (LPS) and
LPS+TRN. (C): Fetal membranes treated with TRN, CSE and CSE+TRN. (D): Fetal membranes treated
with TRN, LPS and LPS+TRN.

2.5. Endogenous HO-1 Levels are Increased by SFN Co-Treatment of CSE and LPS

To determine the effect of Nrf2 increase associated changes in the OS response elements,
we measured tissue levels of HO-1. As shown in Figure 3A, reduction of HO-1 after CSE treatment
was not significant compared to control (458.7 ± 151.2 vs. 531.3 ± 100.7); however, co-treatment of CSE
with SFN significantly increased HO-1 levels (830.6 ± 160.5; p < 0.01). We also noticed that SFN alone
increased HO-1 (703.7 ± 157.9) compared to either control or CSE, but results did not reach statistical
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significance. This could be due to sample size. Similarly, LPS (along with SFN) significantly increased
HO-1 level (743.7 ± 83.97 vs 512.8 ± 51.20; p < 0.05) in fetal membranes. TRN treatment had no effect
on HO-1 levels when co-treated with either CSE or LPS (Figure 3C,D).
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Figure 3. HO-1 levels in fetal membrane tissue homogenates determined by ELISA. * p < 0.05.
(A): Fetal membranes treated with sulforaphane (SFN), cigarette smoke extract (CSE) and CSE+SFN.
(B): Fetal membranes treated with SFN, lipopolysaccharide (LPS) and LPS+SFN. (C): Fetal membranes
treated with trigonelline (TRN), CSE and CSE+TRN. (D). Fetal membranes treated with TRN, LPS and
LPS+TRN.

2.6. SFN Reduces IL-6 Release Induced by Both CSE and LPS

As expected and confirming our prior studies, both CSE and LPS treatments increased the release
of IL-6 (CSE-12379± 4594; LPS- 67918± 7513; p < 0.05 for both) from fetal membrane explants compared
to controls (9016 ± 1164). Co-treatment of SFN with CSE and LPS reduced IL-6 to 5479 ± 3664 and
24613 ± 8890, respectively; both p < 0.05) (Figure 4A,B). TRN treatment had no effect on either CSE
induced IL-6 production (Figure 4C); however, although results did not reach statistical significane,
significant, co-treatment with LPS showed a 50% reduction in IL-6 (Figure 4D).
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Figure 4. Interleukin (IL)-6 levels in culture supernatant from fetal membrane tissue homogenates
determined by ELISA. * p < 0.05. (A): Fetal membranes treated with sulforaphane (SFN), cigarette
smoke extract (CSE) and CSE+SFN. (B): Fetal membranes treated with SFN, lipopolysaccharide
(LPS) and LPS+SFN. (C): Fetal membranes treated with trigonelline (TRN), CSE and CSE+TRN.
(D). Fetal membranes treated with TRN, LPS and LPS+TRN.

3. Discussion

In this study, we evaluated the effects of Nrf2 activator, Sulforaphane (SFN) and inhibitor,
Trigonelline (TRN), on Nrf2-driven antioxidant pathways in human fetal membrane explants exposed
to oxidative stress by infection or cigarette smoke components. Principle findings of our studies are:
(1) OS inducer, CSE, and proxy for infection, LPS, increased Nrf2 expression and IL-6 production by fetal
membranes but decreased intracellular levels of PPARγ and HO-1; (2) SFN alone had no effect on Nrf2
expression; (3) Co-treatment of SFN with both CSE and LPS increased Nrf2, PPARγ, HO-1 and reduced
IL-6; and (4) TRN had no detectible effects on fetal membrane Nrf2 expression or its downstream
targets. This suggests that SFN can partly minimize OS and inflammation in fetal membranes and
improve the overall antioxidant capacity of fetal membranes and that the pathway is refractory to
modulation by TRN. These findings are summarized in Figure 5.
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Figure 5. Summary of data: A balanced oxidative stress (OS) and inflammation work cooperatively
during gestation to effectively remodel tissues and maintain pregnancy. Sterile (non-infectious) and
infectious risk factors can override this balanced activity and cause increased OS and inflammation
to cause adverse pregnancy outcomes such as PTB or pPROM. ↓, down regulation; ↑, upregulation;
↔, no change. (A): Oxidative stress (OS) inducer CSE and LPS can increase or do not change Nrf2
expression in fetal membranes. Stimulations; however, result in decreased antioxidant HO-1 and
anti-inflammatory PPARγ levels and an increase in IL-6. In summary, CSE and LPS increases OS and
inflammation in fetal membranes. (B). Co-treatment with sulforaphane (SFN) leads to a substantial
increase in Nrf2 (thick up arrow) and subsequent increase in HO-1, PPARγ and decrease in IL-6
suggesting an overall decrease in OS leading to inflammation in fetal membranes. (C). Co-treatment
with TRN leads to no change in Nrf2, HO-1, PPARγ and IL-6 suggesting that no impact on overall
OS and inflammation (yellow arrow) in fetal membranes. This model depicts changes observed
in this study, and it may not indicate a linear relationship between tested markers in response to
stimulants used.

Nrf2 is a critical factor that provides a multi-level response to OS in a cell. Under basal conditions,
Nrf2 is sequestered in the cytoplasm, bound to the Kelch-like ECH-associated protein 1 (Keap1) in an
inactive state. Upon exposure to ROS, it becomes activated and translocate to the nucleus where it binds
to specific gene promoters of the antioxidant response elements (ARE) that include phase II detoxifying
enzymes like quinone oxidoreductase and antioxidant enzymes [52,53]. HO-1 is one of the key genes
that is transcribed by Nrf2 binding [54,55]. Nrf2-mediated HO-1 induction decreases OS damage
induced by various pro-oxidants, catalyzing the degradation of heme to biliverdin, iron, and carbon
monoxide (CO), all of which exert anti-inflammatory and antioxidant functions [55,56]. Mice deficient
in HO-1 have increased rates of fetal wastage, low birth weight and preeclampsia—some of which can
be alleviated by the administration of CO [57].

PPARs are ligand-activated transcription factors. PPARs function as a heterodimer in association
with co-activator complex that binds to the promoter region of specific genes that contain DNA sequence
termed peroxisome proliferators response elements (PPREs) [58]. This binding can cause activation or
down regulation of various genes. The role of PPARγ in fetal membrane anti-inflammatory response
has been well reported [59,60]. Lappas et al. have shown that the down regulation of PPARγ and
activation of NF-κB is a pathway for inflammatory activation in reproductive tissues preparing them
for parturition [61,62]. Activators of PPARγ, including Sulfasalazine and PGJ2, have been shown
to prevent preterm birth in animal models [63]. Therefore, the regulation of PPARγ is critical for
controlling inflammation that contributes to PTB and pPROM. IL-6 is well-established biomarker of
infection and inflammation during pregnancy. Although it is not a good indicator of any exposure risk
or pathology, it likely plays roles in neurodevelopment disorders as offspring of mice that received a
single injection of IL-6 during pregnancy have autistic-like behaviors. Both CSE and LPS increased its
production, and SFN co-treatment reduced IL-6—indicating downregulation of an overall inflammatory
process. This suggests that SFN may help reduce the consequences of exposure to inducers of OS
such as smoking and infection.
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Differential expression of Nrf2 in human fetal membranes was first reported by Martha Lappas’
group [64] where they reported decreased Nrf2 mRNA and nuclear protein expressions after term
labor and delivery but no change in PTB. Silencing of Nrf2 was associated with increased expression
of inflammatory cytokines in primary amnion cells [64]. In this report, labor (a condition associated
with OS) showed a decrease in Nrf2, whereas in our in vitro explant models (term not in labor)
Nrf2 was slightly increased in response to CSE-induced OS. As shown, this effect was insufficient to
minimize OS or inflammation without SFN supplementation. Although the net effect—increase in
inflammation and OS—was similar in both studies, OS at term labor, massive levels of senescence
and other endocrine and paracrine factors not represented in our in vitro model may contributing to
an overall decrease in Nrf2. This could be a limitation of in vitro models. Cellular level differences
(amnion, chorion, and mesenchymal cells), if any, is also not investigated in this study, and we present
an overall tissue level change. However, a study by Chigusa et al. using amnion mesenchymal cell has
shown activation of Nrf2 inhibited thrombin-induced inflammatory mediator release suggesting that
cellular components provide supporting evidence to what we have observed at the tissue level [65].

A recent study by Zhang et al. examined the role of Keap-1/Nrf2 signaling pathway activation
by OS in membranes from preterm birth following preterm PROM and rupture of membranes at
term [66]. This study reported increased ROS levels and decreased antioxidant enzymes in both
pPROM and term spontaneous rupture groups that were mechanistically associated with Nrf2/Kaep
mediated signaling [66]. Feng et al. reported higher levels of Nrf2 and HO-1 levels in placental
specimens from preeclampsia [56]. Higher levels of Nrf2 and HO-1 levels was also associated with
increased OS in placenta. Our studies confirm these reports, and we provide additional data to
show that supplementation of Nrf2 enhancers—such as dietary supplements like SFN or consuming
cruciferous vegetables diet during pregnancy, may enhance endogenous Nrf2 levels to minimize
OS and inflammation. Sulforaphane can also interact with Nrf2/Keap1 complex and prevent the
ubiquitination of Nrf2 by modification of cysteine residues in Keap1. McMahon et al. have reported
that sulforaphane blocks proteasome-mediated degradation and stabilizes Nrf2 [67,68].

OS occurs when the balance between ROS and antioxidant levels is disrupted to favor excessive
ROS [69]. OS can produce a wide spectrum of genetic, metabolic, and cellular consequences because
ROS can have detrimental effects on lipids, proteins and nucleic acids, disrupting their expression,
production structure, and function [16,17,70,71]. The resulting damage leads to activation of various
pathways that can determine cell fate like senescence, apoptosis and necrosis [24,72]. Clinical trials
are often conducted under the assumption that OS is an underlying pathology and that simply
increasing antioxidants will improve the outcome. More likely, it is an inability for the body to
respond to OS caused by various sources that are contributing to adverse pregnancy outcomes.
A better understanding of OS-related responses and the molecules controlling OS-related events
that result in adverse pregnancy outcome may help design better clinical trials and therapies that
can address 1) OS-inducing risk factors, 2) types of OS response, and 3) exploitation of the body’s
natural mechanisms for controlling OS. Regulation of OS is essential to restrict inflammatory uterotonic
pathways, and identification of the regulatory center for OS response is even more important. To note,
changes observed in the expression and or release of markers in response to treatments provide support
association between pro or antioxidant properties and Nrf2, but they are not mechanistically proven in
our study.

Regulation of inflammation and OS contributing to PTB and pPROM pathways require enhancement
of overall antioxidant and anti-inflammatory status of the intrauterine tissues. Consumption easily
available cruciferous vegetables, a rich source of SFN, to enhance cellular antioxidant capacities can be
considered as a simple, inexpensive, and adequate approach to maintain redox balance. SFN supplements
are already sold over the counter as a nutritional supplement and could be administered the same
way prenatal vitamins are now to reduce the risk of some adverse pregnancy outcomes. Although we
hypothesized that TRN, an ingredient of coffee, would aggravate inflammatory response and reduce the
antioxidant capacity of cells, we found no effects of this substance on fetal membranes. This may help
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health care providers make better recommendations about the consumption of one of the worlds’ most
popular drinks. In summary, we conclude that up regulation Nrf2 through nutraceutical supplementation
may be an ideal and cost-effective approach to reduce the risk of both OS and inflammation-induced
adverse pregnancy outcomes.

4. Materials and Methods

4.1. IRB Ethics Committee Approval Statement

Placentas from cesarean sections for term normal pregnancies (not in labor) were collected from
UTMB’s John Sealy Hospital in Galveston, TX after release for disposal by the attending surgeon.
The study team had no access to personal health information and did not interact with the subjects at
any time. Therefore, the project was determined not to be human subjects research under UTMB IRB
in compliance with CFR 45 Part 46. Guidelines.

4.2. Tissue-Culture of Normal Term Fetal Membranes

Placentas obtained from elective repeat Cesarean sections at term (>37 weeks of gestation) prior to
the onset of labor (n = 6) and taken to the laboratory for immediate processing. The fetal membranes
were separated from the remainder of the placenta, and the mid-segment portion of the fetal membranes
were chosen to avoid any confounding cell population from the placental and or cervical zones in
our study. This segment was cleaned with normal saline, removing all visible blood, blood clots and
decidua. Cotton gauze soaked in normal saline (pH 7.4) was used to further clean the membrane.
Sections were taken from the cleaned fetal membrane for further analysis. Fetal membranes were cut
into 6 mm-circles using a biopsy punch and placed in a tissue culture system [73,74]. Tissue biopsies
were placed in a Falcon cell culture plate containing 400 µl Dulbecco’s Modified Eagle’s Medium:
F12 Ham’s mixture. Media contained 15% (v/v) heat-inactivated fetal bovine serum (FBS), 1% (v/v)
glutamine solution, 1% (v) penicillin/streptomycin solution and 1µl/mL amphotericin B. Cultures were
incubated at 37 ◦C, 5% CO2 for 48 h.

4.3. Water-Soluble Cigarette Smoke Extract (CSE) Preparation and Stimulation of the Fetal Membranes with
CSE and LPS

After a preincubation period of 48 h at 37 ◦C in an atmosphere of 5% CO2, membranes were
CSE-stimulated for 6 h. CSE were prepared freshly by bubbling smoke that was drawn from a
single lit commercial cigarette that represented high tar through 25 mL of tissue culture medium
(DMEM: F12 Ham mixture with antimicrobial agents) [33–35]. A 1:10 dilution of CSE media was
used for experiments. Additional tissue samples were also treated with LPS (100 ng/mL) for 6 h.
Tissue samples from CSE-stimulated cultures and unstimulated control, as well as the media were
collected, frozen, and stored at −80◦C until processing.

4.4. Treatment with SFN and TRN

Fetal membranes were treated with SFN alone (10 µM/mL) (Enzo #ALX-350-230-M010 Enzo Life
Sciences, Inc., Farmingdale, NY, USA) or co-treated with SFN along with CSE and LPS for 6 h to
document changes associated with Nrf2 and related markers (PPARγ and (HO-1). For TRN treatment,
100mM stock of TRN was prepared by combining 100mg Trigonelline with 729 µL DMSO then diluting
10 µL of this solution in 90 uL media. Fetal membrane explants were exposed to final concentrations of
10 µM of TRN alone or in combination with CSE or 100 ng/mL LPS for 6 h.

4.5. Western Blot Analysis for Nrf2 and PPARγ

Protein from nuclear fractions was used for expression characteristics of NRF2, and cytosolic
fractions were used for PPARγ by western blot (WB). Nuclear and cytosolic extractions from explants
were performed using the kit instructions (NE-PER cat #78833 from ThermoFisher Scientific, Waltham,
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MA, USA). Briefly, explants were homogenized using a Dounce homogenizer (Fisher Scientific, Atlanta,
GA, USA) in the provided CER I buffer containing freshly added protease inhibitors. The homogenates
were then vortexed and incubated on ice for 10 min. Cold CER II buffer was then added to the tube,
and the homogenates were vortexed for 5 s and incubated on ice for 1 min followed by centrifugation
at 16,000× g for 5 min. The supernatant containing the cytoplasmic extracts were removed and stored
on ice. The pellets containing the nuclei were resuspended in cold NER buffer containing freshly added
protease inhibitors, and vortex vigorously on and off for 40 min. The tubes were then centrifuged at
16,000× g for 10 min, and the supernatants containing the nuclear fraction were transferred into new
tubes and kept on ice. Protein concentrations were estimated in both cytosolic and nuclear fractions
(BCA Protein Assay Kit, Thermo Scientific, Waltham, MA, USA) and 20ug of protein was used for each
sample to run the western gels as described previously [32]. Immunoreactive proteins were visualized
using chemiluminescence reagents ECL WB detection system (Amersham Piscataway, NJ, USA).
The anti-human and anti-mouse antibodies used for WBs were as follows: Nrf2 (1:1000, ab62352,
Abcam, Cambridge, UK), PPARγ (1:1000,ab19481, Abcam, Cambridge, UK), nuclear protein Histone
(D1H2 1:1000, Rabbit mAb, Cell Signaling Technology Danvers, MA, USA) and β-actin (1:15,000,
Sigma- Aldrich, St. Louis, MO, USA). The relative levels of the proteins in the specific bands were
normalized with either Histone (for Nrf2) or β-actin (for PPARγ) expressions in the same samples,
and expressions were densitometrically determined using the Bio-Rad-Image Lab software (version 6.0,
Bio-Rad, Hercules, CA, USA).

4.6. HO-1 ELISA

Tissue concentration of HO-1 was quantitated using ELISA reagents purchased from Enzo life
sciences (ADI-EKS-800 Enzo Life Sciences Farmingdale, NY, NY, USA). Explants were homogenized
using the extraction reagent provided with the kit. Protein determination was performed using the
standard BCA method. Standards and samples were prepared according to the kit protocol and
incubated on the immunoassay plate for 30 min. Wells were then washed six times, and anti-human
HO-1 antibody was added to each well, and the plate was further incubated for 1 h. The plate was
again washed, and the included anti-rabbit IgG: HRP conjugate was added to each well, and the plate
was incubated for 30 min. The plate was washed and TMB substrate was added for color development.
The reaction was stopped after 10 min, and absorbance was read at 450nm. A standard curve was
used to determine the HO-1 concentration in the samples. The results are documented in ng/mL.
The sensitivity of the kit has been determined to be 0.78 ng/mL. The intra-assay coefficient of variation
has been determined to be <10%. The inter-assay coefficient of variation has been determined to be
<10%. This kit is specific for human HO-1 and does not cross-react with human HO-2 or HO-3.

4.7. Luminex Assay to Determine Cytokine Concentration in Culture Supernatants

Culture media samples collected after treatments were assayed for IL-6 using MILLIPLEX
Human Cytokine assay (Millipore, Burlington, MA, USA), following the manufacturer’s protocol.
Standard curves were developed using duplicate samples of known-quantity recombinant proteins
that were provided by the manufacturer. Sample concentrations were determined by relating the
absorbance of the samples to the standard curve using linear regression analysis. Data are adjusted to
total protein concentrations.

4.8. Statistical Analysis

Data were normalized to each subject, and potential differences between treatments were analyzed
using ANOVA followed by Tukey’s post-test using GraphPad (Prism 8, San Diego, CA, USA).
Results where p ≤ 0.05 were considered significant and are presented as mean ± SEM. Data will be
made available upon request.
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