
 International Journal of 

Molecular Sciences

Review

Recent Progress in Carbon Nanotube Polymer
Composites in Tissue Engineering and Regeneration

Gangadhar Lekshmi 1 , Siva Sankar Sana 2,*, Van-Huy Nguyen 3,4 ,
Thi Hong Chuong Nguyen 5,6, Chinh Chien Nguyen 5,6, Quyet Van Le 5,* and Wanxi Peng 7,*

1 Department of Nanotechnology, Noorul Islam Centre for Higher Education, Kumaracoil, Thucklay,
Kanyakumari, Tamilnadu 629180, India; lekshmigangadhar.nano@gmail.com

2 Department of Material Science and Nanotechnology, Yogivemana University, Kadapa 516005, India
3 Department for Management of Science and Technology Development, Ton Duc Thang University,

Ho Chi Minh City 700000, Vietnam; nguyenvanhuy@tdtu.edu.vn
4 Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
5 Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam;

nguyenthongchuong@duytan.edu.vn (T.H.C.N.); nguyenchinhchien@duytan.edu.vn (C.C.N.)
6 Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
7 Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry,

Henan Agricultural University, Zhengzhou 450002, China
* Correspondence: sanasivasankar1@gmail.com (S.S.S.); levanquyet@dtu.edu.vn (Q.V.L.);

pengwanxi@henau.edu.cn (W.P.)

Received: 23 July 2020; Accepted: 24 August 2020; Published: 3 September 2020
����������
�������

Abstract: Scaffolds are important to tissue regeneration and engineering because they can sustain the
continuous release of various cell types and provide a location where new bone-forming cells can
attach and propagate. Scaffolds produced from diverse processes have been studied and analyzed in
recent decades. They are structurally efficient for improving cell affinity and synthetic and mechanical
strength. Carbon nanotubes are spongy nanoparticles with high strength and thermal inertness, and
they have been used as filler particles in the manufacturing industry to increase the performance
of scaffold particles. The regeneration of tissue and organs requires a significant level of spatial
and temporal control over physiological processes, as well as experiments in actual environments.
This has led to an upsurge in the use of nanoparticle-based tissue scaffolds with numerous cell
types for contrast imaging and managing scaffold characteristics. In this review, we emphasize
the usage of carbon nanotubes (CNTs) and CNT–polymer composites in tissue engineering and
regenerative medicine and also summarize challenges and prospects for their potential applications
in different areas.

Keywords: CNTs; nanoparticles; tissue engineering; drug delivery; regenerative medicine

1. Introduction

Rapid developments in nanotechnology (NT) and nanomechanical engineering should allow the
use of more efficient production processes with lower energy usage and fewer negative environmental
impacts. The latest research developments have involved the design and development of tissue
engineering and regenerative medicine solutions. Carbon-based nanotubes, liposomes, and dendrimers
are major examples of nanomaterials (NMs) intended for medicinal use. NMs can be either raw
materials, intermediates, or mixtures of processed substances and unprocessed molecules, in which 50%
of the molecules have diameters varying from 1 to 100 nm. NMs are used in surgeries and preventive
medicine. For example, nanobeams are employed as parts of immune sensors or for stabilizing polymer
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composites. The small size of these materials gives rise to their material strength and functionality, but
it also leads to significant concerns [1–3].

Nanoparticles (NPs) provide a higher degree of control over scaffold attributes, such as the
capability to tune their mechanical strength and manage the release of active agents [4–8]. Significant
disadvantages include a lower solubility, unpredictable biological activity, and shorter lifespans of
biologically active compounds for cell development, such as antagonists and genetic materials [4–8].
The fabrication of NMs involves the synthesis of NPs that are extensively utilized for a broad range
of products. It is essential to form NPs with sizes that vary from 10 to 1000 nm and are stable as
colloids [9]. Particle formulations have certain benefits, such as extremely high surface potential and
large specific surface areas with adjustable particle sizes, which makes them popular for use in tissue
engineering and regenerative medicine for scanning, mechanical property improvement, biological ink
additives, and antibacterial and biological products [8,10].

Furthermore, allograft bone grafting can only provide substrates due to cell loss and modified
growth factors. Synthetic bone contains hydroxyapatite, collagen, and a composite resin scaffold [11];
nevertheless, there are only a few materials that can be used for synthetic bones. Scaffold processing is
important for regenerative engineering, and there is a growing body of scientific literature on the use
of carbon nanotubes (CNTs) as substrates [12]. In jaw regenerative medicine, wet lab research in 2002
showed that a polylactic acid–CNT composite enhanced the propagation of osteoblast cells [10,13],
and subsequent studies showed that polycarbonate–urethane composites improved the adhesion of
osteoblast cells [14,15]. Tissue engineering scaffolds require a material in which cells can multiply,
enhance variation by cell growth features, and sustain mechanical strength to produce better outcomes
than autografts. Numerous lab-based studies have displayed their specific functions on jaw-related
cells [16].

The aim of this review to explain the importance of CNTs in bone tissue engineering and
regeneration. Recent advances in CNTs and CNT-based composites that have investigated bone
scaffolds or strengthening agents are discussed. Next, the successes of CNT-based composites for
tissue engineering and regeneration are summarized and discussed. The remaining challenges are
highlighted, and future directions for the growth of CNTs and their composites for tissue engineering
and regeneration are provided.

2. CNTs in Tissue Engineering and Regenerative Medicine

2.1. CNTs in Tissue Engineering

CNTs are carbon allotropes that comprise carbon molecules exclusively bound to one another by
sp2 bonds [17]. CNTs may be viewed as one sheet of graphene wrapped into a cylindrical nanoparticle.
They are typically subdivided into single-walled and multiwalled carbon nanotubes (MWCNTs).
Single-walled CNTs comprise several dense tubular graphene sheets, and MWCNTs comprise various
concentric tubular sheets. Generally, single-walled CNTs display a tightly packed hexagonal array
around 1 nanometer in diameter and more than 1 mm in thickness. MWCNTs have a structure identical
to porous graphite fibers and a larger diameter than single-walled CNTs, of between 2 and 100 nm [18].
On a cellular structure basis, CNTs in composites can be made from biocompatible nanocrystals (NCs)
of collagen fibrils for the reconstruction and engineering of bone cells. These may enhance effective
cellular communication with enzyme-binding proteins [19–22] and control cell physiology and increase
stem cell distinction due to their favorable high cell constants; osteogenic differentiation and apatite
mineralization stimulation to facilitate bone regeneration are depicted in Figure 1.

Scientists have shown that MWCNTs can oxidize and aggregate enzymes such as rhBMP-2,
stimulating the activation of alkaline phosphatase and genomes Cbfa1 along with COLIA1, which then
encourages osteogenic discrepancy of cultured cells of mesenchymal stem cells distinguished from
human adipose. Additionally, MWCNTs often stimulate in vivo ectopic bone regeneration in mice
dorsal muscles, indicating their ability to control downstream gene therapy reactions without adding
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exogenous signaling molecules or other specific ligands. Thus, this CNT material is also conducive to
renewable bone tissue cultivation. The axial strength, resistance, and modulus of elasticity of natural
CNT scaffolds are much greater than those of bone cells that are not correctly connected to body cells.
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Figure 1. Schematic representing carbon nanotubes (CNTs) as a nanocomposite-based scaffold for use
in bone regeneration and tissue engineering.

Carbon nanotubes can only perform their distinctive mechanical, electrical, and surface
characteristics via structural integration with the other components, which then increases the overall
physicochemical properties of the composites and joint viscosity [23]. Figure 1 outlines the uses of
CNTs in tissue engineering and regeneration.

2.2. CNTs in Regenerative Medicine

CNTs have strong functional and morphological features and are of great importance for bone
implants and design regarding biomaterials (BMs); therefore, the therapeutic use of CNTs for managing
orthopedic disorders also faces many obstacles. Currently, the toxicity and porosity of CNTs are the
most important problems restricting their use. The toxicity of CNTs is demonstrated in Figure 2a [17].

CNTs are hydrophobic due to nonpolar covalent bonds and lipophilicity [24–28]. Such enhanced
surface connections, supported through van der Waals interactions, along with rod-designed
frameworks, generally form CNT aggregates, which can significantly reduce the mechanical and
electrothermal features necessary for bone regenerative medicine [29–31]. The main goal is to prevent
CNT agglomeration and obtain optimal dispersions in a polymeric medium [32,33].

Numerous studies have shown that functionalization is the most appropriate method to improve
CNT exteriors in severely acidic environments [34–36]. Covalent functionalization was used to create
novel hydrogen bonds on the nanoparticle surfaces to obtain a certain chemical response, such as
hydrogenation, oxidative stress, or alkylation. It is possible to integrate covalently functionalized
CNTs into different composites to prepare carbon-based polymeric materials with increased hydrogel
stability and stronger dispersibility [37,38]. They can also be used to oxidize noncovalent CNTs via
π–π interactions, hydrogen bonds, and van der Waals forces to adsorb. Moreover, they bond to specific
functional groups, including phenyl, hydroxyl, alkenyl, and alkyl groups. The lipophilic portion
may communicate with the hydrophobic component of amphiphilic substances such as solvents,
polymers, or biological particles [39,40]. Polar solvents, for example, dimethylacetamide, alcohol,
and dimethylformamide, ensure a stable dispersion by stimulating greater repulsion between carbon
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nanoparticles. The use of surfactants and various stabilizing agents helps to form stable dispersions
of CNTs.

Even though nanofibers have potential applications in tissue engineering, their toxicity cannot be
disregarded. Nanomaterials can affect cells by developing reactive O2 species and cause apoptosis
by stimulating immune reactions and chronic inflammation [41–43]. Previous studies have also
shown that the dimensions, surface area, assemblage, process conditions, and photocatalytic process
impurities impact the cytotoxicity and behavior of nanoparticles in living organisms [44,45]. Several
organizations have shown that the diameter and length of nanoparticles have a substantial effect on
their toxicity [46]. Depending on their size, lengthier nanotubes in tissues and organs are more likely to
trigger immune responses and granuloma creation than shorter CNTs. The cytotoxicity of single-walled
tubes was greater than that of multiwalled CNTs (MWCNTs), and toxic effects were higher for smaller
MWCNTs than larger ones. Polyethylene glycol (PEG)–MWCNT composites exhibit biocompatibility
on bone-marrow-derived stem cells of rats: PEG–MWCNT caused insignificant damage to DNA (the
comet assay in Figure 2b illustrates the circular shape evenly after electrophoresis) and the dead cell
rate of stem cells was low (Figure 2c) [47].
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Figure 2. (a) Several cellular responses to CNT-induced toxicity. Adapted with permission from [17];
(b) live/dead cell assay of a polyethylene glycol–multiwalled CNT (PEG–MWCNT) composite (dead
cells displayed in red); (c) the comet assay of PEG–MWCNT. Adapted with permission from [47].

3. CNT–Polymer Composites for Tissue Engineering and Regenerative Medicine

3.1. Formation and Properties of CNT–Polymer Composites

3.1.1. Natural Polymers

Because of their unusual bioactivity and high conductivity, organic biological polymers such as
fibrin, chitosan, cellulose, and hyaluronic acid have been used as jaw supports and implantable devices.
Nevertheless, their uncontrollable thermal degradation and low mechanical stability are indeed an
ambiguity when designed to simulate the biological properties of organic matrices of bone cells.
Adding CNTs to a polymer matrix increases the advantageous properties of substances by creating
stable hydrogen bonds. To date, certain developments have been made in the use of carbon-based
biological polymer composites for skeleton tissue engineering.
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Chitosan is a polysaccharide obtained from the deacetylation of chitin. Due to its better
biocompatibility, degradation, and antimicrobial activities, chitosan has shown a prominent role
as a successful nanomaterial with widespread prospects [48]. Chitosan can be readily incorporated into
different shapes and formulations for cellular proliferation and osteogenesis. Its water-soluble exterior
helps to accumulate different negatively charged proteoglycans and facilitates post-implantation
mineralization of the skeleton matrix [49,50]. CNTs aid individual chitosan molecules in becoming
universally distributed in the chitosan matrix. Surface modification of chitosan and CNTs can improve
the interactions between natural and inorganic phases, and high energy is required to overcome the
biochemical bonding energy, which enhances the mechanical characteristics of the substrates.

The study showed that when 1 wt% MWCNTs was distributed uniformly across the chitosan medium,
the elastic modulus and compressive strength point of the MWCNTs were distributed. Likewise, the study
showed that a chitosan system mixed with just 0.8 wt% MWCNTs showed major tensile modulus and
strength changes from 1.08 to 2.15 GPa and 37.7 MPa to 2.15 GPa, respectively. In other studies, it was
revealed that using chitosan with CNT composites was an elegant approach for enhancing the useful
material characteristics of hyaluronic acid (HA) in bone regeneration (Figure 3a–c) [51]. Figure 3d shows
the natural polymers that have been used in tissue engineering and regenerative medicine.
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Figure 3. (a) SEM images of reduced graphene oxide (rGO), CNT and calcium phosphate cement (CPC)
(RGO–CNT–CPC); (b) the mechanical flexural strength and (c) compressive strength of patterns with
and without microwave treatment. Reproduced with permission from [51]; (d) applications of natural
polymers in bone tissue regeneration.

Scientists discovered that the weight ratios of chitosan to MWCNTs affected the compressive and
elastic subsystems of chitosan with multiwalled hydroxyapatite composites, expanding sharply from
33.2 to 105.5 MPa and from 509.9 to 1089.1 MPa, respectively. Since artificial mixtures cannot link
organic bone in a resilient manner, chitosan–nanotube composites also have good opportunities for
enhancing the distribution and configuration interplay between carbon tubes and chitosan. From a
biological perspective, biocompatible chitosan–CNT composites demonstrate nontoxic effects and facilitate
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the differentiation of stem cells to developing skeletal cells [52]. In an in vivo experimental study of
chitosan–CNT membranes inserted into rats with cranial defects, this polymer did not cause chronic
inflammation over five weeks [53,54]. In another tricomposite scaffold, Ag sulfadiazine (AgSD) MWCNTs
were integrated into chitosan (CS)-based nanofibers and used as a coating to enhance the antimicrobial
activity of magnesium, zinc, and calcium catecholamine alloy implants for skeletal therapy (Figure 4) [55].
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Figure 4. (a) SEM images of Mg alloys coated with chitosan–Ag sulfadiazine (CS/AgSD)–MWCNT
nanofibers; (b) TEM images of CS/AgSD–MWCNT nanofibers; (c) the antibacterial activity of
CS/AgSD–MWCNT nanofiber coatings for Esherichia coli and Staphylococcus aureus bacteria ((A1)
is uncoated mg alloy, (A2) is CS, (A3) is CS/0.25AgSD-MWCNTs, (A4) is CS/0.5AgSD-MWCNTs,
(A5) is CS/1.5AgSD-MWCNTs, and (control) is doxycycline); (d) the antibacterial mechanism of
CS/AgSD–MWCNT nanofiber coatings. Reproduced with permission from [55].

Collagen is the primary organic component of the skeleton, and it is essential for bone strength, hardness,
and biocompatibility. Because of its bioremediation, lower antigenicity, and excellent biocompatibility,
collagen has been proposed as a nanomaterial for reconstructing bone tissue [56–58]. Natural collagen is
slightly softer and cannot be used directly as a bone substitute [59]. A mixture of CNTs can enhance the
stability of collagen components, making them ideal for use in bone regeneration as biocompatible structural
scaffolds. The study [60] also demonstrated that the integration of covalent bonds with workable CNTs
in collagen-based frameworks is an efficient method to improve structural performance by reorganizing
collagen and establishing robust heavy fiber glasses, since covalently functionalized CNTs with collagen
fibers can promote the production of broader packages of fibrils. It has been shown that the use of CNTs in
collagen networks facilitates bone differentiation and regeneration [61,62].
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3.1.2. Synthetic Polymers

Large decomposable polymers have been reported as scaffolds and implants for tissue engineering.
Nevertheless, the use of these substances for artificial biomaterials is restricted in repairing bone cells
due to their weak mechanical strength, low osteoinductive efficiency, and complicated applications.
CNT materials have been used as reinforcing materials to incorporate their physicochemical properties
with synthesized nanomaterials, to obtain ultimate composite scaffolds for bone tissue regeneration.

Along with its excellent biocompatibility, durability, drug solubility, and ease of manufacture,
polycaprolactone (PCL), a highly crystal-like polymer, is commonly used as a tissue-engineering
carrier for bone tissue [63–66]. Nevertheless, it exhibits a high hydrophobicity, weak cell affinity, poor
bioavailability, and inadequate load-bearing physical characteristics. Structural formulations with
other components, such as CNTs, can be used to overcome these limitations [67,68]. For example, a
scaffold made from PCL and MWCNTs was designed by a bend-assisted extrusion additive fabrication
and provided evenly distributed pores (Figure 5) [69].
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Figure 5. (a) SEM images showing the cell morphology of the polycaprolactone (PCL)–MWCNT
scaffold: (a) top-view (scale bar: 500 µm) and (b) cross-section view (scale bar: 300 µm); (c) AFM images
showing the PCL–MWCNT scaffold (scale bar: 5 µm); live/dead assay at (d) day 1 (scale bar: 200 µm)
and (e) day 21 for the PCL–MWCNT scaffold (scale bar: 200 µm); (f) homogeneous distribution of cells
on the surface of the PCL–MWCNT scaffold (scale bar: 50 µm). Reprinted with permission from [69].
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Poly(lactide-co-glycolide) (PLGA) is one of the most common artificial materials, even though
they cannot withstand heavy components such as bone substitutes. Adding CNT to PLGA can help to
overcome poor mechanical characteristics. Scientists [70] have shown that a three-dimensional PLGA
membrane containing just 3% of liquid-dispersible MWCNTs had substantially improved compressive
properties and a modulus that was higher than that of pure PLGA scaffolds. It also showed great
cellular uptake, propagation, and mineralization.

An environmentally friendly aliphatic polyester derived from a plentiful and sustainable energy
source is polylactic acid (PLA). PLA has simple molecular effectiveness, controllable deterioration,
and great histocompatibility. It is a natural material used in bone engineering and bone tissue
regeneration. Nonetheless, PLA’s intrinsic brittleness and low thermal stability render it incapable
of withstanding large objects or stimulating cell growth. Integrating CNT into a matrix material can
maximize its mechanical and surface characteristics, such as functionalization, thereby encouraging
cell viability. For example, a PLA-based CNT–carboxylic acid composite was formulated using melt
mixing and showed increased tensile strength and elasticity at breakage, as well as tensile strengths and
thermal conductivity that were higher than that of pure PLA [71]. Likewise, a pyridine-end-functional
poly-L-lactic (PLLA) system [72] effectively dispersed MWCNTs for biocompatible applications.

3.2. Applications

CNTs have shown good efficacy in treating infections because they act as nanocarriers of
medications, genes, as receptors, as well as other delivery methods. Because of their special
characteristics, CNTs have received great interest in providing new methods for treating bone
infections such as osteoporosis, nonunion skeletal deficiencies, myelomatosis, and bone tumors [73–75].

A study by Yao et al. used CNTs and silk fibronectin to alter nano-HA scaffolds by frozen processing
and cross-linking to mount dexamethasone (DEX). The application of nanotubes improved the physical
and biocompatibility using NHA or PA66 scaffolds, and their carrying capacity and permeability
are suitable for bone regeneration. This DEX-laden support showed an osteogenesis-stimulating
outcome using stem cells, and DEX had the highest concentration of 1 mg/mL. Similar to bone marrow
mesenchymal stem cells (BMSCs), CNTs exhibit a wider framework area, and a comparatively higher
drug loading can be achieved if medications are immobilized into pipe holes or fixed to the layers [76].

Researchers have made NPs based on chitosan–CNTs for administering low doses of isoniazid
to manage bacterial ulcers. Wet lab analysis revealed that NPs from chitosan–CNTs substantially
expanded the release time to seven days and stabilized the isoniazid release profile while maintaining
isoniazid’s biological role. The mouse prototype of a tubercular ulcer revealed that nanoparticles
transported isoniazid to the ulcer site and killed Mycobacterium tuberculosis. Such results demonstrated
their ability to lower the cytotoxicity of isoniazid and increase its sensitivity. Such carbon-tube-based
NCs may be overloaded with anticarcinogenic medicine. Thus, the production of isoniazid-loaded
chitosan–CNT (INH–CS–CNT) nanoparticles is a novel approach for treating skeletal deficiencies and
secondary injuries [77].

The sustained release of a medication directly affects its efficiency. The use of CNTs as a medicine
delivery system can overcome existing drug discovery drawbacks, such as low drug solubility, fast
inactivation, and decreased bioactivity. Research has shown that CNT-containing composites have
strong sustained release characteristics and extended optimum release [78]. Costantini et al. suggested
replacing bone with nanotubes, chitosan, and hydroxyapatite to monitor the exposure of divergent
standard drugs such as ibuprofen, isothiocyanate–dextran fluorescein, and ibuprofen sodium. In
conjunction with chitosan, the introduction of CNTs minimized the maximum leakage of organic
compounds, ibuprofen, and ibuprofen sodium for 48 h. Upon introduction, the drug relief of the
water-soluble molecule fluorescein isothiocyanate-based dextran was smaller than those of others. The
findings demonstrated that CNTs can regulate the release of hydrophilic drugs with both higher and
lower molecular masses, which is a valuable multidisciplinary drug discovery platform for skeletal
tissue engineering [79].
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Lu et al. designed superparamagnetic-like CNT hydroxyapatite composite scaffolds. The fluid-like
structure displayed excellent mechanical strength and an ideal pore diameter for osteoconduction and
bone formation, with enlarged particles of 1 to 2 mm and tiny pores of 20 to 300 µm. Interestingly, these
porous CNT–hydroxyapatite scaffolds displayed superparamagnetic behavior, with an emu/gram
saturation magnetization that was beneficial for scaffolds to recruit and accumulate stem cells or certain
biologically active molecules in vivo as a development factor [80]. Table 1 provides examples of the
diverse applications of CNTs in skeletal tissues.

Table 1. CNT applications in bone tissue engineering.

No. Materials Used Uses of CNTs Significance Ref.

Natural Polymers

1 Chitosan Nanocomposite films
and jaw skin scaffolds

Enhanced biologically
active characteristics,

tensile strength, and cell
proliferation

[48,81,82]

2 Collagen

Three-dimensional CNT
covered jaw and jaw

repair biological
materials

Improved functionality
and mechanical stability [60,83]

3 Microbial cellulose Bone tissue scaffolds
Enhanced mechanical

characteristics and
proliferation

[84]

4 Silk fibroin Nanocomposite films
Supports jaw cell

adhesion and
development

[85]

5 Collagen–hydroxyapatite
and gelatin–chitosan Jaw scaffold materials

Enhanced stiffness,
elastic modulus,

elongation rate, and cell
viability

[86,87]

Calcium Phosphate

1 Hydroxyapatite Jaw implant materials

Enhanced jaw
integration, mechanical
features, and novel bone

materialization

[88–90]

2 Calcium phosphate Injectable jaw substitutes

Enhanced compressive
strength and

hydroxyapatite (HA)
crystal formation

[51]

3 β-tricalcium phosphate Jaw repair materials Enhanced HA and
apatite formation [91]

Synthetic Polymers

1 Polylactic acid NC materials and jaw
tissue engineering

Enhanced tensile
strength and thermal
solidity and possesses
electrical conductivity

[71,92]

2 Poly(lactide-co-glycolide) Jaw repair and tissue
scaffolds

Exhibits better tissue and
cell compatibility,

enhanced mechanical
strength and
proliferation

[15,70,93]

3 Polycaprolactone Three-dimensional jaw
scaffolds

Enhanced cell
proliferation and tensile

strength
[69,94]
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4. Challenges and Prospects

Although CNTs have a promising future in tissue engineering uses for enhancing biochemical,
mechanical, and electrical characteristics, they also display several shortcomings that restrict their
medical applications. For instance, there is a strong need for technologies and techniques to
assess and evaluate the toxicity, carcinogenic effects, and teratogenic effects of CNTs. Secondly,
the toxicity, carcinogenic, and teratogenic effects of CNTs are both extremely dose-dependent and
exposure-dependent. CNTs are often utilized in nominal amounts, so they are labeled nontoxic. The
biological accumulation of CNTs is well-established. Consequently, any CNTs utilized in the body
can be absorbed and produce side effects in organelles or tumors, or negative effects in reproductive
organs and infants. Furthermore, although various devices use CNTs, there have been some theoretical
and practical holes in the understanding of the various hazards of this nanomaterial. Currently,
nano-specific threat assessments, involving relevant data criteria and research methods, do not yet
have global standards, and CNT risk assessments are tedious and expensive. Companies are generally
dedicated to evaluating the protection of CNT-based products and enforcing the required safety
precautions. The regulatory instruments are not nano-specific. For instance, data specifications
for chemical warnings, classification features, and health data paper marking standards are not yet
commonly available; therefore, preventative measures are required before implementing CNTs, which
can potentially lead to biological accumulation.

5. Conclusions

CNTs display outstanding bioactivity and very well-established chemical surface techniques and
will be extremely useful in many biological devices. CNTs have also been used to improve the electric
pairing among decellularized molecules and increase the proliferation rate of skin cells. The accuracy
of CNTs has also been explored with incredible potential regarding antimicrobial growth. CNTs are
beginning to emerge as outstanding materials that can provide new ideas and prospects for the future
for the rejuvenation and manufacture of bone cells. Nevertheless, to transition from exploratory
findings to clinical procedures, many difficulties need to be overcome. Prospective regenerative
medicine solutions may involve multiple elements to provide complete control over the assimilation,
tracking, and long-term stability of tissue engineering of these elements. Nanoscale drug delivery aims
to develop progressive delivery systems and assess their systemic cytotoxic properties and immune
responses. Such research can best explain the biological compatibility of many nanomaterial delivery
methods, which can guide future research in a cost-effective approach with a higher success rate. To
this end, the distinct types of nanoparticles of various materials include a powerful toolset for tissue
engineering synthetic tissue functionalization.
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