Supplementary Materials

Functional characterization of a *Dendrobium officinale* geraniol synthase DoGES1 involved in floral scent formation

Conghui Zhao^{1,2,+}, Zhenming Yu^{1,3,+}, Jaime A. Teixeira da Silva⁴, Chunmei He¹, Haobin Wang¹, Can Si¹, Mingze Zhang¹, Danqi Zeng¹ and Jun Duan^{1,3,*}

- ¹ Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; zhaoconghui@scbg.ac.cn (C.Z.); zhenming311@scbg.ac.cn (Z.Y.); hechunmei2012@scbg.ac.cn (C.H.); wanghaobin17@scbg.ac.cn (H.W.); cans2013@163.com (C.S.); zhangmingze@scbg.ac.cn (M.Z.); (D.Z.)
- ² University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- ³ Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- ⁴ Independent researcher, P. O. Box 7, Miki-cho post office, Ikenobe 3011-2, Kagawa-ken, 761-0799, Japan; jaimetex@yahoo.com
- * Correspondence: duanj@scib.ac.cn; Tel.: +86-020-37252978
- ⁺ These authors contributed equally to this work.

Supplementary Table legends

Table S1. Three candidate GES sequences from the *D. officinale* genome.

Table S2. The reported TPS proteins from other plant species used in the phylogenetic analysis.

Table S3. Gene-specific primers used in the experiments.

Supplementary Figure legends

Figure S1. Transcription levels of *DoGES1*, *DoGES2*, and *DoGES3* in different *D. officinale* tissues.

Figure S2. Agarose gel electrophoresis of cDNA amplification of the DoGES1 gene.

Figure S3. SDS-PAGE analysis of DoGES1 recombinant protein expressed in *Escherichia coli* BL21.

Figure S4. Content of geraniol in semi-open D. officinale flowers at 8:00, 11:00, 14:00, and 17:00.

Figure S5. Putative regulatory *cis*-elements in the *DoGES1* promoter.

Figure S6. Different developmental stages of D. officinale 'Zhongke 5' flowers.

Table S1. Three candidate GES sequences from the *D. officinale* genome.

Name	Sequences
DoGES1	MEEELRPCKRFSSLLLAEQTMQRLLADGAAFSTPVSRRSANYQPSLWDDNYIQSL
	PDGSLDATQVNLWEKLKEEVRHLIDQNKQNDTIELLEYVNTLCQLGISYHFESEIK
	${\it NVLTFIASSMESLSNILKNSLHGSALLFRLLREYGIKALNTREDFLVRSFKNENGSF}$
	KVHIVNDVKGMLSLYEASYLSVEGEDDLDEAMEFTTKHLSNYLKEPSLIHPSLVEQ
	ISHALHLPLHWRMPTLHTMWFIDTYEKQENTNYSLFEFAKLDFNMVQSIYKKEV
	KEMSSWWRSIGLAGDEFSFARDRLMENYFWAMGCALEPHFWRCRKEITKLVSIIT
	TIDDIYDTYGSIEELVLFTNAVDEWKIIEIQSLPNCMRKALLTLINTMNEIAFAFSKE
	KGLDILPQLKRPWGYQCKAYLVEAIWYNTRYIPTLNEYMENAWLSIGTALVLTV
	AYLLSEDLTKEALNSLELYFDVTRYSCMITRLYDDLGTSKDELQRGDIPKSIQCYM
	NETNVSEVVARDHIRKLIKKYWKLFNGEYFSNFNLEESFKRYALNLPRMAQCIYQ
	YGDGYGKPDRETRDRIISSLIKPIPL
DoGES2	MEGDLQSSPPSRRSANYQPTLWDDSYIQSLPDSSLDAAQVNLWEKLNEEVRHLID
	${\tt HTKQKDIIELLEYVNTLCQLGISYHFESEIKNVLTFIASSMESLSNILKNSLHGSALLF}$
	RLLREYGIKALNTREDFLVRSFKNENGSFKVHIVNDVKGMLSLYEASYLSVEGED
	DLDEAMEFTTKHLSNYLKEPLLIHPSLVEQISHALELPLHWRMPRLHTRWFIDAY
	ERQENMNHSLLEFAKLDFNMVQSICKKEVKEMSSWWRSIGLAGDEFSFARDRLM
	ENYFWTMGCTFEPHFWRCRKEITKLASLITTIDDIYDIYGSVEELMLFTNAVNEWK
	ITEIQSLPNCMRKALLAIINTMNDTACAFSKEKGLDILPQLKQAWGDQCKAYLVE
	AIWYNTRYIPTLNEYMENAWLSVAISLVINAAYLLSEDLTKEALNSLEFYFDVTRY
	SSMVTRLYDDLGTSTDELQRGDVPKSIQCYMNETNVSEFVARDHIRQLIKKYWRL
	FNGEYFSNFNLEESFKRYALNLPRMAQCIYQYGDGYGKPDRETRDKIISSLIKPIPL
DoGES3	MEGDLPSSPPSRRSANYQPSLWDDSYIQSLPDSSLDATQINLWEKLNKEARHLIEH
	NKQKDIIELLEYINTLCQLGISYHFESEIKNVLTLIASSIENLSNILKNSLHGSALLFRL
	$\label{eq:linear} LREYGIKALNTSEDFLVRSFKNENGSFKVHIVNDVKGMLSLYEASYLSVEGEDDLD$
	EAMEFTIKHLSNYLKEPLLIHPSLVKQISHAIELPLHWRSPRLHTRWFIDAYERQEN
	MNPSLLEFAKLDFNMVQSICKKEVKEMSSWRRSIGLASDEFSFARDRLMENYFWI
	MGCTFEPHFWRCRKEITKFASLISTIDDIYDIYGSVEELVLFTNAVDEWKIIEIQSLP
	NCMKTTLLALINTMNDIACAFLKEKGLDILPQLKRAWGDQCKAYLVEAIWYNT
	RYTPTLNEYMDNAWLSAAVPLVLTAAYLLSEDLTKQALNSLQFYFDVTRYSSMV
	ARLYDDLETSTDELQRGDVPKSIQCYMNETNVLESVARDHIRQLIKKYWKLLNGE
	YFSNFNLEESFKRYALNLPRMAQCIYQYGDGYGKPDRETKDRIISSLIKPIPL

Species	TPS	Accession ID in NCBI
Santalum album	Monoterpene synthase	ACF24767
S. album	β -bisabolene synthase	AIV42941
S. austrocaledonicum	β -bisabolene synthase	ADO87003
S. spicatum	α -bisabolol synthase	E3W206
Malus domestica	α -farnesene synthase	AAX19772
Prunus dulcis	Geraniol synthase	QEE82241
P. dulcis	(E,E) - α -farnesene synthase	QEE82244
Ocimum basilicum	Geraniol synthase	AY362553
O. basilicum	<i>R</i> -linalool synthase	AAV63789
Vitis vinifera	(-)- α -terpineol synthase	AAS79352
Arabidopsis thaliana	β -caryophyllene/ α -humulene synthase	AAO85539
Cucumis sativus	(E,E) - α -farnesene synthase	Q66PX9
Fragaria vesca	Germacrene D synthase	LOC101314066
S. album	Sesquiterpene synthase	ACF24768
S. spicatum	Sesquiterpene synthase	E3W208
A. thaliana	S-(+)-linalool synthase	Q84UV0
Antirrhinum majus	nerolidol/linalool synthase 1	ABR24417
V. vinifera	(3S)-linalool/(E)-nerolidol synthase	ADR74212
Camellia sinensis	(E)-nerolidol synthase	KY033151
Pinus abies	(<i>E</i>)- α -bisabolene synthase	Q675L6
Abies grandis	(<i>E</i>)- α -bisabolene synthase	AAC24192
P. taeda	α -farnesene synthase	Q84KL5
P. abies	(-)-linalool synthase	Q675L2
P. taeda	(-)- α -terpineol synthase	Q84KL4
Solanum lycopersicum	Copalyldiphosphate synthase	BAA84918
Oryza sativa	<i>ent</i> -copalyl diphosphatesynthase1	Q6ET36
S. lycopersicum	<i>ent</i> -kaurene synthase	AEP82778
O. sativa	Kaurene synthase 1	Q0JA82
S. habrochaites	Santalene and bergamotene synthase	ACJ38409
Clarkia breweri	Linalool synthase 2	AAD19840
V. vinifera	P(E)-nerolidol/(E,E)-geranyl linalool synthase	NP001268004
Actinidia deliciosa	Terpene synthase	ACO40485

Table S2. The reported TPS proteins from other plant species used in the phylogenetic analysis.

Table S3. Gene-specific primers used in the experiments

Name	Sequences (5'→3')	Description
DoGES1-F	ATGGAGGAAGAACTTCGCCCG	Gene cloning
DoGES1-R	TAGAGGAATGGGCTTAATTA	
DoGES1-32a-F	GGCTGATATCGGATCCTATGGAGGAAGAACTTCGCCCG	pET32a vector construction
DoGES1-32a-R	GTGCGGCCGCAAGCTTTAGAGGAATGGGCTTAATTA	
DoGES1-3300-F	CTCGGTACCCGGGGATCCTATGGAGGAAGAACTTCGCCCG	pCAMBIA 3300 vector construction
DoGES1-3300-R	GGCCAGTGCCAAGCTTTAGAGGAATGGGCTTAATTA	
DoGES1-YFP-F	ATTTACGAACGATAGCCATGGCTATGGAGGAAGAACTTCGCCCG	YFP vector construction
DoGES1-YFP-R	AGATCTGAGTCCGGACCATGGTTAGAGGAATGGGCTTAATTA	
DoGES1-qRT-PCR-F	GCCTTTACGAGGCTTCTTATCT	qRT-PCR analysis
DoGES1-qRT-PCR-R	TTGTTCCACTAACGAGGGATG	
DoGES2-qRT-PCR-F	GCTTATGAGAGGCAAGAGAACA	qRT-PCR analysis
DoGES2-qRT-PCR-R	CCACCAACTAGACATCTCCTTAAC	
DoGES3-qRT-PCR-F	TGATGCTTATGAGAGGCAAGAG	qRT-PCR analysis
DoGES3-qRT-PCR-R	TCATCGCTAGCAAGACCAATAC	
DoEF-1 <i>a</i> -F	GCTTGAGAAGGAGCCCAAGT	qRT-PCR analysis
DoEF-1 <i>a</i> -R	CCAACAGCCACAGTTTGTCG	

Gene-specific primers for real-time quantitative reverse transcription PCR (qRT-PCR) were designed by the PrimerQuest online tool (http://www.idtdna.com/Primerquest/Home/Index). The *D. officinale* actin gene (DoEF-1α) was obtained from NCBI (JF825419). F, forward; R, reverse.

Figure S1. Transcription levels of *DoGES1*, *DoGES2*, and *DoGES3* in different *D. officinale* tissues. Different letters above error bars (standard deviation) (n = 10) indicate significant differences between treatments (p < 0.05, Duncan's multiple range test). R, roots; S, stems; L, leaves; F, flowers.

Figure S2. Agarose gel electrophoresis of cDNA amplification of the *DoGES1* gene. M, marker D2000 (M122, GenStar Inc., Beijing, China).

Figure S3. SDS-PAGE analysis of DoGES1 recombinant protein expressed in *Escherichia coli* BL21. Lane 1 indicates empty vector pET32a. Lane 2 indicates the elute of pET32a-DoGES1 protein. M indicates protein marker 10-180 kDa (M221, GenStar Inc., Beijing, China).

Figure S4. Content of geraniol in *D. officinale* semi-open flowers at 8:00, 11:00, 14:00, and 17:00. Each bar represents the mean (\pm standard error, *n* = 10) of three independent biological replicates. Different letters above the bars indicate significant differences (*p* < 0.05, Duncan's multiple range test).

TTGGAGGATTGTAGTCGTCGACCAACGGAGATTTGAAGAATCATAATTGAGCGATGATGGTTGACTATCGACGAAGGTT AGATTTATCATAGTCGGGCAACTAAGGTTGAAATATCATATTTGGTAGTTGATGGAGGTCGTTAGTATGAAAGCTTTATAA ATGTTTAAATTTAAATAAGATAATAAGTCTTTTGATATTTGTTAATGGAACGTGAATATTTTTAAAGACATGTTCCTTGAC TTTTATGCGCTTTGTTAGTCATTGAATACTATTGTCAAAATAATTGATATTATAATCTCTTTAAACAATCAAATTTTAGGCAT GGAGGGAGATTCAAGAGCTAAGAGAAATAAAGAATTCTCTCTTGTATTTTCCAAGCTATCATCGTCGCTGACTGC GCAATCGCCGCCAGCATTGTCTGACTTCTATCAATATTTAACTCAGTTATTGAATTTTAATCATCCTCTTATAGATATCAAA ${\tt TTTTTGTAATTCCTACAAGAAAACTTGG} {\tt CAATTG} {\tt TTCTTAATTCTAAATAATCCTATCTTCAGCAAATGTGAAGAAGGGA}$ AGATATATTATTGTATCTCATATTAATGCAAAAAATAGGATGATGAAAGGATACCATAAAAAATTCATACAATCGGCACA AATCTCGATATATATTTGAATTGAAAAACCTTCAAAATGAAGTTTTTGATCATCCAAACTTTGAGTTTAACAAACTTATATT CGA AGTGA AGTGTTGATGA A ACGA ATCTACCGATGCTACA A A ATGATTCA ATCCA ATTCA A AATGAGCTCA A ATCA AG CTCTTAAGTTATGTTTGGAAACTTTTTAATATAAATTAAATTGATCGAACAACCTCCAATCAAAGCATGCTCATATTCAACT CGAGCAACTAACGAGCCAAATCTAACAAGCACAAGATCACTTGATTTGAACATGATTAAGACATTCAAATATTTGATAA ACAATCCACGGTCAACAAGATCAATATGGACTGTACGATGAAATGCCTTGACTTATGGCCAAATTAACCAAAATGTTCA TCTCAAAAAGCTTATAAATAGTGCCTATGGAGGTTCAATAGTTGAGAAAATTAAATAATTCTCTTTCTACTTCCTAACTGT GTCATAGCCAACTAACACCACTAACAATTATCATCACCACCGCCAAGCTTTTTTCAACATATAGACATATTGTTAGGCTT TGGATTTTTTTTCAATAGACAGGATATTAAACAACAATTCTACCGACAAATTTTTTAGCAAGTAACAGTAGTAATTG CAAAAAGGTTTTTTCCAAGTCTTCTTAAACTAATCAAGCACTAAAATGAAAAATTAGTCTCATTCTGACGGCCATGCAT GTAAAATGCTTTTCACATTCACGAAATAACATATTAATCGAGTTGGGTGAAAGCAACTTTTGGAAGGTAAGTCAAATCC CAAATTTTCTTAATAAAAAAAAAAAAGAGGCTACAAAACAAGTGGGTTATAAATTATGATTGAAAACAACTACGTTCAGAGCA GAGATATTGCTTCATTAGGCCTTTTCCAGCTTTCCTTCTTCATTTCCCCCTTCTGTATTCTTTAATAAGAAGAATG (position 0)

Figure S5. Putative regulatory *cis*-elements in the DoGES1 promoter. The CGTCA-motif is indicated in red at the -1440 position. The MYC motif is indicated in blue at +675, -731, and -1473 positions. PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) was used for the promoter analysis. The initiation codon of DoGES1 gene (ATG) is set as position 0.

Figure S6. Different developmental stages of *D. officinale* 'Zhongke 5' flowers. Three developmental stages of *D. officinale* 'Zhongke 5' flowers, includes budding, semi-open flower, and fully-open flower.