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Abstract: During total joint replacement, high concentrations of mesenchymal stromal cells (MSCs) are
released at the implantation site. They can be found in cell–tissue composites (CTC) that are regularly
removed by surgical suction. A surgical vacuum suction handle was filled with bone substitute
granules, acting as a filter allowing us to harvest CTC. The purpose of this study was to investigate
the osteopromotive potential of CTC trapped in the bone substitute filter material during surgical
suction. In the course of 10 elective total hip and knee replacement surgeries, β-tricalcium-phosphate
(TCP) and cancellous allograft (Allo) were enriched with CTC by vacuum suction. Mononuclear cells
(MNC) were isolated from the CTC and investigated towards cell proliferation and colony forming
unit (CFU) formation. Furthermore, MSC surface markers, trilineage differentiation potential and
the presence of defined cytokines were examined. Comparable amounts of MNC and CFUs were
detected in both CTCs and characterized as MSC%� of MNC with 9.8 ± 10.7%� for the TCP and
12.8 ± 10.2%� for the Allo (p = 0.550). CTCs in both filter materials contain cytokines for stimulation
of cell proliferation and differentiation (EGF, PDGF-AA, angiogenin, osteopontin). CTC trapped
in synthetic (TCP) and natural (Allo) bone substitute filters during surgical suction in the course
of a joint replacement procedure include relevant numbers of MSCs and cytokines qualified for
bone regeneration.

Keywords: bone defect; bone remodeling; surgical suction; ceramic filter; β-TCP; allograft; total
joint arthroplasty

1. Introduction

Bone and its marrow is a highly vital tissue with multiple functions including mechanical stability,
hemostasis, immune response and tissue regeneration [1]. It is the only tissue which can heal without
fibrous scar after damage and is able to adapt to biomechanical forces (“bone remodeling”) [2].
However, in bone defects of critical size, the self-healing capacity of the bone tissue is limited, resulting
in delayed union or non-union [3]. The manifold reasons for impaired bone healing are often influenced
by individual factors such as local vascular supply, infection status, comorbidities and others [4].
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Besides sufficient stabilization of the bone defect by internal or external fixations (osteosynthesis),
the gold standard treatment for non-unions is autologous bone grafting [5]. However, the amount of
autologous bone is limited and the procedure is associated with further comorbidity.

Therefore, a large amount of both natural (allo-/xenografts) and synthetic (e.g., tricalcium
phosphate (TCP), hydroxyapatite (HA), calcium sulfate, calcium carbonate, composites) bone
substitutes have been applied in orthopedic and trauma surgery for a long time [6–9]. In the last few
years, mesoporous bioactive glasses (MBGs) are becoming increasingly popular as bone substitute
materials [10]. In contrast to autologous bone, these materials are not vital and mainly act as
an osteoconductive scaffold for local tissue ingrowth. Other bone substitutes pledge additional
osteoinductive potential, with favorable effects on proliferation and differentiation of local cells.
Osteoinductive materials are potent to induce new bone formation even in a non-osseous environment
by recruiting undifferentiated and pluripotent progenitor cells, followed by differentiation into
bone-forming cells. Bone morphogenetic protein (BMP) and platelet-derived growth factor (PDGF)
coated biomaterials are typical candidates for these osteoinductive materials [11]. As a consequence,
high amounts of local osteoprogenitors at the bone defect site are preferable.

Recently, multiple studies present promising results regarding the use of MSCs and various
growth factors in the treatment of fractures and non-unions, as well as synergistic effects observed when
combined [12]. Additionally, clinical trials suggested that the application of MSC and scaffolds can
enhance osteogenesis in bone defects [13–15]. However, the harvesting of these cells intraoperatively is
time-consuming, there are sterility concerns as the aspirate may leave the sterile field, and there is also
a risk of changing the biology of the cells depending on the following processing of the tissue [16–20].

Apart from the above, osteopromotive scaffolds promote bone regeneration within an osseous
tissue and enhance bone formation during various stages of bone healing. This property can be achieved
by additional substances such as local tissue, platelet-rich plasma or coatings (e.g., collagen, fibrin) [21].

In orthopedics and trauma surgery, hard tissue opening or damage is frequent and associated with
a relevant amount of bone marrow leaking out of the bone. Furthermore, the surgical approach and/or
trauma includes also soft tissue damage and hematoma. As a consequence, not only bone fragments
but also small pieces of muscle, fat, connective tissue and vessels are liberated from the surrounding
tissue. Some of these are removed by surgical suction; some are left on the site. Moreover, the injured
and crushed tissue releases soluble components such as loco-typical cells including progenitors, as well
as intra- and extracellular fluid (proteins, lipids, water and electrolytes), cytokines, growth factors and
others [22]. If internal fixation is carried out, parts of these components adhere to the implant’s surface
and act as preconditioning protein film at the bone–implant interface, promoting osseointegration
(“implant proteome”) [23]. At the very least, this environment induces aseptic inflammation and
provides the basis for later bone and tissue healing.

During surgery, most surgeons use vacuum suction devices to obtain an optimal view of the
surgical site. Moreover, these systems can be combined with cell saver devices if relevant blood loss is
assumed (autologous blood transfusion). Especially during total joint replacement or other types of
operations demanding a more extensive surgical approach, relevant amounts of the abovementioned
mixture of cytokines, growth factors and cells and tissue (cell–tissue composites, CTCs) will become
lost by vacuum suction [24,25]. In a previous study, we showed that surgical vacuum filters were able
to concentrate tissue with relevant amounts of MSCs, presenting a new potent source of autologous
regeneration material [22].

To make this tissue useful for a possible clinical application in the future, a granule-based bone
substitute filter was evaluated in the present study towards the retention of progenitor cells and
cytokines qualified for bone regeneration.

To our knowledge, this is the first device which is able to enrich autologous tissue onto a bone
substitute without any additional surgical approach or other time-consuming interoperative procedures.
Moreover, the cell/tissue–TCP/allograft composite does not require further processing outside the
surgical site.
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There are many research groups who are working on solutions for bone regeneration onto
biomaterials [26]. In contrast to other investigators, we intend to present a simple, time-saving and
patient-friendly solution. Compared to other systems such the reamer-irrigator-aspirator [27] or
bone aspiration techniques with or without density gradient cell centrifugation (e.g., the Harvest®

system [28], ASPIRE™ Bone Marrow Harvesting System [29]), no additional surgical approach or
device material is required. Other groups prefer platelet-rich plasma (PRP) or other products from the
peripheral blood to treat bone defects [30,31].

Although the content of platelet lysates is highly promising for regenerative approaches in
translational orthopedics [32] and these systems are also non-invasive (i. v. punction), they leave the
surgical site and do not penetrate porous bone substitutes as a vacuum system can. At the very least,
most systems designed for bone regeneration are at a pre-clinical stage [33]. A simple solution, such as
a vacuum suction handle combined with a bone substitute, might enter the market as a medicinal
product much more easily by the extension of an established certificate (suction handle only).

2. Results

2.1. Comparison of the MNC Yield, Stemness Character and Proliferation Potential

The average weight of the samples harvested was comparable between the two bone substitute
materials (BSMs) (p = 0.462), with 13.8 ± 5.6 g for allogenic BSM (Allo) range (7.0–22.8) and 15.9 ± 4.5 g
for the synthetic BSM (TCP) range (12.4–26.4). In all 10 patients, mononuclear cells (MNCs) could be
isolated and cultured from both BSM groups. The total amount of harvested mononuclear cells (MNCs)
was comparable between the groups (p = 0.145), with 1.94 ± 1.32 × 1010 range (0.81–4.51 × 1010) for
Allo and 1.26 ± 1.03 × 1010 range (0.31–3.44 × 1010) for TCP (Figure 1A). The order of the BSM used in
the surgical vacuum suction device within the surgery did not influence the MNC yield (p = 0.825).
The weight of the samples correlated with the amount of harvested MNCs, with r = 0.606 (Pearson)
and with a significant p-value of 0.006.

Figure 1. (A) Number of mononuclear cells (MNC), (B) colony-forming units (CFU) per million
MNCs, and (C) generation time of passage 1 (P1) and 2 (P2). Boxplots indicate the median within the
25–75% percentile.

A colony-forming unit (CFU) assay was performed with MNCs of each group (Allo vs. TCP).
We found higher values in CFU for MNCs harvested from the TCP, with 1.076 ± 1.073 ×106 MNCs
and a range of (0.03–2.47 × 106 MNC) in the surgical vacuum suction device compared to the Allo
(0.82 ± 0.75 × 106 MNC), with a range of (0.02–1.99 × 106 MNC) (Figure 1B), but this difference was
not significant (p = 0.581).

From the CFU assay results, the number of cells with the potential for forming a colony from
1 × 106 MNC was determined and used for calculating the theoretical number of potential MSCs in the
different BSM samples. Regarding the ratio of potential MSCs per MNC harvested, the values were
slightly higher in Allo, with 12.8 ± 10.2%�, median of 12.1 and range of (0.3–30.9) compared to TCP,
with 9.8 ± 10.7%�, median of 7.0 and a range of (0.7–28.7) (p = 0.550). Per filter handle, the average
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calculated number of MSCs was 12,846 ± 10.214, range (293–30,886) for Allo and 9830 ± 10,720,
range (663–28,710) for TCP.

The proliferation potential determined as generation time was comparable for Allo and TCP in
P1 and P2, with 8.2 ± 2.9 days, range (3.5–12.8) Allo vs. TCP 8.4 ± 1.1 days, range (5.1–14.1) for P1
(p = 0.604). In P2, the values were 6.9 ± 2.9 days, range (3.3–11.8) for Allo vs. TCP 6.3 ± 2.5 days,
range (4.1–10.7), respectively (p = 0.998) (Figure 1C). It was slightly lower for the cells in P1 compared
to P2 for both groups (p = 0.062).

2.2. Differentiation Potential

The occurrence of MSCs was controlled by the expression of typical markers via flow cytometry.
Here, cells expressed no hematopoietic markers (CD31−, CD34−, CD45−) but all samples showed
significant expression of the mesenchymal stroma cell markers (CD29+, CD73+, CD90+, CD105+)
(Figure 2). There were no differences in the expression type between the two biomaterials.

Figure 2. Representative flow cytometry analyses for MSC from cell-tissue composites (CTC) from
allogenic (Allo) and synthetic (TCP) bone substitute material for one patient. Data are shown as a
histogram overlay: isotype control (grey) and specific cell surface markers (white). Cells were labeled
with antibodies against CD29, CD73, CD90, CD105, CD31, CD34 and CD45.

No qualitative differences could be found in the lineage specific differentiation between the
different BSM groups. Figure 3 demonstrates the characteristic cytochemical staining of calcium in the
extracellular matrix components with alizarin red (osteoblasts), of the intracellular oil vacuoles with
oil red (adipoblasts) or of the glycosaminoglycans with alcian blue (chondroblasts).

Figure 3. Differentiation of the MSC into osteoblasts, adipoblasts and chondroblasts. The scale bar
represents 200 µm.
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2.3. Cytokine Pattern in the Cell–Tissue Composite

The determination of the relative levels of 104 selected human cytokines, chemokines, growth
factors, hormones and other soluble proteins in the cell–tissue composite from the surgical vacuum
filter revealed no differences in their quality and in their semiquantitative rating (Figure 4). In both
cell–tissue composites, the following proteins could be detected:

Figure 4. Representative X-ray results of the cytokine array from the cell–tissue composites (Allo vs.
TCP) of one patient. The right scheme displays the respective coordinate reference number # for analyte
identification. Unframed spots are assay-specific reference spots.

2.3.1. Cytokines

Macrophage migration inhibitory factor (MIF) (#19), chemokine (C–C motif) ligand 5 (CCL5)/RANTES
(#24), chemokine (C–X–C motif) ligand 4 (CXCL4)/PF4 (#23) and C–X–C motif chemokine 5 (CXCL5)/
ENA-78 (#13).

2.3.2. Growth Factors

Epidermal growth factor (EGF) (#11) and platelet derived growth factor (PDGF-AA) (#22).

2.3.3. Hormones

Adiponectin (Acrp-30) (#1), resistin (XCP1) (#26).

2.3.4. Other Signaling Proteins

Vascular cell adhesion molecule 1 (VCAM-1)/CD106 (#34), platelet endothelial cell adhesion
molecule (PECAM)/CD31 (#32), endoglin (CD105) (#14), urokinase receptor (uPAR)/CD87 (#30),
osteopontin (BSP-1/BNSP) (#21), thrombospondin-1 (#29), apolipoprotein A-I (ApoA1) (#2) and
angiogenin (#3).

2.3.5. The Transport/Binding Proteins (BP)

Interleukin-18-binding protein (IL-18 BP) (#17), insulin-like growth factor-binding protein 2
(IGFBP-2) (#15), insulin-like growth factor-binding protein 3 (IGFBP-3) (#16), retinol-binding protein 4
(RBP4) (#25), sex hormone-binding globulin (SHBG) (#28) and vitamin D BP (#31).
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2.3.6. Proteins Pertained to the Immune System

Complement component C5/C5a (#4), complement factor D (CFD/adipsin) (#7), C-reactive
protein (CRP) (#8), CD14 (#5), lipocalin-2 (NGAL) (#18) and hepatitis A virus cellular receptor 2
(HAVCR2)/TIM-3 (#33).

2.3.7. Other Proteins

Basigin (extracellular matrix metalloproteinase inducer EMMPRIN/CD147) (#12), cystatin C (#9),
matrix metalloproteinase-9 (MMP-9)/gelatinase B (#20), serpin E1 (nexin) (#27), dipeptidyl peptidase-4
(DPP4)/CD26 (#10) and chitinase3 like 1 (CHI3L1/YKL-40) (#6).

3. Discussion

This study clearly demonstrated that bone substitutes placed in a surgical vacuum filter device
were able to collect tissue with relevant amounts of MSC. Comparing allograft and β-TCP, no significant
differences could be found in the capability to enrich MSCs and growth factors. Furthermore, we found
neither biomaterial-associated differences for the amount of MNC harvested nor variations in the
stemness character of the cells (number of CFU). Cells cultivated from both bone substitutes could be
characterized as MSCs without any differences in their (i) adherence to the plastic surface, (ii) typical
surface marker expression profile and (iii) differentiation into the three lines, osteoblasts, adipoblasts
and chondroblasts.

3.1. Influence of the MSC Number on Bone Regeneration

Some data in the literature suggest that the dose and volumetric concentration of autologously
applied MSCs appears to be critical for in vivo bone regeneration, rather than their purity [15,34].
Regarding our experiments, it is finally not clear if the amount of MSC collected within the BSM
equipped vacuum filter handle is sufficient to repair a bone defect. In the present study, the use of
the surgical vacuum suction device during 10 min of surgery harvested an amount of 12,846 MSCs
[293–30,996] in Allo and 9830 [663–28,710] for TCP within one vacuum suction handle application.
Hernigou et al. evaluated the necessary amount of transplanted progenitor cells for the treatment of
non-union and demonstrated a significant positive correlation between the volume of mineralized
callus after four months and the number and concentration of fibroblast colony-forming units in the
graft [15]. Bone union was obtained in 53 of 60 patients (88.3%) with bone marrow injected into the
non-unions containing >1500 progenitors/cm3 and an average total of 54,962 ± 17,431 progenitors per
defect. If significantly lower concentrations (634 ± 187 progenitors/cm3; total number 19,324 ± 6843
of progenitors) were injected into the non-union site, bone union was not obtained in 11.5% of the
patients [35].

Similarly, Le Nail et al. treated 43 patients with open tibial fractures with a risk of developing
non-unions or presenting non-unions with injections of bone marrow concentrate. They postulated a
minimum threshold of 360 × 103 transplanted progenitors amounting to successful healing [36].

Although these data are difficult to compare to the study of Hernigou, the application of the
vacuum filter handle for 10 min during surgery could not harvest the same amount of progenitor cells
as isolated by bone marrow aspiration [15]. However, the surgical vacuum suction device guarantes
wetting of the bone substitute as well as cellular retaining without any additional invasive procedure
and without further tissue or cell processing [17,37]. It is unclear whether a longer application of the
vacuum is able to increase the amount of MNC in the filter biomaterial. Moreover, we cannot exclude
the influence of the plastic material of the suction device.

3.2. Influence of the Plastic Container and Vacuum

In our study, the suction device was made of polystyrene (OP-Flex™ FilterFlow™, ConvaTec,
Deeside, UK), which is not qualified for orthopedic in vivo application. During the suction procedure,
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it is unlikely but possible that polystyrene particles might detach from the surface of the suction device
and come into contact with the ceramic bone substitute. Due to patient safety issues, the authors
recommend a more biocompatible and inert material (e.g., polymethyl methacrylate, PMMA) if
clinical application is intended. Following this idea, a biocompatible surgical suction handle has been
developed in a project granted by the European Union (EU) (BoneFlo®, TissueFlow).

Besides the application site (including cellular components) [37–39], the type of vacuum (level,
duration) [17,37], the suction handle’s material [38,39] and the type of bone substitute [40,41] might
have an impact on in vitro results.

3.3. Impact of the Biomaterial and Regulatory Aspects

In orthopedics and trauma surgery, ceramic bone substitutes are frequently used due to
mechanical (e.g., compression resistance) and biological properties (e.g., advanced microstructure
with interconnecting pores mimicking autologous bone) [42–44]. However, we found no significant
differences comparing cortico-spongious chips (allograft) with porous TCP granules in our study.
This could be a hint that the initial contact between components of the CTC and the biomaterial are less
relevant for following cell proliferation and differentiation than the influence of the surrounding tissue
in vivo. The experiences of more than three decades in bone substitute (e.g., hydroxyapatite (HA),
TCP) application in orthopedics support this theory: none of the commercial products have prevailed
or dominated the market to date.

However, it is noted that autologous bone grafts are still considered the gold standard,
presenting all necessary properties as osteoconductivity, osteoinductivity and osteogenesis [45].
However, the application of new coating strategies and the development of composites
(e.g., polycaprolactone-tricalcium phosphate (PCL-TCP)) have the potential to improve currently
available materials [46,47].

Another point of discussion is how to combine cells and BSM for bone regeneration. Here, the BSM
surface and the role of MSCs seems to be a key factor: in bone tissue engineering, autologous MSCs
are harvested from different sources (e.g., bone marrow, adipose tissue). One option is to cultivate
MSCs ex vivo in order to obtain sufficient amounts of cells which can be re-transplanted together
with BSM in a second step. Here, two approaches exist: (i) cells are either left undifferentiated and
implanted together with the BSM (direct loading of the cells) or (ii) cells are pre-seeded onto the
scaffold and differentiated towards osteogenic precursors in 3D culture of the respective BSM before
implantation [17,37]. The temporary cultivation of MSCs requires considerable logistical effort to
ensure the quality of the cell therapy treatment [48] and the economic reimbursement is not given
or remains questionable. Within the European Union (EU), the ex vivo cultivation procedure and
application of cells requires not only good manufacturing practice (GMP) standards but also a license
of national authorities for the production of cellular products in accordance with advanced therapy
medicinal products (ATMP).

These regulations restrict in vitro tissue engineering for bone defects. However, Léotot et al.
(2015) demonstrated that direct cell loading into a scaffold during surgery is more efficient for bone
regeneration compared to pre-seeded BMCs for 7 days in vitro on HA/β-TCP [49].

An alternative method for enrichment of bone substitute materials with autologous MSCs
is the application of concentrated bone marrow with BSM into the bone defect in a single step
procedure during surgery. Several clinical studies showed the efficacy and safety using bone marrow
concentrate (BMC) [12–15]. Although various commercial bone marrow concentration systems are
available, which mostly work with gradient centrifugation, these will hardly be a generally accepted
treatment option, due to official requirements and relevant uncertainty among orthopedic surgeons [50].
In Germany, the use of BMC for the treatment of bone defects has been limited by a regulation of
the national equivalent to the FDA, the Paul Ehrlich Institute (PEI), which declared the BMC a new
therapeutic agent requiring regulatory approval in 2009 [51].
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3.4. Conditioning Systems, Composites and Growth Factors

Methods other than centrifugation for the enrichment of cells include filtration using ceramic
materials with a certain selectivity for MSCs [52]. Until now, no reliable conclusion was found to
explain the greater retaining of MSCs to carrier materials compared to other nuclear cells. Chu et al.
(2018) showed that filtration of bone marrow cells through various BSMs led to an enrichment of MSCs
and their direct adhesion to the surfaces of porous BSM [53]. Importantly, the filtration enrichment
method allows MSC concentration without interference from exogen agents, revealing no significant
changes in phenotypic characteristics of the MSCs, osteogenetic fate, specific antigens, gene expression
profile, cell cycle stage and apoptosis rate compared to before filtration [37,44]. However, in the
abovementioned study, additional bone marrow was collected from the anterior superior iliac spine,
posing the risk of donor-site morbidity. In a recent study, our research group could demonstrate that
surgical vacuum filters collecting tissue composites during orthopedic surgery are able to concentrate
tissue with relevant amounts of MSCs. Moreover, the CFU numbers from the material collected
in vacuum filters harvested during arthroplasties were superior to those from bone marrow and
cancellous bone [22].

Established methods to harvest MSCs, such as RIA (reamer-irrigator-aspirator) require additional
technical devices and consume time during surgery [54]. With an advanced vacuum suction handle,
no additional devices are needed after placing ceramic bone substitutes into a surgical vacuum filter.

In the present study, the protein array of both CTC groups revealed the presence of relevant
cytokines and growth factors (GF) for cellular proliferation and differentiation such as EGF, PDGF-AA,
angiogenin as well as osteopontin as important factors in bone remodeling.

The cocktail of documented cytokines and growth factors in vitro imitates the situation in vivo
during bone healing, where vascularization is a relevant step: angiogenin is a potent growth factor
which is able to stimulate new blood vessel formation [55]. Platelet-derived growth factor (PDGF)
is released from platelets following tissue injury and enhances cell migration (chemotaxis) and
proliferation (mitogenesis) [56].

Toosi et al. precisely described in a review a range of growth factors and cytokines provided
by bone resident MSCs to support cell growth following injury and demonstrated how GF signaling
plays a critical role in regulating osteogenesis, chondrogenesis and bone/mineral homeostasis [57]. It is
known that the delivery of exogenous GFs, i.e., BMP-2, to the non-union bone fracture site remarkably
improves healing results [58].

Nevertheless, the application of growth factors may have drawbacks. Using supraphysiological
dosages of growth factors to compensate for the shorter duration of activity in the in vivo milieu
increases the risk of adverse effects such as excessive soft tissue inflammation and the formation of
excessive ectopic bone [59]. Concerning their concentrations, in a recent study, their concentration
in freshly isolated adipose tissue was correlated to the proliferation and migration capacity of the
MSCs derived from the respective sample [60]. The proliferation and migration capacity of MSCs
strongly depended on the GF content of the tissue but in an inversely proportional manner: the lower
the GF content of the tissue, the higher was the proliferation and migration capacity of the respective
MSC population contained in the adipose tissue (AT) and vice versa. Furthermore, they found that
supplementation with recombinant GFs led to a significant enhancement of proliferation and migration
of the AT-resident MSCs only in samples with low but not with higher growth factor contents [60].
This inefficiency of GFs to enhance MSC proliferation and migration in samples with high GF content
indicated a GF-mediated negative feedback mechanism leading to impaired GF signaling in MSCs
obtained from these tissue samples [59]. Further studies are necessary to investigate the impact of the
growth factor content on the proliferation of MSCs derived from the filter in vacuum suction handles.

Our study has some limitations. The definite source of the MSCs and growth factors in the
filter device cannot be determined, since various tissue compartments (subcutaneous fat, connective
tissue, muscle tissue, periosteum, vessels/blood, bone and bone marrow) were affected during surgery.
We cannot differentiate between trapping of the cells among the biomaterial chips or cellular retaining
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to the bone replacement material. Furthermore, the suction procedure was performed in a clinical
scenario and not in a laboratory or on an experimental scale. It was done individually to provide an
optimal view of the surgical site. Moreover, the weight of the BSM after the vacuum suction varied for
both BSMs. Particularly, in some cases, a few BSM granules were spilled within the filling process;
also, the weight of the resulting bone substitute material with CTC material varied from patient to
patient, especially in obese patients.

Another limitation is that the tissue samples were obtained from two different surgical procedures
(total hip or knee replacement). Therefore, differences in the harvested cells and growth factors might
be based on the place of origin. In a recent published study, it was demonstrated that MSCs from
the femur possess significantly higher osteogenic potential compared to the acetabulum [61]. Since,
in both procedures (hip and knee replacement surgery), bone marrow from the femur is gathered,
the different surgical locations may not be crucial for different results. Concerning the amount of MNC
harvested, there was no difference in the order of the material used. Additionally, the low number of
samples does not allow conclusions about statistical differences.

By and large, we demonstrated that MSCs and relevant cytokines for bone healing can be isolated
in vitro and harvested by a combined surgical vacuum–BSM filter system.

4. Materials and Methods

4.1. Patients

Following a prospective design, the patient cohort consisted of 10 patients (5 females, 5 males,
mean age of 66.8 ± 9.1 years) with advanced osteoarthritis who qualified for elective total hip (n = 6;
four females, two males) or knee (n = 4; one female, three males) replacement. The study protocol was
approved by the local ethical committee (19-8822-BO, 19-02-2020, Ethical Board of the Medical Faculty
of the University Duisburg-Essen, Germany; available in the Supplementary Materials, Supplementary
File S1). All individuals had given their written informed consent prior to surgery.

Exclusion criteria were malignant or infectious diseases, immuno-suppressive drugs and an age
under 18 years.

4.2. Surgical Vacuum Suction Device Used during Surgery

During surgery, a conventional surgical vacuum suction handle (OP-Flex™ FilterFlow™, ConvaTec,
Deeside, UK) was filled with bone substitute material (TCP or Allo) and used for 10 min. The surgical
procedure during this timeframe comprised a Harding–Bauer approach including femoral neck
osteotomy (total hip replacement) or a mediopatellar approach to the knee joint up to intramedullary
reaming of the distal femur (total knee replacement).

After this, the suction handle was replaced by a new device with the respective other bone
substitute material. The handle was then used for another 10 min. During this time, the acetabulum
was reamed (total hip replacement). In knee patients, jig-guided femoral osteotomies were performed.
The sequence of the bone substitute selection was randomized before each operation. The granules
used were as follows:

1. Allograft bone substitute material: maxgraft® ortho, spongiosa granulate (Cells and Tissue Bank
Austria gGmbH, Krems, Austria); granule size 2–8 mm; granule volume 10 mL.

2. Synthetic β-TCP [Ca3(PO4)2]: Cerasorb M®, (Curasan AG, Kleinostheim, Germany); granule size
5–8 mm; granule volume 10 mL.

The surgical suction handle including the bone substitute and retained autologous material after
ten minutes of suctioning was stored under sterile conditions and transported to the laboratory for
further in vitro analysis. Suction process was performed with negative pressure of 20 mmHg using
a fixed vacuum pump (Draeger AG, Lübeck, Germany) and a connective tube made of polyvinyl
chloride (PVC) (Extrude TM, Surgery ApS, Birkerod, Denmark) (Figure 5).
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Figure 5. Content of the surgical vacuum suction handle after application in arthroplasty surgeries.
Surgical vacuum suction device’s inner part filled with allogenic (Allo) or synthetic (TCP) bone
substitute material (BSM) (A,F) (B,E). The polystyrene container was opened under the laminar flow
bench. The BSM and retained cell-tissue composite (CTC) were placed in petri dishes (C) and washed
with phosphate-buffered saline (PBS) and filtered. (D) Residual allogenic BSM (D), residual TCP (H).

4.3. Isolation and Cultivation of the Cells

The sealing cap of the surgical vacuum sucker was opened under the laminar flow bench and
the internal plastic filter was removed from the holding groove (Figure 5A,B). The ceramic granules
and retained CTC were emptied into a petri dish and weighed (Figure 5C). The mixture of BSM and
cell–tissue composite (Figure 5E,F) was incubated with streptokinase (3 KU; S3134, Sigma Aldrich,
Steinheim, Germany) in 10 mL phosphate-buffered saline (PBS) at RT for 15 min. The liquid phase was
removed and filtered through nylon mesh (pore size 70 µm, Falcon, Heidelberg, Germany). An aliquot
of 1 mL was allocated for further human cytokine array analysis and stored at −80 ◦C. The filtered
solution was further diluted with PBS and centrifuged at 300× g at RT for 10 min. The pellet was
resuspended and washed in PBS and centrifuged as before. The resulting cell pellet was resuspended
in PBS and the number of mononuclear cells (MNC) was counted. Then, 3 × 107 MNCs of each
BSM type per patient were allocated for CFU assay. The remaining MNCs were layered onto a Ficoll
(Ficoll Paque™ Plus, density 1.078 g/mL, GE Healthcare, Freiburg, Germany) gradient in SepMate™
tubes (STEMCELL Technologies Inc, Vancouver, Canada) and centrifuged at 1200× g at RT for 15 min
(full acceleration 9/9, decreased deceleration 7/9). The interphase was collected in PBS and centrifuged
at 300× g at RT for 10 min. The cell pellet was resuspended in medium and cultured in T25 tissue flasks
at 37 ◦C and 5% (v/v) CO2. The medium consisted of low-glucose Dulbecco’s Modified Eagle’s Medium
(DMEM) supplemented with l-glutamine (GlutaMAX™, both Gibco, Life Technologies, Darmstadt,
Germany), with 10% (v/v) fetal calf serum (FCS, Biochrome, Berlin, Germany), 100 U/mL penicillin
(Sigma Aldrich, Taufkirchen, Germany), 0.1 mg/mL streptomycin (Sigma Aldrich) and 1 mM sodium
pyruvate (Sigma Aldrich). Medium was changed every 3rd day. At 80–90% confluence, the adherent
cells were detached by accutase (600 U/mL, Gibco/Life Technologies, Carlsbad, CA, USA), counted and
seeded at a density of 6.5 ± 2.5 × 103 cells per cm2 in flasks. The cellular doubling time was determined
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and defined as generation time. Cells of 3rd passage were used for flow cytometry analysis and cell
differentiation testing.

4.4. Colony Forming Unit (CFU) Assay

MNCs of each BSM type were cultivated in 6-well plates with 1 × 106, 4 × 106 and 10 × 106 cells
per well as duplicates at a final cell density of 1 × 105, 4 × 105 and 10 × 105 MNC/cm2. Medium was
changed every 3rd day. At day 14, cells were washed with PBS and incubated in 0.5% (w/v) crystal violet
(SERVA Electrophoresis, Heidelberg, Germany) in 20% (v/v) methanol (Merck, Darmstadt, Germany)
for 30 min at RT followed by rinsing with aqua dest. Colonies were defined as circular arrangements
of cells of more than 50 stained cells, indicating that one viable cell as colony forming unit gave rise to
a colony through replication [13,62].

4.5. Characterization of Mesenchymal Stromal Cells

Following the International Society for Cellular Therapy’s (ISCT) minimal criteria to define
mesenchymal stromal cells (MSCs), plastic adherence, as well as appropriate surface marker expression
and trilineage differentiation, was chosen for MSC characterization [63–66].

4.6. Flow Cytometry

After the 3rd passage (cultivation period of app. 3 weeks), cells were detached, resuspended and
counted. Aliquots of approximately 1 × 105 cells were incubated with antibodies against CD31
(APC-eFluor 780, clone WM59; eBioscience/Thermo Fisher Scientific, Carlsbad, CA, USA), CD34 Class
III (FITC, clone: 581, BioLegend, Fell, Germany), CD45 (V500, clone: HI30, Becton Dickinson BD
Bioscience, Heidelberg, Germany), CD 29 (PE, clone MAR4, Becton Dickinson), CD73 (PerCP-eFlour-710,
clone: AD2, eBioscience), CD90 (Brilliant Violet 421, clone: 5E10, BioLegend) and CD105 (PE-Cy7, clone:
43A3, BioLegend) for 30 min on ice, as described before [22]. Isotype controls at the same concentration
as the specific antibodies were used to determine nonspecific signals. Flow cytometry was performed
with a FACSCanto II flow cytometer (BD Bioscience) and Diva Software v6.0 (BD Bioscience).

4.7. Differentiation of the Mesenchymal Stem Cells

Mesenchymal multipotency was approved by applying typical in vitro stimulation protocols with
the respective media, followed by representative cytochemical staining. In all groups, unstimulated
cells served as controls [67].

1. Osteogenic differentiation: 2 × 104 cells were cultivated in a 12-well plate in osteogenic medium
(StemPro™ Osteogenesis Differentiation Kit, Thermo Fisher Scientific, Dreieich, Germany).
After 21 days, cells were fixed in 4% (v/v) formalin (Merck Millipore, Darmstadt, Germany),
rinsed in PBS, and the mineralization of the extracellular matrix of the osteoblasts was stained
with 2% (w/v) alizarin red (LifeLine Cell Technology, Oceanside, CA, USA).

2. Chondrogenic differentiation: Cells were concentrated to 1.6 × 107 cells/mL and an aliquot
of 8 × 104 cells per 5 µL was inserted per well of a 96-well round bottom plate. Cells were
cultured in chondrogenic media (StemPro™ Chondrogenesis Differentation Kit) in 96-well
plates. After 21 days, the cell pellet was fixed in 4% (v/v) formalin, rinsed with PBS and the
glycosaminoglycans of the chondrocytes stained with 1% (w/v) alcian blue in 0.1 N HCl (Roth,
Karlsruhe, Germany) for 30 min at RT. Differentiation was performed with 0.1 N HCl.

3. Adipogenic differentiation: 4 × 104 cells were cultivated in a 12-well plate in adipogenic medium
(StemPro™ Adipogenesis Differentation Kit). After 21 days, cells were fixed in 10% (v/v) formalin
(Applichem, Darmstadt, Germany), washed in aqua dest and in 60% (v/v) isopropanol (Applichem)
for 5 min. The oil vacuoles of the adipocytes were detected by staining with 0.18% (w/v) oil-red-O
(Sigma) in 60% (v/v) isopropanol.
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4.8. Human Cytokine Array Analysis

The mixture of BSM and cell–tissue composite was tested for its relative expression levels of 102
human soluble proteins (cytokines, chemokines and growth factors and other extracellular signaling
molecules) using the human cytokine array (ARY022, R&D Systems, Abingdon, UK) (a complete list of
the 102 soluble proteins is available in the Supplementary Materials, Supplementary File S2).

The samples were thawed and analyzed according to the manufacturer’s instructions. In brief,
the microarray was blocked with blocking buffer for 60 min at RT; subsequently, each well was overlaid
with 100 mL of diluted sample (1:200 in assay diluent) and left at 4 ◦C for 12 h. The microarray slide
was washed with washing buffer and incubated with biotinylated secondary antibody for 60 min at RT.
After another wash, horseradish-peroxidase (HRP) conjugated streptavidin was added for 30 min at
RT. As substrate, luminol was used and the signal was detected after 0.5, 1 or 5 min using an X-ray film
in an autoradiography cassette. After film processing, the film was documented.

4.9. Statistics

Statistical analysis was performed using Graph Pad Prism software V8 (GraphPad Prism Software,
Inc. San Diego, CA). Continuous variables (patients’ age, sample weight, MNC number, generation
time) are presented as mean ± standard deviation and categorical variables (gender) as frequency and
percentage. Ordinal parameters (CFU number) are expressed as median with the interquartile range
(25th–75th percentile). Analysis of normal distribution of each continuous variable was performed by
the Kolmogorov–Smirnov test before further statistical testing. Accordingly, the Mann–Whitney U test
was used for comparison of nonparametric values (sample weight, MNC number, order of BSM used)
and the unpaired t-test for parametric values (number of CFU, generation time, ratio MSC per million
MNCs) between the two study groups. Differences were considered significant at p < 0.05.

5. Conclusions

We conclude that, during orthopedic surgery, tissue with relevant amounts of MSCs and growth
factors can be concentrated by an advanced surgical vacuum handle filled with bone substitute material.
This new potent source of autologous MSC and growth factors could be identified. The innovation is
that well-established osteoconductive materials can be enriched with osteoinductive cytokines and
MSC-containing tissue without additional equipment. We believe that this device has potential for
clinical application as a medicinal product. Here, clinical tests can easily be achieved using the BoneFlo
system as a container for the investigation of different biomaterials.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/21/17/
6393/s1. Supplementary File S1 contains the Ethical Vote of the Medical Faculty of the University Duisburg-Essen,
Germany. Supplementary File S2 contains the complete product datasheet with the list of all tested human
cytokines of the Proteome Profiler™ Array Human XL Cytokine Array Kit (R&D Systems).
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Abbreviations

Allo cancellous allograft group
BMP bone morphogenic protein
BSM bone substitute material
CFU colony-forming unit
CTC cell-tissue composite
β-TCP β-tricalcium-phosphate
EGF endothelial growth factor
ESCs embryonic stem cells
FDA Food and Drug Administration
GF growth factors
GMP good manufacturing practice
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iPS induced pluripotent stem cells
MNC mononuclear cells
MSCs mesenchymal stroma cells
PBS phosphate-buffered saline
PDGF-AA platelet-derived growth factor AA
PEI Paul Ehrlich Institute
PRP platelet-rich plasma
PMMA polymethylmethacrylate
RIA reamer-irrigator-aspirator
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