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Abstract: Lung cancer is the largest cause of cancer-induced deaths. Non-small cell lung cancer
(NSCLC) is the most frequently observed subtype of lung cancer. Although recent studies have
provided many therapeutic options, there is still a need for effective and safe treatments. This paper
reports the combined effects of cinnamaldehyde (CNM), a flavonoid from cinnamon, together with
hyperthermia, a therapeutic option for cancer treatment, on the A549 NSCLC cell line. A hyperthermia
treatment of 43 ◦C potentiated the cytotoxicity of CNM in A549 cells. This was attributed to an
increase in the apoptosis markers and suppression of the survival/protective factors, as confirmed by
Western blot assays. Flow cytometry supported this result because the apoptotic profile, cell health
profile, and cell cycle profile were regulated by CNM and hyperthermia combination therapy. The
changes in reactive oxygen species (ROS) and its downstream target pathway, mitogen-activated
protein kinases (MAPK), were evaluated. The CNM and hyperthermia combination increased the
generation of ROS and MAPK phosphorylation. N-acetylcysteine (NAC), a ROS inhibitor, abolished
the apoptotic events caused by CNM and hyperthermia co-treatment, suggesting that the cytotoxic
effect was dependent of ROS signaling. Therefore, we suggest CNM and hyperthermia combination
as an effective therapeutic option for the NSCLC treatment.

Keywords: non-small cell lung cancer; cinnamaldehyde; hyperthermia therapy; synergy; apoptosis;
reactive oxygen species; mitogen-activated protein kinase

1. Introduction

Cancer is one of the most crucial health issues worldwide. Among the 9.6 million deaths from
cancer, lung cancer accounts for approximately 20% of global cancer mortality [1]. Approximately
80–85% of lung cancer patients express a histological subtype known as non-small cell lung cancer
(NSCLC) [2]. Progress in treating this fatal disease has been promising over the past 20 years, but
the majority of options are still limited to cytotoxic chemotherapy, despite side effects, and drug
resistance [3].

Therefore, natural products have attracted interest as an alternative therapy for NSCLC.
Cinnamaldehyde (CNM), the main ingredient of cinnamon, is a widely used flavoring agent [4].
Several studies have reported the beneficial effects of CNM in various types of cancers, including
leukemia [5], melanoma [6], colorectal cancer [7], and lung cancer [8,9].
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Hyperthermia is another potential method that may trigger cancer cell death. High-temperature
stimulation leads to several physiological responses, including changes in the membrane permeability
or cytoskeleton system, alteration in macromolecule synthesis or intracellular signaling, and inhibition
of DNA repair [10]. In lung cancer, hyperthermia treatment induces cell death via cytoskeletal
alteration [11], an increase in caspase-3-dependent apoptosis [12], or the induction of reactive oxygen
species-related autophagy [13]. In addition, the effects of gemicitabine [14], paclitaxel/carboplatin [15],
doxorubicin [16], cisplatin [17], or even radiotherapy [18] can be increased when combined with
hyperthermia. Moreover, many studies of a combination of hyperthermia with natural products, such
as beta-lapachon [19], Rhizoma paridis [20], and β-elemene [21], have been carried out to show the
beneficial use of nature-derived agents when combined with hyperthermia. To date, there are no reports
on the combination treatment of hyperthermia with CNM, a well-known nature-derived material with
anti-cancerous effects, in NSCLC. This study evaluated the synergism between CNM and hyperthermia
treatment in the NSCLC cell line, A549 cells, and investigated the underlying mechanisms.

2. Results

2.1. Combination Therapy of CNM and Hyperthermia Synergistically Inhibits Cell Proliferation of A549 Cells

First, the anti-proliferative effects of CNM (Figure 1) and hyperthermia co-treatment were
evaluated using an MTT assay. CNM treatment in normothermia (37 ◦C) or hyperthermia (42 and
43 ◦C) condition showed a decrease in the cell viability of A549 cells. In particular, a co-treatment
with hyperthermia of 42 and 43 ◦C inhibited cell proliferation compared to that at 37 ◦C (Figure 2a).
We calculated the combination index using the CompuSyn software to find out CNM combined
with hyperthermia (42 and 43 ◦C) showed combination indexes lower than 1 (Figure 2b), which
indicates synergistic combination. Crystal violet staining of viable cells indicated a dramatic decrease
in colony formation in A549 cells treated with a combination of CNM and 43 ◦C hyperthermia,
while hyperthermia treatment or CNM treatment in normothermia conditions resulted in a moderate
decrease (Figure 2c). Visual observation of the cell morphology also showed a decrease in the cell
numbers (Figure 2d), confirming the anti-proliferative effect of CNM and hyperthermia combination.
Additional wound healing assays verified the inhibition of cell migration by the co-treatment of CNM
and hyperthermia (Figure 2e). Furthermore, the dead cell portion determined by a Trypan blue staining
assay was increased markedly by the co-treatment therapy (Figure 2f).
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Figure 2. Effect of CNM and hyperthermia combination therapy on cell viability in A549 cells. A549 
cells were treated with CNM (0, 150 or 200 μM) with or without hyperthermia and incubated for 24 
h. (a) The cell viability was determined by an MTT assay. ** p < 0.01, *** p < 0.001 vs. 37 °C + 0 μM 
group; †† p < 0.01 vs. 42 °C + 0 μM group; ## p < 0.01, ### p < 0.001 vs. 43 °C + 0 μM group; (b) The 
combination index on cytotoxicity effect was determined using CompuSyn Software; (c) a clonogenic 
assay was performed by staining cells with Crystal violet staining; (d) morphological changes 
reflecting apoptosis were visualized under a regular light microscope (magnification ×100); (e) wound 
healing assays were performed; (f) the live and dead cell portion was determined by Trypan blue 
staining. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. control group; ### p < 0.001 vs. 43 °C + 0 μM group. 

Figure 2. Effect of CNM and hyperthermia combination therapy on cell viability in A549 cells. A549
cells were treated with CNM (0, 150 or 200 µM) with or without hyperthermia and incubated for 24
h. (a) The cell viability was determined by an MTT assay. ** p < 0.01, *** p < 0.001 vs. 37 ◦C + 0 µM
group; †† p < 0.01 vs. 42 ◦C + 0 µM group; ## p < 0.01, ### p < 0.001 vs. 43 ◦C + 0 µM group; (b) The
combination index on cytotoxicity effect was determined using CompuSyn Software; (c) a clonogenic
assay was performed by staining cells with Crystal violet staining; (d) morphological changes reflecting
apoptosis were visualized under a regular light microscope (magnification ×100); (e) wound healing
assays were performed; (f) the live and dead cell portion was determined by Trypan blue staining. * p <

0.05, ** p < 0.01, *** p < 0.001 vs. control group; ### p < 0.001 vs. 43 ◦C + 0 µM group.

2.2. Combination Therapy of CNM and Hyperthermia Increases Apoptosis Markers and Suppresses Survival
Markers in A549 Cells

The expression levels of the factors related to apoptosis, proliferation, metastasis, and angiogenesis
were next examined to verify the action mechanism of CNM and hyperthermia co-treatment. As a
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result, co-treatment with CNM 200 µM and hyperthermia of 43 ◦C induced the cleavage of caspase-3
(Figure 3a), which is the final step in programmed apoptosis [22]. On the other hand, such an effect was
not observed under the 37 ◦C condition. Further proteins in the apoptosis pathway were investigated
by additional Western blot assays. In line with the result of cleaved caspase-3, the level of caspase-9
expression decreased in a dose-dependent manner, but only by the CNM and 43 ◦C hyperthermia
co-treatment (Figure 3a). In addition, the anti-apoptotic members of the B-cell lymphoma (Bcl)-2 family,
Bcl-2, Bcl-xL, and Survivin [23], were also suppressed by the combination treatment of CNM and 43 ◦C
(Figure 3b). Western blot assays were conducted to determine if heat shock protein 70 (HSP70) was
involved in the action of CNM and hyperthermia. The results show that CNM co-treatment reversed
the increase in HSP70 expression in response to hyperthermia (Figure 3c). Moreover, the CNM and
hyperthermia co-treatment regulated the cell cycle while reducing the metastatic potential of A549
cells. This was illustrated by the inhibition of the expression of Cyclin D1, vascular endothelial growth
factor (VEGF), matrix metallopeptidase (MMP)-2 and MMP-9 by the combination of CNM and 43 ◦C
hyperthermia (Figure 3d).
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Figure 3. Effect of CNM and hyperthermia combination therapy on the protein levels of apoptosis and
survival markers in A549 cells. A549 cells were treated with CNM (0, 150 or 200 µM) with or without
hyperthermia and incubated for 24 h. Whole-cell extracts were prepared, then equal concentrations of
lysates were analyzed by Western blot analysis. Protein expression of (a) caspase-3, caspase-9, (b) Bcl-2,
Bcl-xL, Survivin, (c) HSP70, (d) Cyclin D1, VEGF, MMP-2 and MMP-9 was measured using Western
blot assays. β-actin was used as a loading control. Representative blots are shown.
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2.3. Combination of CNM and Hyperthermia Induces Apoptosis by Arresting Cell Cycle in A549 Cells

Cell cycle arrest is closely related to the induction of apoptosis and is frequently used as the
therapeutic target of anti-cancer agents [24]. Flow cytometry analyses were carried out to determine if
cell cycle arrest also occurs in the action mechanism of CNM and hyperthermia combination treatment.
CNM with hyperthermia treatment of 43 ◦C increased the Annexin V-associated apoptotic profile of
A549 cells. The CNM treatment at 37 ◦C increased the rate of apoptosis from 8.97% to 25.24%, but when
combined with hyperthermia, the number of apoptotic cells grew to 46.93% of the total cells (Figure 4a).
In addition, as shown in Figure 4b, when the mitochondrial membrane potential of A549 cells was
measured to determine the changes in the cell health profile, the CNM treatment accompanied by
43 ◦C hyperthermia regulated the dead cell ratio of A549 cells after 24 h to 47.74% of the total cells
compared to either a sole treatment of 43 ◦C hyperthermia (20.24%) or a combination of CNM and 37
◦C normothermia (18.61%). Next, the cell cycle in A549 cells treated with CNM and hyperthermia was
analyzed. The results indicate that cell cycle arrest was induced at the G2/M phase by a co-treatment of
CNM and 43 ◦C hyperthermia (Figure 4c) accompanied with the decrease in Cyclin B1 (Supplementary
Figure S1), a key regulator of cellular mitosis [25].

2.4. Combination Therapy of CNM and Hyperthermia Increases Reactive Oxygen Species (ROS) Production
and Induces Its Downstream Mitogen-Activated Protein Kinase (MAPK) Pathway

ROS signaling is one of the target mechanisms to induce apoptosis in cancer cells that hyperthermia
and several natural products share [26,27]. Therefore, the next goal was to evaluate the role of ROS in
the pro-apoptotic effect from the combination of CNM and hyperthermia treatment. When assessed by
flow cytometry, ROS release was increased significantly by the CNM plus hyperthermia combination
treatment (Figure 5a). The levels of MAPKs phosphorylation, which is an important downstream
pathway of ROS signaling [28], were evaluated by Western blot assays. As shown in Figure 5b,
increases in phosphorylation of all three MAPKs, extracellular signal-regulated kinase (ERK), c-Jun
NH2-terminal kinase (JNK) and p38, along with Akt were observed in A549 cells treated with the CNM
and hyperthermia combination. In particular, the peak of p-ERK was observed at 2 h post-treatment.
Phosphorylation of p38 showed a similar time-dependent pattern as ERK, while p-JNK showed a
gradual increase until 4 h. On the other hand, phosphorylation of Akt showed a time-dependent
increase starting from right after treatment until 6 h post-treatment.

2.5. Apoptotic Effect by Combination Therapy of CNM and Hyperthermia in A549 Cells Is Dependent On
ROS Signaling

The cells were pretreated with N-acetylcysteine (NAC), a free radical scavenger, and thus a ROS
inhibitor, before the combination treatment of CNM and thermal stimulation. As shown in Figure 6a,
the NAC pre-treatment blocked the effects of CNM and 43 ◦C hyperthermia on ROS production.
Furthermore, Annexin V staining indicated that CNM and hyperthermia treatment failed to induce
apoptosis in A549 cells in the presence of NAC, suggesting the key role of ROS in the effects of this
combination treatment (Figure 6b). Western blot analysis showed that when NAC blocked ROS
generation, the effect of CNM plus hyperthermia co-treatment on levels of MAPKs phosphorylation
(Figure 6c) and the cleavage of caspase-3 (Figure 6d) were interrupted.
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Figure 4. Effect of CNM and hyperthermia combination therapy on the apoptosis profile, cell health
profile and cell cycle profile in A549 cells. A549 cells were treated with CNM (0, 200 µM) with or
without hyperthermia and incubated for 2 h. Annexin V and 7-AAD staining was used to detect
apoptosis and then analyzed by a flow cytometer. Flow cytometry analysis on (a) apoptosis profile, (b)
mitochondrial membrane potential profile and (c) cell cycle profile was performed.
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Figure 5. Effect of CNM and hyperthermia combination therapy on reactive oxygen species (ROS)
generation and MAPK pathway in A549 cells. A549 cells were treated with CNM (0 or 200 µM) with
or without hyperthermia and incubated for the indicated time. (a) Flow cytometry analysis on ROS
generation was performed; (b) Protein expressions of p-ERK, ERK, p-JNK, JNK, p-p38, p38, p-Akt and
Akt were measured using western blot assays. Representative blots are shown.
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Figure 6. Effect of CNM and hyperthermia combination therapy on ROS generation, apoptosis markers
and MAPK pathway in ROS-inhibited A549 cells. A549 cells were pre-treated with N-acetylcysteine
(NAC) and then treated with CNM (0 or 200 µM) with or without hyperthermia and incubated for
the indicated time. Flow cytometry analysis on (a) ROS generation and (b) apoptosis profile was
performed. β-actin was used as a loading control. Protein expressions of (c) caspase-3, caspase-9, (d)
p-ERK, ERK, p-JNK, JNK, p-Akt and Akt were measured using Western blot assays. Representative
blots are shown. (−), absence of NAC or CNM; (+), presence of NAC or CNM.

3. Discussion

Lung cancer is the most responsible for cancer-associated death, causing approximately 1.6 million
deaths per year. Although recent progress has been promising, major challenges remain [29]. This
paper suggests a novel approach for NSCLC treatment using a less harmful natural compound, CNM,
together with hyperthermia therapy.

CNM, a component of cinnamon, is considered a promising therapeutic agent for cancer treatment.
Cinnamon is the dried bark of Cinnamomum cassia, used widely as an herbal medicine in traditional
Korean medicine to improve blood circulation [30]. CNM is an organic compound comprising 90% of
the essential oil of cinnamon, giving the scent and flavor [31]. Studies reported the anti-cancer effects of
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CNM in experimental models of cancer [5–9]. This study aimed to verify not only its anti-cancer effect
in NSCLC but also to focus on combination therapy with hyperthermia, another potential treatment
method that has been used to enhance the effects of anti-cancer agents.

Research has shown that a hyperthermal treatment in cancer patients can kill cancer cells and
shrink tumors, while minimally affecting the normal tissues [32]. Although further evidence will be
needed before hyperthermia can be recognized as a standard procedure, some trials have reported
the beneficial effects of hyperthermia therapy for cancer treatment [33,34]. Furthermore, studies
have shown that a combination treatment of hyperthermia with natural products may potentiate
the anti-cancer effects [19–21]. Therefore, this study attempted to verify the combined effects of
hyperthermia and CNM on the A549 NSCLC cell line. The results, including assessments of the
cell viability, morphology, and migration, suggest that the CNM and hyperthermia co-treatment
synergistically inhibited the proliferation of A549 cells (Figure 2).

Apoptosis is considered one of the most important targets for cancer management. The intrinsic
pathway of apoptosis involves the response of the mitochondria. During apoptosis, cytochrome c
is released from the mitochondria and binds with apoptotic protease activating factor-1 and ATP,
then binds to pro-caspase-9 to form an apoptosome complex, which cleaves caspase-9 and in turn
activates the cleavage of caspase-3 [22]. The results show that CNM and hyperthermia synergistically
increased the cleavage of caspase-3 and 9 (Figure 3a), suggesting that the combination treatment
enhanced the induction of apoptosis. Furthermore, intrinsic apoptosis, which is dependent on the
balance between the pro-apoptotic and anti-apoptotic members of the Bcl-2 family members, such
as Bcl-xL and Bcl-2 [22], was also suppressed by CNM and hyperthermia, as shown by the levels of
Survivin, Bcl-xL, and Bcl-2 (Figure 3b). Mitochondrial membrane potential, one of the many indicators
of the cell health profile, has been implicated as being associated in apoptotic cell death [35]. Further
assays on Annexin V expression and mitochondrial membrane potential changes showed that CNM
and hyperthermia co-treatment led to apoptosis of A549 cells (Figure 4a,b).

The eukaryotic cell cycle has four phases: G1, S, G2, and M phases. After DNA replication in the
S phase, the cells continue to grow during the G2 phase and then enter the mitotic M phase, in which
they divide into two daughter cells. A common feature most cancers share is disturbed apoptosis,
which is caused by hyperactivated cell cycles [36]. Cyclin B1 and Cyclin D1 control mitosis, cell
adhesion, and migration within the cell cycle; hence, they are associated with cancer cell development
and metastasis [37]. In NSCLC cells, decrease in Cyclin B1 results in G2 phase cell cycle arrest to
trigger apoptosis [38], whereas Cyclin D1 is also shown to be an important component during the
arrest of the cell cycle [39]. Concomitantly, our results show that combination therapy with CNM and
hyperthermia induced cell cycle arrest in A549 cells (Figure 4c). In addition, the metastatic potential of
A549 cells was suppressed by the combination treatment. VEGF, the key molecule of angiogenesis [40],
and MMP-2 and MMP-9, which are members of the metastasis-regulating MMP family [41], were
decreased significantly by a co-treatment with CMN and hyperthermia (Figure 3d), indicating the
beneficial effects of CNM and hyperthermia co-treatment in the improvement of metastasis.

HSP70 is a ubiquitous chaperone that controls a range of cellular processes, such as protein
folding and maturation [42]. In particular, in response to thermal stress, HSP70 acts to protect cells.
HSP70 also induces oncogenesis, proliferation, migration, and metastasis while suppressing apoptosis,
specifically in cancer [43]. In the present study, while neither the sole normothermia treatment nor
combination with CNM affected HSP70 expression, the hyperthermia treatment led to an increase in
HSP70, suggesting activation of the defense mechanism against heat. However, combination with
CNM inhibited this increase in HSP70, leading to the efficient induction of apoptosis. This suggests
that CNM can potentiate the effect of hyperthermia by suppressing the defense mechanism against
heat (Figure 3c).

The ROS signaling pathway is a widely accepted action mechanism of the apoptotic events in cancer
cells by hyperthermia [10]. ROS are already a promising molecular target for the treatment of cancer [26]
and are novel targets for herbal treatments [27]. Reports from hyperthermic chemotherapy revealed the
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definite involvement of ROS in hyperthermia treatment [44]. Moreover, the synergistic combination of
hyperthermia with chemotherapy agents [45], nutritional support [46,47], or nature-derived materials,
such as baicalin [48] and shikonin [49], involve ROS signaling. Similarly, the present results show
that a co-treatment of CNM with 43 ◦C hyperthermia could also be a novel therapeutic approach
towards NSCLC. Through a combination with CNM and hyperthermia, ROS signaling was induced
in A549 cells, and MAPKs, the downstream targets of ROS, were also increased by the combination
therapy of CNM and hyperthermia (Figure 5). The Akt pathway plays repressive roles in apoptosis
via the canonical pathway [50]. On the other hand, several studies reported that Akt activation does
not necessarily reduce apoptosis, but, in turn, remodels the sensitivity of cancer cells to metabolic
stress [51–53]. In particular, when mitochondrial ROS are involved, Akt acts as the upstream channel
that induces ROS signaling [54]. Moreover, the present results identify increased Akt phosphorylation
along with induced ROS (Figure 5b). An additional study regarding a ROS scavenger work proved that
ROS signaling was necessary for the apoptotic effects of CNM and hyperthermia combination treatment
(Figure 6). These results may provide critical evidence for selecting ROS-targeted combination therapy
of CNM and hyperthermia.

Overall, the results clearly show the apoptotic effect of combination therapy with CNM and
hyperthermia treatment in A549 cells, which is dependent on the increase in ROS. This indicates
the possible use of a combination treatment of CNM and hyperthermia as an effective approach for
NSCLC treatment.

4. Materials and Methods

4.1. Reagents

CNM was purchased from Sigma-Aldrich (St. Louis, MO, USA) and prepared in dimethyl
sulfoxide (DMSO) (Samchun Chem, Seoul, Korea). Anti-caspase-3, anti-heat shock protein (HSP)
70, anti-caspase-8, anti-caspase-9, anti-p-ERK (Thr202/Tyr204), anti-ERK, anti-p-p38 (Thr180/Tyr182),
anti-p38, anti-p-JNK (Thr183/Tyr185), and anti-JNK antibodies were supplied by Cell Signaling
Technology (Danvers, MA, USA). Anti-β-actin, anti-Bcl-2, anti-Bcl-xL, anti-Cyclin D1, anti-VEGF,
anti-MMP-2, and anti-MMP-9 were obtained from Santa Cruz Biotechnology, Inc. (Dallas, TX, USA),
and anti-cleaved caspase antibodies were acquired from GeneTex, Inc. (Irvine, CA, USA).

4.2. Cell Culture

The NSCLC cell line, A549 cells, were obtained from the Korean Cell Line Bank (Seoul, Korea)
and maintained in DMEM medium supplemented with 10% fetal bovine serum (FBS) (Gibco, Grand
Island, NY, USA) and 1% penicillin-strep (Gibco, Grand Island, NY, USA) at 37 ◦C in an incubator with
humidified air containing 5% CO2, as described elsewhere [55].

4.3. Hyperthermia Treatment

The A549 cells were seeded in a 6-well plate (3 × 105 cells/well), suspended in 3 mL of media,
followed by immersion in a temperature-controlled water bath at 37 or 43 ◦C for 30 min. CNM at the
indicated concentrations (150 and 200 µM) was added 60 min before the hyperthermia treatment.

4.4. MTT Assay

An MTT assay was used to evaluate the cell viability after exposure to CNM with hyperthermia.
Briefly, A549 cells were seeded in 96-well plates (1.5 × 104 cells/mL) and allowed to adhere overnight.
Various concentrations of CNM (150 and 200 µM) were added, and the plates were incubated at 37 ◦C
for 1 h in a humidified atmosphere containing 5% CO2. The resulting plates were then immersed in a
temperature-controlled water bath at 37, 42, or 43 ◦C for 30 min. After 48 h of incubation at 37 ◦C, 5%
CO2, an MTT solution (AMRESCO, Solon, OH, USA) was added and incubated for an additional 2
h. The culture medium was discarded, and the cells were lysed in 100 µL of DMSO. The absorbance
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was measured using an automated spectrophotometric plate reader at 570 nm. The cell viability was
normalized as the relative percentages in comparison with the untreated controls. The synergistic
effects of the CNM and hyperthermia combination were determined based on the combination index,
which was calculated using CompuSyn software ver. 1.0 (ComboSyn, Inc., Paramus, NJ, USA).

4.5. Trypan Blue Staining

Live/dead cell ratio was determined by Trypan blue staining. Briefly, A549 cells were seeded in
6-well plate (3 × 105 cells/well) and treated with CNM for 1 h and hyperthermia for 30 min. After
24 h of post-treatment incubation, cells were harvested, diluted in PBS (1:4), stained with Trypan
blue (Sigma-Aldrich, St. Louis, MO, USA), then viable cells and formed colonies were counted. Cell
survival rate was calculated as follows:

Cell survival rate (%) =
Viable cell count
Total cell count

× 100 (1)

4.6. Morphology Assay

A549 cells were seeded in a six-well plate (3 × 105 cells/well), treated with 150 or 200 µM of CNM
for 1 h, and incubated at 37 or 43 ◦C for 30 min. After 24 h, the cells were visualized, and representative
images were obtained under a regular optical microscope (CX-40, Olympus, Tokyo, Japan).

4.7. Wound healing Assay

The cells were seeded in a six-well plate at a density of 5 × 105 cells and cultured at 37 ◦C. After
confluence, a thin scratch was produced in each well with a yellow pipette tip. The culture medium
was removed after 24 h, and representative images were obtained under a regular optical microscope
(CX-40, Olympus, Tokyo, Japan).

4.8. Clonogenic Assay

Four hundred cells/well were seeded in a six-well plate and incubated overnight. The following
day, the cells were treated with 200 µM CNM for 1 h and incubated at 37 or 43 ◦C for 30 min for the
hyperthermia treatment. After two weeks, the cells were stained with a crystal violet (Sigma-Aldrich,
St. Louis, MO, USA) solution at RT for 10 min and washed with PBS. Images of the colonies were
obtained under a regular optical microscope (CX-40, Olympus, Tokyo, Japan).

4.9. Western Blot Analysis

Western blot analysis was performed as described elsewhere [56]. Briefly, after the protein
concentrations from isolated A549 cells were determined, equal amounts of lysates resolved by
sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis were transferred to a polyvinylidene
difluoride membrane, and the membrane was blocked with 1x TBS containing 0.1% Tween 20 and 5%
skim milk at RT. The membranes were incubated overnight at 4 ◦C with the respective primary antibodies
followed by washing and incubation (1 h, RT) with diluted horseradish peroxidase-conjugated
anti-rabbit or anti-mouse IgG antibodies (Santa Cruz Biotechnology, Inc., Dallas, TX, USA). The
immunoblot signals were detected using an enhanced chemiluminescence kit (EMD Merck Millipore,
Billerica, MA, USA). Membranes were incubated in stripping buffer containing 2% SDS, 62.5 mM
Tris-HCl (pH 6.8) and 0.7% mercaptoethanol in D.W. at RT for 30 min to detach antibodies to confirm
the total forms of ERK, p38, JNK and Akt after detecting their phosphorylation forms.

4.10. Apoptosis Assay

A Muse®® Annexin V and Dead cell kit (Part Number: MCH100105) (EMD Merck Millipore,
Billerica, MA, USA) was used to measure the ratio of apoptosis. A549 cells were seeded in 6-well plates
at a density of 3 × 105 cells/well. Twenty-four hours after treatment with CNM and hyperthermia, A549
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cells were collected, and pellets were subjected to an Annexin V and 7-amino-actinomycin D (7-AAD)
staining according to the manufacturer’s instructions. After incubation, the cells were analyzed using
the Muse®® Cell Analyzer (EMD Merck Millipore, Billerica, MA, USA).

4.11. Cell Cycle Analysis

A549 cells (3 × 105 cells/well) in six-well plates were exposed to co-treatments for 24 h, and the
cell cycle phase was analyzed. The cells were then collected, fixed overnight in 70% ice-cold EtOH,
washed with PBS, and resuspended in PBS containing 1 mg/mL PI, 10 mg/mL RNase A in a dark room
for 10 min. The cell cycle was determined using a Muse®® Cell Analyzer (EMD Merck Millipore,
Billerica, MA, USA).

4.12. Analysis of Reactive Oxygen Species (ROS)

The levels of ROS generation were measured using a ROS assay kit (Part Number: MCH100111)
(EMD Merck Millipore, Billerica, MA, USA). Twenty-four hours after the co-treatment of CNM and
hyperthermia, the A549 cells were treated with an oxidative stress working solution and incubated
for 30 min at 37 ◦C. The ROS levels were analyzed using the Muse®® Cell Analyzer (EMD Merck
Millipore, Billerica, MA, USA). The cells were treated with NAC, the ROS inhibitor [57], for 1.5 h before
treatment with CNM and hyperthermia.

4.13. Statistical Analysis

All numeric values are represented as the mean ± SD. The statistical significance of the data
compared to the untreated control was determined using Student’s unpaired t-test * p < 0.05, ** p <

0.01 and *** p < 0.001 were considered significant.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/17/
6229/s1, Figure S1: Effect of CNM and hyperthermia combination on Cyclin B1 expression in A549 cells.
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