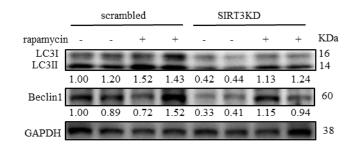
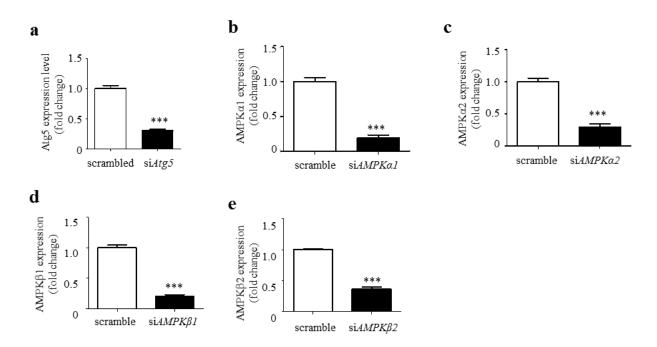
Supplementary Information

SIRT3 acts as a positive autophagy regulator to promote lipid mobilization in adipocytes via activating AMPK

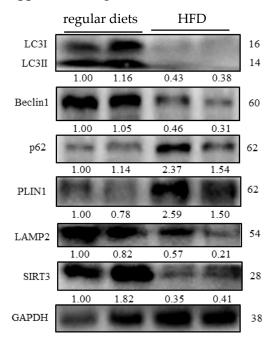
Tian Zhang¹, Jingxin Liu¹, Qiang Tong², Ligen Lin^{1,*}

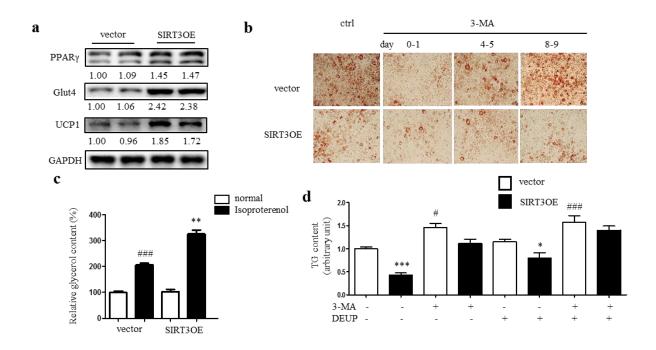

- ¹ State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; yb67520@um.edu.mo (T.Z.); jingxinliu@vip.sina.com (J.L.)
- ² Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States of America; qtong@bcm.edu
- * Correspondence: ligenl@um.edu.mo; Address: 6044 Research Building N22, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China; Tel.: +853-88228041 (L.L.)

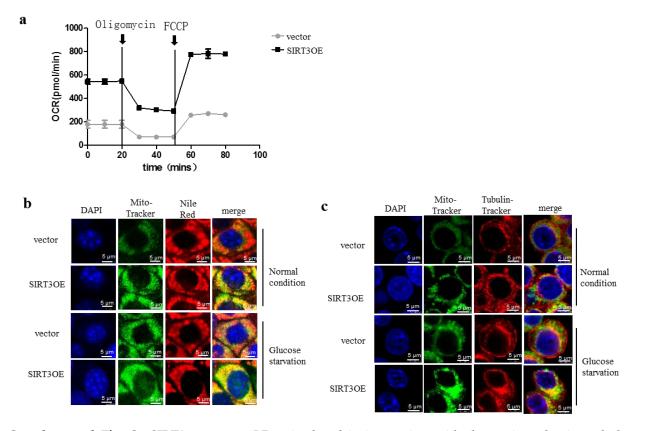
Supplementary Table S1 siRNA sequence used in the current study.


siRNA target	Sense	Anti-sense	Catalog No.
Atg5	GCUACCCAGAUAACUUUCUTT	AGAAAGUUAUCUGGGUAGCTT	#1080
LAMP-2A	GCCGUUCAGUCCAAUGCAUTT	AUGCAUUGGACUGAACGGCTT	#215
ΑΜΡΚα1	GCCGACCCAAUGAUAUCAUTT	AUGAUAUCAUUGGGUCGGCTT	#1250
АМРКа2	GCAGUGGCUUAUCAUCUUATT	UAAGAUGAUAAGCCACUGCTT	#1059
ΑΜΡΚβ1	GCCAGCUUGGCACAGUUAATT	UUAACUGUGCCAAGCUGGCTT	#610
АМРКβ2	CCAGUCAGCUUGGAACAAUTT	AUUGUUCCAAGCUGACUGGTT	#608

Antibody	Source	Vendor	Catalog No.
acetylated-lysine	Mouse	Protein Technology	#9441
АМРКα	Rabbit	Cell Signaling Technology	#2532
AMPKa1	Rabbit	Cell Signaling Technology	#5832
ΑΜΡΚα2	Rabbit	Cell Signaling Technology	#2757
ΑΜΡΚβ1	Rabbit	Cell Signaling Technology	#12036
ΑΜΡΚβ2	Rabbit	Cell Signaling Technology	#4148
p -AMPK α (Thr172)	Rabbit	Cell Signaling Technology	#50081
Atg5	Rabbit	Cell Signaling Technology	#12994
Beclin1	Rabbit	Cell Signaling Technology	#3495
HSC70	Mouse	Cell Signaling Technology	10654-1-AP
LAMP-2A	Rabbit	Cell Signaling Technology	10397-1-AP
LC3	Rabbit	Cell Signaling Technology	#12741
PLIN1	Mouse	Cell Signaling Technology	#9349
p62	Rabbit	Sigma-Aldrich	P0067
SIRT3	Rabbit	Protein Technology	10099-1-AP
ULK1	Rabbit	Cell Signaling Technology	#8054
<i>p</i> -ULK1 (Ser555)	Rabbit	Cell Signaling Technology	#5869
GAPDH	Rabbit	Santa Cruz Biotechnology	sc-25778


Supplementary Table S2 Antibodies used for Western blots.


Supplemental Fig. S1. SIRT3KD and scrambled 3T3-L1 cells were treated with or without rapamycin for 16 h. Expression of autophagy related proteins was analyzed by Western blots. GAPDH was used as a loading control.


Supplemental Fig. S2. (a) Quantitation of Atg5 protein expression in scrambled and si*Atg5* cells. Data represented means \pm S.D., n = 6. ***P < 0.001 scrambled versus si*Atg5* cells. (b) Quantitation of AMPK α 1 protein expression in scrambled and si*AMPK\alpha1* cells. Data represented means \pm S.D., n = 6. ***P < 0.001 scrambled versus si*AMPK\alpha1* cells. (c) Quantitation of AMPK α 2 protein expression in scrambled and si*AMPK\alpha2* cells. Data represented means \pm S.D., n = 6. ***P < 0.001 scrambled versus si*AMPK\alpha2* cells. Data represented means \pm S.D., n = 6. ***P < 0.001 scrambled versus si*AMPK\alpha2* cells. (d) Quantitation of AMPK β 1 protein expression in scrambled and si*AMPK\beta1* cells. Data represented means \pm S.D., n = 6. ***P < 0.001 scrambled versus si*AMPK\beta1* protein expression in scrambled and si*AMPK\beta1* cells. Data represented means \pm S.D., n = 6. ***P < 0.001 scrambled versus si*AMPK\beta1* cells. (e) Quantitation of AMPK β 2 protein expression in scrambled versus si*AMPK\beta2* cells. Data represented means \pm S.D., n = 6. ***P < 0.001 scrambled versus si*AMPK\beta2* cells. Data represented means \pm S.D., n = 6. ***P < 0.001 scrambled versus si*AMPK\beta1* cells. (e) Quantitation of AMPK β 2 protein expression in scrambled means \pm S.D., n = 6. ***P < 0.001 scrambled versus si*AMPK\beta2* cells. Data represented means \pm S.D., n = 6. ***P < 0.001 scrambled versus si*AMPK\beta2* cells.

Supplemental Fig. S3. The expression of LC3, Beclin1, p62, PLIN1 and LAMP2A in epididymal WAT from regular diet- and HFD-fed mice. GAPDH was used as a loading control.

Supplemental Fig. S4. (a) The expression of PPARγ, GLUT4 and UCP1 in SIRT3OE and vector cells. (b) The vector and SIRT3OE adipocytes were treated with DMSO (ctrl) or 3-MA (at day 0, 6, and 8, respectively) for 24 h. Oil Red O staining was performed on day 10 post differentiation. (c) Relative glycerol content in vector and SIRT3OE adipocytes under both normal and isoproterenol-induced conditions. White: normal; black: isoproterenol. ***P* < 0.01, vector versus SIRT3OE cells; ###*P* < 0.001 normal versus isoproterenol treatment. (d) TG content in vector and SIRT3OE adipocytes. After fully differentiation, cells were treated with DMSO (vehicle control), 3-MA, DEUP, or combination of 3-MA and DEUP for 24 h. **P* < 0.05 and ****P* < 0.001 vector versus SIRT3OE cells; #*P* < 0.001 vehicle versus treated cells. Data represented means ± S.D., *n* = 6.

Supplemental Fig. S5 SIRT3 promotes LD–mitochondria interaction with detyrosinated microtubules under nutrient starvation. (a) OCR of vector and SIRT3OE cells under baseline and oligomycin and FCCP induction condition. (b) Confocal images of vector and SIRT3OE cells under normal condition or glucose starvation status. Nile red (red) and mitotracker (green). Scale bar = 5 μ m. (c) Confocal images of vector and SIRT3OE cells under normal condition tubulin Tracker (red). Scale bar = 5 μ m.