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Abstract: Thiocyanate (SCN−) is a pseudohalide anion omnipresent across mammals and is 

particularly concentrated in secretions within the oral cavity, digestive tract and airway. 

Thiocyanate can outcompete chlorine anions and other halides (F−, Br−, I−) as substrates for 

myeloperoxidase by undergoing two-electron oxidation with hydrogen peroxide. This forms their 

respective hypohalous acids (HOX where X− = halides) and in the case of thiocyanate, 

hypothiocyanous acid (HOSCN), which is also a bactericidal oxidative species involved in the 

regulation of commensal and pathogenic microflora. Disease may dysregulate redox processes and 

cause imbalances in the oxidative profile, where typically favoured oxidative species, such as 

hypochlorous acid (HOCl), result in an overabundance of chlorinated protein residues. As such, the 

pharmacological capacity of thiocyanate has been recently investigated for its ability to modulate 

myeloperoxidase activity for HOSCN, a less potent species relative to HOCl, although outcomes 

vary significantly across different disease models. To date, most studies have focused on therapeutic 

effects in respiratory and cardiovascular animal models. However, we note other conditions such 

as rheumatic arthritis where SCN− administration may worsen patient outcomes. Here, we discuss 

the pathophysiological role of SCN− in diseases where MPO is implicated. 
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1. Introduction 

1.1. Sources, Secretion and Elimination of SCN− 

1.1.1. Exogenous and Endogenous Sources of SCN− 

Thiocyanate (SCN−) is a 58 Da acidic, anionic thiolate molecule that exists in varying 

concentrations (0.01–2 mM) in secreted biological fluids, blood and urine [1–3]. There is significant 

variation amongst individuals with regard to SCN− concentrations in physiologic fluids, and this 

seems due to factors such as diet and smoking habits. Non-smokers have saliva SCN− concentrations 

of 0.5–2 mM, while concentration in smokers average around 3 mM, and some smokers may have 

concentrations as high as 6 mM (Table 1) [4–6]. One report of the SCN− status of U.S. vegetarians and 

vegans showed that vegans have average urine SCN− levels of 0.01 mM, almost double the average 

urine SCN− levels seen in vegetarians, which was 0.006 mM [7]. 

Dietary sources of SCN− include glucosidic cyanogen-rich plants such as almonds, cabbage, kale, 

broccoli, cassava, yam, maize, sugar cane, sorghum and linseed [7,8]. For example, glucobrassicin is 

a type of glucosinolate concentrated in cruciferous vegetables whereby plant-derived myrosinase 

(also known as β-thioglucosidase) mediates the hydrolysis of the glycoside, releasing a glucose and 

forming the unstable intermediate compound 3-indolylmethyl-isothiocyanate [9]. SCN− is 

subsequently released at neutral pH to form the stable product, indole-3-carbinol (Figure 1). Tobacco 

consumption including occupationally-derived smoke intake also contributes significantly to SCN− 

levels [10]. Further, SCN− is also generated from Pseudomonas aeruginosa cyanogenesis, an 

opportunistic pathogen that infects wounds and the lungs of immunocompromised individuals [11]. 

Although SCN− is mostly acquired from dietary sources, some is produced endogenously as a 

detoxification product of the reaction between cyanide (CN−) and thiosulfate (S2O32−) in the liver 

[12,13] (Figure 1). The transfer of a sulfur atom between S2O32− and CN- is catalysed by hepatic 

enzymes, including mitochondrial thiosulfate sulfurtransferase (or rhodanese) and cytosolic 

mercaptopyruvate sulfurtransferase (Figure 2) [14]. Sulfurtransferases are responsible for 80% of CN− 

metabolism [12]. Additionally, oxidation of SCN− into CN− can be mediated by haemoglobin, with 

the resulting CN− further detoxified by vitamin B12 (cobalamin) and its precursor cobinamide, before 

being excreted through the renal system [15–17]. 
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Figure 1. Exogenous thiocyanate (SCN−) production from glucosinolates. 

 

Figure 2. The cyanide detoxification associated endogenous SCN− production pathway [12]. 

1.1.2. Secretion and Elimination of SCN− 

Levels of SCN− in the secreted fluid of mammals can vary considerably depending on numerous 

factors, and can reach up to millimolar concentrations for mucous membranes lining the oral cavity, 

digestive tract and airway [18,19]. 

SCN− is secreted by airway, salivary, mammary, lacrimal and gastric glands, and is also present 

in plasma and urine. Mucosal secretions such as parotid, submandibular and whole saliva, as well as 

gingival crevicular fluid, dental plaque, nasal airway secretions, tears, gastric fluid and lung airway 

fluid can have up to approximately 2 mM SCN−, with saliva having the highest levels [6,18,20]. 

Salivary peroxidase and human lactoperoxidase (LPO) are also present in these secretions, and 
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together with other antimicrobial defences in saliva likely account for the high levels of SCN− found 

[4,5,21]. Airway epithelial and nasal lining secretions, on the other hand, have typically lower levels 

at approximately 0.5 mM SCN− [18,20]. Blood plasma, breast milk and urine have SCN− levels 2 to 50 

orders of magnitude lower compared with the aforementioned mucosal secretions (Table 1) [21]. 

It was proposed that SCN− is concentrated in certain fluids via energy-dependent active 

transport, and this was initially demonstrated in 1956 by Fletcher et al. [22]. In 1982, Tenovuo et al. 

showed that stimulating saliva flow rate via expectoration resulted in increased SCN- concentrations 

when compared with unstimulated saliva collected by drooling, suggesting that SCN- is actively 

transported in salivary glands to maintain salivary SCN− levels upon increased secretion [23]. Active 

transport of SCN− into saliva may also provide a recycling mechanism; as saliva is swallowed 

continuously, SCN− would be reabsorbed into the blood by gastrointestinal uptake and concentrated 

again in salivary glands. 

In human bronchial epithelium, SCN− appears to be transported and concentrated via the 

basolaterally located sodium–iodine symporter (SLC5A5) in a Na+-dependent process [24]. 

Subsequent secretion at the apical membrane is via several separate mechanisms, including: the 

cAMP-mediated cystic fibrosis transmembrane conductance regulator (CFTR); purinergic agonists; 

Ca2+ and interleukin-4 (IL-4) sensitive Cl− channels; the IL-4 sensitive SCN−/Cl− exchanged pendrin 

(SLC26A4) [3,24–26]. 

The half-life of salivary SCN- is reported to be 6–14 days [6,27–30]. While endogenous SCN− does 

enter the glomerular filtrate, there is 90% reuptake and this accounts for the low urine SCN− levels 

found [7,31]. Plasma SCN− half-life in healthy individuals is reported to be from 1 to 5 days, and 9 

days in individuals with renal insufficiency [31]. Due to its long biological half-life and the significant 

differences between smoker and non-smoker saliva, plasma and urinary SCN− concentrations have 

been used as helpful biomarkers for exposure to tobacco or occupational smoke [6,10]. 

Table 1. Ranges of SCN− concentration in various human biological fluids. 
 Non-Smokers (mM) Smokers (mM) Vegan/Vegetarian (mM)  References 

Tears 0.15 - - [32] 

Whole saliva 0.5–2 2–3.6 - [4–6] 

Nasal airway fluids 1–1.2 - - [33] 

Lung airway fluid 0.03–0.65 - - [18,20] 

Breastmilk 0.0001–0.004 - - [34,35] 

Gastric fluids 0.25–0.3 - - [2] 

Plasma 0.03–0.05 0.1–0.2 - [4,6] 

Urine 0.009–0.024 0.33–0.275 0.002–0.05/0.001–0.034 [7,10] 

 

1.2. Role of MPO in SCN- Biochemistry 

Myeloperoxidase (MPO) is a heme homodimeric protein (~146 kDa) with functionally 

independent monomer units consisting of an iron protophorphyrin IX derivative located within the 

heavy chain of each monomer [36]. The heme unit is located within a deep cleft, restricting access of 

the iron atom to hydrogen peroxide (H2O2) [37]. Native MPO contains a heme unit within its active 

site in its ferric (Fe3+) form that can undergo a 2-electron oxidation reaction with H2O2, generating the 

highly reactive oxy-ferryl (Fe4+ = O) heme species containing a porphyrin π-cation radical [38], also 

known as Compound 1. MPO Compound 1 is highly reactive and thus can undergo 2-oxidant 

reduction by halides (e.g., Cl−, Br−) and pseudohalides (e.g., SCN−) to return to its native Fe3+ form 

[39]. This pathway is termed the “halogenation cycle”, yielding hypochlorous acid (HOCl), 

hypobromous acid (HOBr) and hypothiocyanous acid (HOSCN), respectively. Alternatively, 

Compound 1 can convert back to its native Fe3+ state via an independent pathway involving two 

sequential one-electron reductions, yielding the intermediate Compound 2 (Fe4+ = O) heme species in 

a process coined the “peroxidase cycle” [40]. 

The earliest report on the biological significance of SCN− was in 1814 by German physician 

Gottfried Reinhold Treviranus, as he discovered a substance in human saliva that produced a blood-
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red colour when ferric ion was added [21]. In the early to mid-20th century, SCN− had been of 

particular pharmacologic interest as an oral antihypertensive. Since then, multiple researchers have 

identified SCN− as a potentially important factor in health and disease. 

SCN− plays a vital role as a substrate for human peroxidases, including MPO, LPO, salivary 

peroxidase, gastric peroxidase, eosinophil peroxidase and thyroid peroxidase [41]. Most of these are 

present in SCN−-containing extracellular fluids together with H2O2 [41]. These components act in 

concert, regulating innate immune processes as well as resident and transient flora [33]. 

It is important to consider the chain of events in inflammatory lesions that lead SCN− to generate 

the potent bactericidal radical, HOSCN. Nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidase is a multi-subunit enzyme present in neutrophils and macrophages. In inflammation, 

activation of NADPH oxidase catalyses the reaction between oxygen and NADPH, generating 

superoxide anions, a process that has been coined the “oxidative burst” [42,43]. Superoxide in turn 

undergoes dismutation, a process through which the anions are simultaneously oxidised and 

reduced to form H2O2. Dismutation can occur spontaneously or may be catalysed by the enzyme 

superoxide dismutase [39]. Lactoperoxidase in secretions, as well as MPO from degranulating 

leukocytes, catalyse the reaction of SCN− with H2O2 to produce HOSCN, which is highly effective in 

killing microbes in these inflammatory environments through its free radical activity (Figure 3) [39]. 

 

Figure 3. Myeloperoxidase (MPO)-mediated formation of oxidation products, including 

hypothiocyanous acid (HOSCN), HOI, hypobromous acid (HOBr) and hypochlorous acid (HOCl) 

[41]. 

1.3. Halides and the Formation of MPO-mediated Oxidants 

In addition to SCN−, halide ions (negatively charged halogen atoms) such as Cl− and Br− can also 

be oxidised into hypohalous acids following reaction with MPO and H2O2.  

SCN− has a much higher specificity for MPO than Cl−, with specificity constants of 1, 60, and 730 

for Cl−, Br−, and SCN−, respectively, so that SCN− is the preferred substrate for MPO [44]. However, 

plasma SCN− levels are comparatively very low, with normal halide/pseudohalide ion concentrations 

in healthy human plasma at 100–140 mM (Cl−), 20–100 µM (Br−) and 200–250 µM (SCN−) [44]. 

SCN− has potential to become a competitive substrate for MPO when its level is elevated beyond 

normal plasma level, especially in secretions where SCN− levels are much higher. This is in part due 

to its faster reaction rate compared with Cl− and Br− [45]. The second-order rate constants for SCN−, 

Cl− and Br− are 9.6 × 106 M−1s−1, 2.5 × 104 M−1s−1 and 1.1 × 106 M−1s−1, respectively [46]. 

Due to the nature and reactivity of different reactive oxygen species (ROS), HOCl is generally 

considered as a strong oxidant whilst HOSCN is often classified as a weak oxidant [47]. For example, 

the second order rate constants against cysteine residues for HOCl and HOSCN are 3.6 × 108 M−1s−1 

and 7.8 × 104 M−1s−1, respectively. Similarly, HOSCN oxidises glutathione (GSH) with a second order 

rate constant considerably lower than HOCl, with values of 2.5 × 104 M−1s−1 and 1.2 × 108 M−1s−1, 

respectively [48,49]. 
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2. SCN− in Diseases 

SCN− is an important part of human host defence and health, with pharmacological interest 

dating back to 1857, where it was investigated for its clinical use as a hypotensive agent [50]. Use in 

clinical therapies is now restricted, however, due to potential toxic effects. In the 1970s, it was found 

that concentrations of SCN− in fasting gastric juice specimens from human patients increased the 

likelihood of nitrosamine production and this was implicated as a potential contributor to gastric 

cancer [51]. Moreover, chronic toxicity of sodium thiocyanate (NaSCN) was demonstrated in the 

1980s in F344 rats, while high serum concentrations of SCN− were associated with lung cancer [52,53]. 

A more recent population-based cross-sectional study found that concentrations of urinary SCN− 

were significantly correlated with several diseases including cancer, chronic bronchitis, emphysema, 

coughing, wheezing and sleep-related conditions [54]. The positive association of SCN− with cancer 

and lung diseases in a national, population-based study supported previous investigations that 

utilised smaller and non-representative human sample sizes and those that used animals [54]. Recent 

research has focused primarily on respiratory and cardiovascular animal models of disease. 

We now discuss the roles of SCN− in modulating MPO in disease activity and outcome. 

2.1. Positive Effect of SCN− in Disease Outcome 

2.1.1. Cardiovascular Disease 

Cardiovascular disease (CVD) is the primary cause of death worldwide, with the majority of 

CVD deaths related to coronary heart disease (CHD) [55]. CHD is characterised by chronic vascular 

stenosis and subsequent ischaemic injury/end-organ damage, which is primarily mediated by 

inflammatory remodelling of the arterial wall [56]. Endothelial dysfunction is the pre-atherosclerotic 

manifestation associated with invasion of immune cells into the vessel wall and the formation of ROS. 

It is well documented that MPO is enriched in atherosclerotic plaques and plasma concentration of 

MPO is a predictive factor in cardiovascular mortality, following angiography in humans [57,58]. 

The chlorinating activity of MPO is thought to be particularly detrimental during CVD, with 

high density lipoproteins and low density lipoproteins being vulnerable to oxidation by HOCl and 

impairing endothelial function via interference with nitric oxide production [59–61]. HOCl also 

induces endothelial apoptosis [62–65]. It was previously reported that pharmacological inhibition of 

MPO by 4-aminobenzoic acid hydrazide reduces plaque formation in the mouse apolipoprotein E 

knockout (ApoE−/−) model of atherosclerosis [66]. Recently, a new generation of small molecule MPO 

inhibitors significantly reduced the size of atherosclerotic lesion necrotic cores in Ldlr−/− mice fed a 

western diet [67]. Despite the atherosclerotic plaque area remaining similar, MPO inhibition resulted 

in atherosclerotic plaque stabilisation in this murine model. Conflicting with this study is that an 

increase in atherosclerosis was observed in MPO−/− mice [68], and this may suggest that MPO-

generated reactive intermediates might be protective in murine atherosclerosis, or alternatively 

microbial involvement following the complete knockout of MPO, a crucial antimicrobial enzyme. The 

latter possibility is supported by separate work showing pro-atherogenic effects of Porphyromonas 

gingivalis in mice, rabbits and pigs [69]. 

High serum levels of SCN− have been shown to improve long-term survival in patients following 

an acute myocardial infarction [70]. Ironically, smokers who are typically at risk for the early 

development of CVD have increased blood levels of SCN− [71]. Unlike HOCl, HOSCN can be 

specifically degraded via thioredoxin reductase, thereby reducing its oxidative capacity in vivo [72]. 

In this way, HOSCN may skew the oxidative profile of MPO, thus reducing oxidative injury of the 

arterial wall in atherosclerosis. This is consistent with observations in ApoE-/- mice fed a western diet, 

which have reduced atherosclerotic plaque size following 8 weeks of NaSCN treatment [73]. In this 

study, serum proinflammatory IL-6 levels were decreased, while IL-10 levels increased with NaSCN 

treatment, though no effect on monocyte or granulocyte infiltration was observed in the 

atherosclerotic plaque. Similarly, SCN− supplementation in atherosclerosis-prone Ldlr−/− mice 

transgenic for human MPO decreased the total plaque area with no changes to serum MPO 

concentrations between SCN− supplemented and control mice [44]. Collectively, these studies 
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highlight the therapeutic potential for modulating MPO oxidative activity towards the production of 

HOSCN in CHD. 

2.1.2. Respiratory Disease 

SCN− is extensively involved in modulating the oxidative environments of various respiratory 

diseases, reducing the cytotoxic effect of more powerfully oxidative HOCl. For example, Xu and 

colleagues demonstrated the attenuation of MPO cytotoxicity by addition of SCN− to over 100 µM in 

the Calu-3 human lung epithelial, Neuro2a mouse neuroblastoma, human aortic endothelial cells and 

Min6 mouse pancreatic β cell lines [74]. In the same study, dose-dependent inhibition of MPO-

produced OCl− by SCN− was demonstrated, with slight, partial and near complete inhibition achieved 

using 10 µM, 50 µM and 100–400 µM SCN-, respectively [74]. MPO activity in lung tissue has been 

previously linked to the cessation of ciliary beating [75,76] and damage to airway epithelial cells [77]. 

Physiologically, ciliary beating functions as a pathogen-clearing mechanism and impaired ciliary 

beating results in ineffective clearance of pathogenic bacterial species that can promote infection 

[75,78], contributing to various respiratory disorders including cystic fibrosis (CF).  

CFTR is a transmembrane receptor that functions as a chloride channel at the apical membrane 

of epithelial cells and mutations in CFTR results in the clinical presentation of CF [79]. Interestingly, 

CFTR also conducts SCN−, as the anion permeability of CFTR for SCN− exceeds that of Cl− and the 

concentration of SCN- in the airway surface liquid is at least ~30 times its concentration in the serum 

[80,81]. This potentially limits harmful accumulations of Cl− that subsequently form HOCl in the 

presence of MPO, while also facilitating the formation of the effective antibacterial compound 

HOSCN [82]. Unsurprisingly, many researchers have reported a deficiency in the secretion of SCN− 

in both human CF cells [24,82], as well as human patients [20]. While nebulised hypertonic saline 

therapy in CF is reported to improve both SCN− and GSH airway surface liquid levels, a finding which 

was reproduced in a CFTR knockout animal model [23,83], there are no current clinical trials 

evaluating nebulised SCN− to date. 

CF patients are particularly vulnerable to chronic P. aeruginosa airway infections, where the 

subsequent inflammatory response contributes to the major clinical problems associated with CF-

lung tissue destruction [84]. Recent studies have investigated the anti-inflammatory and anti-

bacterial activity of SCN− through the administration of nebulised SCN− in a cystic fibrosis model 

using beta epithelial sodium channel (βENaC) mice [85]. Compared with wild-type counterparts, 

βENaC mice administered SCN− significantly decreased airway neutrophil infiltrate by 68%, and 

therefore by extrapolation, neutrophil-derived MPO, as well as rebalanced GSH redox ratio in both 

lung tissue and the lining fluid of airway epithelium [85]. In contrast, there was no significant effect 

in the reduction in elevated levels of lymphocytes and macrophages in the bronchoalveolar lavage 

fluid of βENaC mice by administration of nebulised SCN−. Moreover, SCN− treatment had no effect 

on other cytokines, including C-X-C motif chemokine ligand 1, IL-1β, TNF-α, IFN-γ, IL-2, IL-4, IL-5, 

IL-6, IL-10, and IL-12 p70. Levels of the granulocyte oxidative activity biomarker glutathione 

sulfonamide and glutathione disulfide were also decreased in βENaC mice [85]. Interestingly, 

compared with wild-type mice, mean SCN− levels in the epithelial lining fluid were decreased by 60% 

in the βENaC mice that were given vehicle treatment. Thus, the administration of SCN− to βENaC 

mice and subsequent reduction in neutrophil infiltrate may be diverting MPO-modulated oxidative 

activity into another biological compartment. 

Both wild-type and βENaC mice were also infected with P. aeruginosa, where SCN− 

administration decreased levels of inflammation, bacterial burden, proinflammatory cytokines and 

3-nitrotyrosine (only in infected wild-type mice) [85]. Bacterial burden was 70% less in wild-type mice 

receiving SCN− as compared with wild-type mice given vehicle treatment. Furthermore, βENaC mice 

had an 80-fold increase in bacteria relative to their wild-type counterparts, with SCN− treatment 

significantly reducing bacterial burden by 92% [85]. The observed increase in neutrophilic influx after 

P. aeruginosa infection suggests a consequential increase in secreted MPO, and with these data in 

consideration, may suggest that bacterial burden is ameliorated potentially through the microbicidal 

action of MPO/SCN− derived HOSCN. 
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Taken together, the evidence suggests a protective role for SCN− in respiratory airways, where 

SCN− supplementation may provide a therapeutic effect in patients with CF. The anti-inflammatory 

action of SCN− may potentially be attributed to a decrease in bacterial burden, as well as in the 

mitigation of neutrophilic infiltration, thereby diverting MPO-mediated damage away from 

pulmonary tissue. 

Respiratory Viral Infections 

In addition to its antibacterial activity that combats respiratory infections, SCN−, as well as 

hypothiocyanite (OSCN−), the conjugate base of HOSCN, holds antiviral effects that have been 

investigated in various in vitro influenza viral systems. OSCN− virucidal activity against the A/H1N1 

2009 pandemic influenza virus has been demonstrated in vitro. Specifically, a dose-dependent effect 

without cytotoxicity was observed where 2 µM OSCN− administered achieved inhibition of viral 

replication by 50% prior to cell inoculation [86]. Moreover, the LPO/H2O2/SCN− system has been 

shown to inactivate the A/Swine/02860/2009 influenza A strain virus within both differentiated rat 

and human tracheobronchial epithelial cells [87], and in a cell-free system [88]. Increased production 

of mucin and dual oxidase expression was demonstrated in the former model associated with 

inactivation of the influenza A virus, whilst the latter model displayed inactivation of the influenza 

A virus strains, including H1N1, H1N2, H3N2, and the influenza B viruses of Yamagata and Victoria 

lineages, though the extent of this inactivation varied between the influenza strain and LPO substrate 

(SCN− or I−) [88]. Nevertheless, it appears that the antiviral capabilities of SCN− and its chemical 

analogues working through the LPO/H2O2/SCN− system are beneficially implicated in inactivating 

numerous influenza virus strains in vitro. In light of the current global pandemic featuring the novel 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), investigating the effects of SCN− on 

SARS-CoV-2 in vitro and perhaps in animal models, may be a potential avenue for further research. 

2.2. Negative Effect of SCN- in Disease Outcome 

2.2.1. Smoking and Respiratory Infections 

As tobacco smoking increases SCN− levels considerably in the mucosa, one may assume that 

tobacco smoke can elicit antimicrobial effects; however, a plethora of evidence exists demonstrating 

that cigarette smoking exacerbates respiratory infections. For example, both passive and active 

smoking are significant risks for the development of upper respiratory tract infections, particularly 

otitis media [89–91] and for the colonisation of Streptococcus pneumoniae within the nasopharynx for 

both children and adults [92]. Furthermore, an examination of several systematic reviews and meta-

analyses found that smokers are twice as likely to contract Mycobacterium tuberculosis infections, 

resulting in the development of, and death from, active tuberculosis, though interpretation may be 

affected due to differences in data from these studies [93–95]. The correlation between increased risk 

for the development of tuberculosis and cigarette smoke has been reported in various countries 

including India [96], China [97], South Africa [98] and Mexico [99]. Additionally, cigarette smoking 

increases the frequency of obtaining community-acquired pneumonia by approximately twofold 

[100] and in immunocompetent non-elderly adults, smoking is the top independent risk factor for 

invasive pneumococcal disease [101]. 

Profound changes in mucous production mechanisms and airway epithelial metaplastic changes 

can instead explain the increased susceptibility of smokers to respiratory infections. Squamous 

metaplasia of respiratory epithelium is common in habitual smokers, where specialised bronchial 

ciliated columnar epithelia is replaced with stratified squamous epithelia [102]. This adaptive 

mechanism provides a physical barrier against noxious chemicals in cigarette smoke but 

compromises normal ciliary function and thereby impacts the drainage of secretory products via 

mucociliary transport. The toxic metabolite of nicotine is also capable of significantly reducing the 

ciliary beat of epithelial cells as demonstrated in an in vitro model [103]. In addition, cigarette smoke 

increases the number and size of goblet cells in the respiratory mucosa, resulting in increased airway 

secretions [104]. Increased respiratory airway secretions coupled with reduced mucociliary transport 
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is thought to increase the risk of respiratory infections, offsetting the benefit increased SCN− may 

offer. 

2.2.2. Autoimmune Rheumatic Diseases 

Rheumatoid arthritis (RA) is a T-cell and autoantibody-mediated autoimmune disease which 

results in joint damage and destruction of cartilage. Neutrophils are prominent in the pathogenesis 

of RA, as demonstrated in numerous RA mouse models as well as human disease [105]. In two 

prominent mouse models of RA, namely K/BxN antibody-mediated arthritis and collagen-induced 

arthritis, a specific role for MPO was indicated by reduced disease severity in MPO−/− mice [106–109]. 

Supporting a role for MPO in human disease, the enzyme is found in both intracellular and 

extracellular locations in the synovium of RA patients [110]. Furthermore, levels of the MPO-

mediated specific oxidation product of HOCl, 3-chlorotyrosine (3-Cl-Tyr), are significantly higher in 

synovial fluids of RA patients compared with those from patients with osteoarthritis [110]. 

Neutrophils from RA patients spontaneously generate neutrophil extracellular traps ex vivo, which 

are associated with MPO release and this suggests a role for leukocyte priming [111]. 

Destruction of cartilage, but not bone, is largely attributed to matrix metalloproteinase (MMP) 

activity in RA [112]. Several MMPs are implicated in the pathogenesis of RA, including MMP-1, 

MMP-2, MMP-3, MMP-8, MMP-9, MMP-10, MMP-12 and MMP-13, and these degrade a broad range 

of matrix components [112]. MMPs are produced as inactive pro-forms which require either serine-

protease cleavage of an inhibitory pro-peptide domain, or oxidation of the critical thiol cysteine 

residue, while both scenarios expose the catalytically active Zn2+ site [113]. The MPO oxidation 

product HOCl has previously been shown to activate MMP-7 by oxidation of the key cysteine residue 

to a sulfinic acid form [114]. While HOCl is a relatively promiscuous oxidant, HOSCN is less reactive 

and highly selective for thiol sites, which represent the major site of reaction [49,115]. Therefore, it is 

plausible that skewing the oxidative profile of MPO from HOCl to HOSCN can result in increased 

oxidation of catalytic Zn2+ sites of pro-MMPs, increasing the overall activity of MMPs. Although the 

respective roles of HOSCN and MMP are not fully elucidated, it is well established that cigarette 

smoke and the associated increase in serum SCN− is linked with increased severity and incidence of 

RA, and that this results in increased intensity and duration of disease, so that fewer smoking patients 

enter full remission [116]. In a rat model of experimental arthritis, sodium/potassium SCN− was 

supplemented to mimic elevated levels of SCN− in the blood, saliva, and urine of smokers [117]. Rats 

supplemented with SCN− showed pro-arthritic and proinflammatory changes when subjected to 

various arthritic-inducing agents. 

Carbamylation is a non-enzymatic post-translational modification, whereby amine or thiol 

groups transform into carbamyl groups via the presence of increased cyanate (OCN−) [118]. OCN− 

forms a natural homeostatic equilibrium in physiological systems, where OCN− concentration is too 

low to allow extensive carbamylation of protein. However, several environmental factors, such as 

smoking, cause a pathophysiological increase in OCN−. Increased SCN− levels from cigarette smoke 

drive MPO Compound 1-mediated competitive oxidation of SCN- to HOSCN and, to a lesser extent, 

OCN− [71,119,120]. The conversion of lysine to homocitrulline is the most commonly described 

carbamylation process, and recently a new autoantibody system has been described in RA. 

Autoantibodies against proteins that contain homocitrulline residues (anti-carbamylated protein 

antibodies) are present in a subset of RA patients and can be independent from anti-citrullinated 

protein antibodies [119,121]. Interestingly, the presence of anti-carbamylated protein antibodies in 

RA patients is associated with more severe joint damage compared with patients who are negative 

for anti-citrullinated protein antibodies [122]. 

From the above, the evidence suggests that SCN− is pro-arthritic via the potential pathway for 

MPO-derived HOSCN to activate pro-MMP at synovial sites, or the MPO/HOSCN-mediated increase 

in local OCN− levels, increasing overall carbamylation of local proteins. 
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2.2.3. Gastrointestinal Disease 

Two main conditions drive inflammatory bowel disease (IBD) where there is chronic 

inflammation in the gut: ulcerative colitis (UC) and Crohn’s disease. A chronic influx of leukocytes 

into the gut mucosa is a major pathological presentation in IBD, which is thought to result from an 

abnormal host immune response to otherwise harmless commensal flora [123]. In the context of UC, 

the extent of neutrophil infiltration correlates with the severity of disease and is incorporated into the 

clinical UC severity scoring method [124]. Moreover, neutrophil depletion in rodents ameliorates 

experimental colitis [125,126]. Further, we earlier demonstrated a role for neutrophil-derived MPO 

in murine experimental colitis, with significant attenuation of disease via pharmacological inhibition 

of MPO [127]. 

It is increasingly recognised that ROS generated during inflammation plays a significant role in 

prolonging gastrointestinal inflammatory cycles and causing gastrointestinal injury. Colonic and 

faecal MPO, present in polymorphonuclear leukocytes, are significantly increased and correlate with 

disease severity in UC patients [128,129]. MPO is a primary source of potent ROS, including 

hypohalous acids HOCl, HOSCN and HOBr in the inflamed colon [130,131]. However, the proportion 

of MPO-oxidants formed during UC or Crohn’s disease is yet to be assessed. Despite this, 3-Cl-Tyr, 

a HOCl-specific biomarker, is significantly increased in colonic and serum samples of IBD patients 

[132]. 

Interestingly, active smokers who have significantly higher SCN− concentrations in body fluids 

also exhibit reduced risk (1.7-fold) against UC and protection from the clinical symptoms including 

reduced flares, less need for steroids and a lower colectomy rate [133]. Thus, we speculated that SCN− 

supplementation would confer protection during experimental colitis by redirection of MPO 

halogenation to favour HOSCN production above HOCl. 

In our recent study, mice were supplemented with NaSCN to closely match levels in human 

smokers [134] before being subjected to colitis in a 3% (w/v) dextran sodium sulfate (DSS) colitis 

model [135]. We observed increased faecal and serum SCN- levels in NaSCN-supplemented mice to 

above IC50 inhibition levels of MPO/HOCl, as determined by HOCl-mediated oxidation of luminol. 

Notably, 3-Cl-Tyr was found to be comparatively lower in colonic samples of SCN--supplemented 

DSS mice. This indicated a reduction in the production of HOCl, potentially diverging MPO 

oxidation production to HOSCN by increased presence of free SCN− ions. 

However, NaSCN supplementation did not attenuate the course of experimental murine colitis. 

No data were collected on mouse activity levels, colon lengths, or colonic histopathology in the SCN−-

supplemented groups. Interestingly, mice supplemented with DSS/SCN− showed marked 

upregulation in thiol synthesis markers Nrf2 and GCLC, indicating that thiol synthesis was enhanced 

in this group of mice and may provide an increase in antioxidant status for the colon during DSS-

insult. Overall, increasing SCN− in the gut and circulation provided minimal protection against active 

experimental colitis. 

3. Conclusions 

SCN− supplementation has been investigated in various disease models (Figure 4). Notably, in 

respiratory and cardiovascular disease, SCN− appears to be protective against disease via direct 

modulation of MPO activity, favouring the production of the HOSCN oxidant. On the other hand, 

SCN− seems to be implicated in the pathogenesis of rheumatic arthritis, while there is limited 

evidence to support a role in IBD. Irrespective of any possible direct roles for MPO in pathogenic 

mechanisms, the potential therapeutic value of SCN− must be carefully considered in the context of 

each specific clinical condition. 
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Figure 4. Schematic overview of SCN− in various human diseases. 
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