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Abstract: Multiple mRNA isoforms are often generated during processing such as alternative splicing
of precursor mRNAs (pre-mRNA), resulting in a diversity of generated proteins. Alternative splicing
is an essential mechanism for the functional complexity of eukaryotes. Temperature, which is involved
in all life activities at various levels, is one of regulatory factors for controlling patterns of alternative
splicing. Temperature-dependent alternative splicing is associated with various phenotypes such as
flowering and circadian clock in plants and sex determination in poikilothermic animals. In some
specific situations, temperature-dependent alternative splicing can be evoked even in homothermal
animals. For example, the splicing pattern of mRNA for a cold shock protein, cold-inducible
RNA-binding protein (CIRP or CIRBP), is changed in response to a marked drop in body temperature
during hibernation of hamsters. In this review, we describe the current knowledge about mechanisms
and functions of temperature-dependent alternative splicing in plants and animals. Then we discuss
the physiological significance of hypothermia-induced alternative splicing of a cold shock protein
gene in hibernating and non-hibernating animals.
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1. Introduction

Alternative splicing of precursor mRNAs (pre-mRNAs) is a process in which exons, parts of
exons, and/or parts of introns are combinatorially included into mature RNA [1–6]. As a result of the
process, multiple mature mRNAs are generated from a single gene [7–9]. Proteins translated from
alternatively spliced mRNA isoforms are different from the authentic protein in structure, function,
and thus various properties including intracellular localization, enzymatic activities, binding behaviors
and channel functions [5]. In some cases, alternative splicing creates not only a functionally active
variant but also an inactive one, and the inactive variant depresses the functions of the active variant
(so-called dominant negative effect) [5]. It is also possible that some alternatively spliced transcripts
are non-coding but modulate other RNAs by competing with them for their regulators [1]. Hence,
alternative splicing is an essential mechanism for the functional complexity of eukaryotes.

Splicing patterns can be changed in response to environmental factors including temperature.
Temperature is a fundamental physical quantity that is involved in all life activities at various
levels [10]. In plants, environmental temperature affects survival, growth, and fitness [11]. Since cellular
temperature in plants would directly reflect the environmental temperature, it can be expected that
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temperature-dependent changes in alternative splicing patterns play a key role in these adaptive
responses. In contrast, the temperature of mammalian organs such as the heart and brain is maintained
within a narrow range by a homeostatic mechanism [12]. Thus, it seems reasonable to assume that
temperature-dependent regulation of alternative splicing is largely indispensable for mammalian cells.
However, in some specific situations, temperature-dependent alternative splicing can be evoked even
in homothermal animals. For example, we found that the splicing pattern of mRNA for a cold shock
protein, cold-inducible RNA-binding protein (CIRP or CIRBP), is changed in response to a marked
drop in body temperature during hibernation of hamsters [13,14]. The temperature-dependent splicing
regulation of CIRP transcripts was initially considered to be specific for hibernating animals but was
later shown to occur commonly in rats and mice, which are non-hibernators [15]. Here, we review the
current knowledge about mechanisms and functions of temperature-dependent alternative splicing in
plants and animals. Then we discuss the physiological significance of hypothermia-induced alternative
splicing of cold shock protein gene in hibernating and non-hibernating animals.

2. Regulation of Gene Expression by Temperature-Dependent Alternative Splicing

Multiple mRNA isoforms are often generated by alternative splicing of pre-mRNA, resulting in
the diversity of generated proteins [7–9]. Various mechanisms for the regulation of alternative splicing
are known [1,3,4,6]. Several studies have demonstrated that changes in temperature affect pre-mRNA
splicing [16–18]. Temperature-dependent alternative splicing is involved in various functions in both
plants and animals (Table 1). In many cases, regulatory systems in plants such as flowering and
circadian clock has been reported. There are also reports about temperature-dependent alternative
splicing in animals including mammals.

2.1. Flowering

In response to changes in ambient temperature, plants show multiple phenotypes such as stem
elongation, leaf hyponasty, and flowering [19–22]. These thermal responses are regulated by various
genes [22]. Among the various phenotypes, thermal control of flowering has been extensively studied
because it is directly associated with reproductive success and crop productivity [21,23]. Researches on
the regulation of flowering have indicated that endogenous and exogenous factors may be integrated
to create a developmental switch in plants [24,25]. In recent decades, key regulatory molecules of
flowering and their targets have been identified in Arabidopsis [25].

Flowering time in plants is regulated in response to change in ambient temperature [16,26].
The temperature-dependent regulation is associated with alternative splicing of flowering-related
genes [16]. Several regulators for flowering time have been shown to be controlled by temperature-
dependent alternative splicing. One of the regulators that have been characterized in detail is flowering
locus M (FLM), which is a MADS-domain transcription factor [16,23,27,28]. FLM is subjected to
temperature-dependent alternative splicing in Arabidopsis [23,27–36]. Two splice variants of FLM,
FLM-β and FLM-δ, differ in the incorporation of either the second or third cassette exon [11,27,37].
These splice variants are oppositely regulated by temperature and are translated into proteins with
opposing functions, acting as a repressor (FLM-β) and as a promoter (FLM-δ) of flowering [11,23,27,37].
Intriguingly, the ratio of FLM-β to FLM-δ alters in response to ambient temperature [25,29]. At a
low ambient temperature, FLM-β is expressed predominantly and FLM-β forms a protein complex
with the MADS-domain transcription factor short vegetative phase (SVP), which also functions as a
floral repressor [21,23] and can bind the target DNA to actively repress flowering [21,27,35]. On the
other hand, at a high ambient temperature, FLM-δ is spliced abundantly and FLM-δ interacts with
SVP and works as a dominant-negative isoform of FLM [23,25,27]. The SVP–FLM-δ complex cannot
bind DNA [21,23,27], resulting in the release of floral promoters such as flowering locus T (FT) and
suppressor of overexpression of constans 1 (SOC1) from repression and thereby indirectly inducing
flowering at elevated temperatures [23,27]. Collectively, these observations indicate that alternative
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splicing of FLM is a critical molecular action for the FLM-mediated control of flowering in response to
thermal change [21].

MADS affecting flowering 2 (MAF2), which is related to flowering time like FLM in Arabidopsis,
also undergoes temperature-dependent alternative splicing to produce two variants, MAF2var1 and
MAF2var2 [11,25,38–41]. MAF2var1 is expressed predominantly at a low ambient temperature and
its encoded protein forms a repressive complex with SVP to inhibit flowering [11,38,40–42]. At high
ambient temperature, expression of the intron-retaining splice variant MAF2var2 is induced [38,40,42].
The truncated protein produced from MAF2var2 cannot interact with SVP, resulting in promotion of
flowering [11].

2.2. Circadian Clock

The circadian clock produces oscillations of an approximately 24-h period, which allows organisms
to synchronize biological phenomena with the day-night cycle [16,43]. In plants, the circadian clock
harmonizes physiological processes including rhythmic leaf movements, stomatal aperture and
flowering [16,25,44–47]. The circadian clock is synchronized by light and temperature inputs [48].
In Arabidopsis, the circadian clock is composed of several interlocking regulatory feedback loops [25,46].
Circadian clock associated 1 (CCA1) and late elongated hypocotyl (LHY), MYB transcription factors
that are expressed in the morning, repress the activity of the evening complex, which is composed of
early flowering (ELF)3, ELF4, and lux arrhythmo (LUX) [16,25,49,50]. The evening complex represses
pseudo response regulator (PRR) genes, including PRR7, PRR9 and timing of CAB expression 1 (TOC1;
PRR1) [16,44,46,51]. The PRR factors repress CCA1 and LHY [25,51–53]. In addition, CCA1 and LHY
repress the expression of TOC1 through direct binding to its promoter [25,54,55].

There have been many reports on post-transcriptional regulatory mechanisms of circadian
clock genes [16,25,56]. Circadian clock genes are subjected to temperature-dependent alternative
splicing [16,25]. Alternative splicing of CCA1 pre-mRNA produces two splice variants, CCA1α and
CCA1β [57–61]. The roles of these variants in regulation of the circadian clock have been reported [61].
At a high temperature, CCA1β is increased. CCA1β has a dimerization domain but lacks the
N-terminal DNA-binding MYB motif [61,62]. Thus, CCA1β represses CCA1α/LHY heterodimerization
by competing with CCA1α and LHY to form non-functional protein complexes such as CCA1α/CCA1β
and CCA1β/LHY heterodimers as a dominant regulator [61,63]. In contrast, at a low temperature,
CCA1β is decreased, promoting functional CCA1α/LHY heterodimerization [58,61,64].

In addition to CCA1, the circadian clock genes LHY, TOC1, PRR3, PRP5, PRP7, and PRR9 are
also subjected to temperature-dependent alternative splicing [59,64]. James et al. identified many
novel alternative splicing events including the addition of exon 5a in LHY, exon 4 skip in PRR7,
retention of intron 4 in TOC1, and three and two alternative splicing events in PRR3 and PRR5,
respectively [59]. Several of these changes are dependent on temperature transitions and affect clock
gene expression by producing nonfunctional transcripts and/or inducing nonsense-mediated decay
(NMD) [59]. For example, temperature-dependent alternative splicing contributes to down-regulation
of LHY transcript at low temperature [59]. Calixto et al. demonstrated changes in alternative splicing
of LHY and photoperiod-H1 (PPD-H1) (PRR7 orthologue) in response to a low temperature in barley [65].
In addition, heat stress significantly upregulates a splice variant of PRR7 that retains an intron, whereas
PRR9 shows an increase in both full length mRNA and a splice variant with an intron retention after
both cold and heat stresses [16,64].

In addition to investigations of circadian clock genes in plants, it has also been shown that
temperature-dependent alternative splicing is essential for the regulation of circadian clock in
Neurospora, Drosophila, tilapia and mice [66–76]. These findings suggest that alternative splicing is
a general mechanism of clock regulation. In Neurospora, the circadian clock gene frequency (FRQ)
is subjected to temperature-dependent alternative splicing [67–69]. Expression levels and ratios of
the long (l) and short (s) isoforms of FRQ are important for temperature compensation of circadian
rhythms. Diernfellner et al. demonstrated that the ratio of l-FRQ versus s-FRQ is regulated by
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temperature-dependent alternative splicing of intron 6 of FRQ and then expression of l-FRQ increases
with elevating temperature, while s-FRQ is expressed at low levels [69].

In Drosophila, period (PER) and timeless (TIM) protein and mRNA products undergo daily
fluctuations in relation to the circadian clock [66,71,73,74,77]. Majercak et al. showed that temperature-
dependent alternative splicing in the PER gene plays a key role in adaptation of a circadian clock
to seasonally cold days (low temperatures and short day lengths) in Drosophila [73]. The enhanced
splicing at low temperatures advances the steady-state phases of PER mRNA and protein cycles,
which contributes to the preferential daytime activity of flies on cold days [73]. Martin Anduaga et al.
showed that temperature dramatically changes the splicing pattern of TIM in Drosophila [74]. At 18 ◦C,
TIM levels are low because of the induction of two cold-specific isoforms, while another isoform is
upregulated at 29 ◦C. The switching of isoform controls the levels and activity of TIM, suggesting
that alternative splicing of TIM might act as a thermometer for the circadian clock [74]. In addition to
Drosophila, in Nile tilapia, alternative splicing in the PER gene is also affected by cold stress [72].

Alternative splicing of circadian clock genes has been demonstrated in mice. For example,
alternative splicing in U2 snRNP auxiliary factor (U2AF) 26 gene is driven by rhythmic body temperature
changes, and then skipping of two variable exons (6 and 7) of U2AF26 generates a novel protein variant
of U2AF26 that directly controls circadian clock resetting in vivo [70,75,76].

Taken together, these findings indicate that many clock-related genes are subjected to
temperature-dependent alternative splicing. It has been speculated that alternative splicing might
contribute to the control of circadian clock functions in a temperature-dependent manner.

2.3. Sex Determination

Sex determination is a pivotal developmental process [78]. There are two mechanisms in sex
determination. One is based on sexual genetic elements, which is called genotypic sex determination
(GSD). The other is based on environmental factors, known as environmental sex determination
(ESD) [78–80]. Temperature-dependent sex determination (TSD) is the most common ESD mechanism
in vertebrates, in which individuals become male or female depending on the incubation temperature
that the developing embryo experiences [81]. TSD is found in many vertebrates including all
crocodilians and tuatara, most turtles, some lizards and some fish [78,81]. Some genes including
SRY-box9 (Sox9), Wilms tumor 1(WT1) and doublesex and mab3-related transcription factor 1 (Dmrt1) are
involved in TSD [78,82–86]. Yamaguchi and Iwasa pointed out that temperature-dependent alternative
splicing is a possible biological mechanism for temperature sensitivity [87]. In accordance, Sox9 in
crocodiles, WT1 in turtles, and Dmrt1 in turtles and crocodiles are subjected to alternative splicing
and play a role in sex determination [78,82–84,86]. For example, Rhen et al. found that a change
in temperature rapidly influences the expression and splicing of WT1 mRNA, which influences sex
determination in the snaping turtle [84].

2.4. Others

Temperature can modulate the splicing of splicing regulators. For example, U2AF65A [88],
cyclin-dependent kinase G1 (CDKG1) [33,88], SR1 [89], polypyrimdine tract-binding protein (PTB) 1/2, and
suppressor of abi3-5 (SUA) [90], which affect the splicing pattern, are subjected to temperature-dependent
alternative splicing in Arabidopsis. In animals, the splicing of pre-mRNA of U2AF26 in mice [70,75,76]
and serine-arginine-rich (SR) splicing factors in Tilapia [72] are also regulated by change in temperature.
It is interesting that splicing itself contributes to the control of splicing.

Genes related to plant growth and development are also subjected to temperature-dependent
alternative splicing. In Arabidopsis, it has been demonstrated that temperature-dependent alternative
splicing of root initiation defective1 (RID1) [91] and apetala3 (AP3)-1 [92] affects plant development and
floral phenotype.

Most of the temperature-dependent alternative splicing studies in plants have focused on
Arabidopsis. However, there are several reports about plants other than Arabidopsis. It was shown
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that temperature-dependent alternative splicing of OsbZIP58 affects grain filling of rice [93]. In sugar
beet, Bvnpcg2 and Bvnpcg3 are subjected to temperature-dependent alternative splicing, resulting in
regulation of the sensitivity to seasonal temperature changes [94]. In Medicago, temperature-dependent
alternative splicing of MtJMJC5, a jumonj C domain-containing demethylase homologue, is involved
in the circadian clock [95].

Although mammals have thermosensory molecules such as family of transient receptor potentials
(TRPs) [96–99], plants do not possess orthologous molecules that act as specialized thermosensors [16].
Temperature-dependent alternative splicing might therefore function as a “thermometer” in plants
to measure changes in ambient temperature [16,23,25,27]. In Arabidopsis, tea plants and Jujuncao,
RT-PCR and RNA sequence analyses revealed that alternative splicing of a variety of genes is changed
dramatically during cold acclimation [100–103]. The findings suggest that alternative splicing events
play an important regulatory role in response to cold stress [100–104].

GrpE proteins function as nucleotide exchange factors for DnaK-type Hsp70s, which is a
molecular chaperone [105–107]. Schroda et al. identified CGE1 as a chloroplast homolog of GrpE in
Chlamydomonas and showed that temperature-dependent alternative splicing generates two isoforms
of CGE1, CGE1a and CGE1b [107,108]. CGE1a is expressed predominantly at lower temperatures, but
expression of CGE1b increases as well as CGE1a in response to elevated temperatures, which might
affect chaperone function [107].

In addition to plants and animals, temperature-dependent alternative splicing has been reported in
yeast [109–111]. In a search for yeast transcripts, splicing of APE2, which encodes an amino peptidase,
is affected by temperature change (heat shock) [109,111].

Several studies on temperature-dependent alternative splicing of pre-mRNAs have been performed
by using mammalian cultured cells. Gemignani et al. used HeLa and K562 cell lines that stably express
thalassemic β-globin genes with mutations inducing aberrant splicing patterns of pre-mRNAs [112].
When the cells were cultured at temperatures below 30 ◦C, aberrant splicing was inhibited and correct
splicing was restored. The findings suggest the possibility of lowering the temperature of bone marrow
as a treatment for β-thalassemia. Weil et al. examined alternative splicing of a collagen gene in
fibroblasts of a patient with Ehlers-Danlos syndrome [113]. Analysis of RT-PCR products showed that
fibroblasts grown at 37 ◦C produced normally spliced and misspliced mRNAs, while only correctly
spliced products were detectable when the cells were cultured at 31◦C. Tzani et al. performed RNA
sequencing in Chinese hamster ovary (CHO) cells and demonstrated that a temperature shift induces
alternative splicing of Dnml1 and Mff genes [114].

3. Molecular Mechanism of Temperature-Dependent Alternative Splicing

Although many genes regulated by temperature-dependent alternative splicing have been
identified, molecular mechanisms of temperature-dependent alternative splicing are poorly understood.
Temperature can influence the speed of RNA polymerase II, which is known to affect splicing [16,115].
In addition, temperature can affect RNA structure [16,109,110,116]. The secondary structure of
intron-exon boundaries affects the spliceosome complex that performs the removal of introns and the
joining of exons [109,110]. In addition, the secondary structure of splicing enhancer and silencer motifs
also is concerned with splice site selection [116]. These factors might contribute to the regulation of
temperature-dependent alternative splicing.

Temperature-dependent splicing might also be involved in more complex regulatory steps
than direct temperature-driven changes in RNA secondary structure [110]. For example, Preußner
et al. showed that body temperature cycles drive rhythmic phosphorylation of SR proteins to
regulate alternative splicing in mice [75]. A temperature change of 1 ◦C is sufficient to induce a
concerted splicing switch in many genes that are functionally related to circadian rhythm. In addition,
Haltenhof et al. showed that a lower body temperature activates CDC-like kinases (CLKs), resulting in
strongly increased phosphorylation of SR proteins [117]. This globally controls temperature-dependent
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alternative splicing and gene expression with wide implications in circadian, tissue-specific, and
disease-associated settings [117].

It is interesting that temperature can modulate the splicing of splicing regulators such as SR
proteins [16,89,118,119]. Splicing regulators are themselves subjected to temperature-dependent
alternative splicing, affecting the splicing pattern of a large number of genes. James et al. investigated
the role of RNA-binding splicing factors (SFs) in temperature-dependent alternative splicing of LHY in
Arabidopsis. They showed that the splicing and expression of several SFs respond sufficiently, rapidly,
and sensitively to temperature changes to contribute to the splicing of LHY pre-mRNA [90].

Melzer reported that the presence/absence of SFs may contribute to alternative splicing [120].
He also pointed out that temperature-dependent RNA structures (symbolized by the presence/absence
of the stem-loop structure) are involved, although it is not yet entirely clear how plants sense
temperature differences.

Foley et al. demonstrated that the alternative splicing regulator P-element somatic inhibitor (PSI)
regulates the temperature-dependent alternative splicing of TIM in Drosophila, regulating the period
of circadian rhythms and circadian behavior phase during temperature cycling [77].

It has been reported that trimethylated histone H3 at lysine 36 (H3K36me3) is enriched in
genes undergoing alternative splicing in mammals [21,121,122]. In addition, it has been shown
that the H3K36me3-enriched genomic sequence regions, which include flowering-related genes,
are broader at warm temperatures in Arabidopsis exposed to different ambient temperatures [123].
These findings indicate that H3K36me3 might mediate the temperature-dependent alternative splicing
of flowering-related genes [21].

4. Temperature-Dependent Regulation of Alternative Splicing in Gene Expression of CIRP

4.1. Discovery of Temperature-Dependent Alternative Splicing of a CIRP Transcript during Hibernation
in Hamsters

Some mammalian species including squirrels and hamsters undergo hibernation [124,125].
Although body temperature drops to less than 10 ºC, the heart of hibernating animals can maintain
constant beating [124]. This is in contrast to non-hibernators, in which the heart cannot maintain
beating in a deep hypothermic condition [126]. Therefore, the hearts of hibernating animals would
possess a protective mechanism against the harmful effects of a low temperature [127]. The innate
ability of the heart that is specific for hibernators definitely contributes to the cold-resistant nature.
However, maintenance of normal cardiac function under a condition of deep hypothermia would
not exclusively depend on the innate ability. In fact, the heart of hamsters is damaged when deep
hypothermia is forcibly induced by pentobarbital anesthesia and cooling [128]. Accordingly, it is most
probable that some mechanisms actively operate during hibernation to protect the heart and also
other organs.

Originally, we were interested in the protective mechanisms operating in hibernating animals.
As a molecular candidate involved in the mechanism, we focused on cold shock proteins including as
CIRP and RNA-binding motif 3 (RBM3) [129]. This is because the characteristics of the proteins fit
well to our working hypothesis as follows. Firstly, expression levels of CIRP and RBM3 are increased
by cold stress [129–131]. Secondly, these proteins regulate gene expression at the level of translation,
enabling cells to respond rapidly to cold stress [129,132]. Finally, CIRP and RBM3 exert protective
effects on various types of cells exposed to a harmful low temperature [98,133].

Owing to the prominent action of cold shock proteins, we considered that these proteins might
help to protect organs including the heart against a harmful low temperature during hibernation.
At the beginning of our experiments, we simply expected that cold shock proteins are expressed, if any,
at very low levels, and that their expression is increased before or when entering a deep hypothermic
state (torpor) in hamsters. However, RT-PCR analysis led to two unexpected results. One result was
that there was substantial expression of CIRP mRNA in the heart of a non-hibernating euthermic
hamster [14]. The other was that the electrophoretic pattern of PCR products amplified from the hearts
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of hibernating hamsters was clearly different from that of non-hibernating hamsters. In non-hibernating
animals, three different CIRP mRNAs were detected, whereas only the shortest variant among them was
expressed in hibernating animals (referred to as short-form dominant pattern). The pattern of splicing
was commonly observed in various organs [13]. These findings allowed us to infer CIRP expression is
regulated at the level of pre-mRNA splicing, rather than transcriptional level, when entering torpor.
At that stage, we believed that the regulation of alternative splicing is specific for hibernators because
it is inconceivable that non-hibernators will be in an extreme hypothermic condition.

4.2. Factors Triggering “Hibernation-Specific” Alternative Splicing

We investigated the factors causing the shift in alternative splicing of CIRP during hibernation in
hamsters. It is generally considered that the cold resistance property is established during preparatory
processes before entering hibernation [134]. Therefore, it is rational to anticipate that the shift in
alternative splicing of CIRP would occur when hamsters were kept in a condition suitable for induction
of hibernation. Our experiments, however, showed that the short-form dominant pattern was not
induced even after adaptation to a cold environment with short photoperiod [14], which is an
experimental condition for induction of hibernation. These experiments also proved that endogenous
regulatory pathways activated by signals arising from the body surface (response to cold ambient
temperature) and/or those from the eyes (response to reduced light input) play minor roles, if any, in
the shift to the short-form dominant pattern.

We then tested whether the splicing pattern can be caused in artificial hypothermia. An adenosine
A1-receptor agonist was administrated centrally to induce hibernation-like hypothermia [13,128].
Since activation of adenosine A1-receptors in the brain is an essential process for the decrease in body
temperature in natural hibernation [135,136], that method would mimic at least in part the endogenous
condition when entering hibernation. Induction of hypothermia by central application of an adenosine
A1-receptor agonist reproduced the short-form dominant pattern [13]. This apparently suggests that
autonomic and/or endocrine pathways following A1 receptor activation may be responsible for the
change in the splicing pattern. However, the agonist was unable to induce the short-form dominant
pattern when the drop in body temperature was prevented by warming the body of animals [13].
If adenosine A1-receptors in the central nervous system activate specific regulatory pathways to shift
the splicing, the short-form dominant pattern should be observed in the absence of an actual decrease
in body temperature. It thus seems likely that autonomic and/or endocrine pathways, which may
operate after activation of central adenosine A1-receptors, are not directly involved in the regulation of
alternative splicing. Taken together, the findings indicate that reduced temperature is more likely to be
the major contributing factor of the shift in alternative splicing during hibernation.

4.3. Mild Hypothermia as a Major Cause of the Shift in Alternative Splicing of CIRP Transcripts

To test the hypothesis that reduced temperature is the major cause of the shift in the splicing
pattern, we induced hypothermia forcibly in hamsters. Cooling the anesthetized animals successfully
induced hibernation-like hypothermia [14,128]. Despite sufficient reduction of body temperature,
a “hibernation-specific” pattern of alternative splicing was not reproduced in the forcibly induced
hypothermia. At that stage, we noticed a marked difference between adenosine A1- receptor
agonist-induced hypothermia and anesthetic-induced hypothermia. The former dropped to 10 ºC
within one hour, whereas the latter took about 5 h to reach the same level of hypothermia [13,14]
(Figure 1). Based on this difference, we assumed that staying in a mildly hypothermic state would
be necessary to shift the alternative splicing of CIRP transcripts. If that is the case, the short-form
dominant pattern should be reproduced by maintaining hamsters in a state of mild hypothermia for
a substantial period of time even in the case of hypothermia induced by anesthetics. Predictably,
maintenance of body temperature in a mild hypothermic state (~ 30 ◦C) for 2 h elicited a shift in the
pattern [13]. The short-form dominant pattern generated when staying in a mild hypothermia state
can be maintained even after subsequent reduction of body temperature to 10 ◦C [13]. The findings
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indicate that it is needed to keep animals in a state of mild hypothermia for a proper period to induce a
change in the alternative splicing (Figure 1). This theory can be applied to natural hibernation as well
because body temperature decreases gradually in hamsters entering torpor [136,137], being maintained
in a state of mild hypothermia for several hours. Based on the results, it is reasonable to conclude that
the major factor of the shift in alternative splicing of CIRP is mild hypothermia (Figure 1). Therefore,
the shift in the alternative splicing pattern of CIRP mRNA might not be due to mechanisms specific
for hibernators.
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4.4. Alternative Splicing of CIRP mRNA in a Non-Hibernator

At the final stage of a series of experiments, we examined whether the temperature-dependent
alternative splicing of CIRP mRNA is actually specific for hibernators or whether similar changes of
alternative splicing commonly exist in non-hibernators such as mice. We found that several splicing
variants of CIRP mRNA are constitutively present in various organs of euthermic mice in a manner
similar to that in hamsters [15]. When mild hypothermia is induced in mice, the short-form variant
is dominantly expressed, that is, a short-form dominant pattern is generated [15]. In line with this,
it has been reported that CIRP mRNA is accumulated by changing efficient CIRP pre-mRNA splicing
in response to a temperature shift in mouse fibroblasts [130,138]. In addition, we found similar
temperature-dependent splicing regulation of CIRP transcripts in rats (unpublished observation).
Therefore, the control system of CIRP expression at the level of alternative splicing, which was originally
found out in hibernating hamsters, may be commonly present in non-hibernators such as mice.

4.5. Hypothesis for the Physiological Significance of Temperature-Dependent Alternative Splicing of
CIRP mRNA

As mentioned above, CIRP mRNA is expressed in the heart of a non-hibernating euthermic
hamster with several different forms probably due to alternative splicing [13,14]. Among them,
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we focused on the shortest and longest variants (referred as short form and long form, respectively)
because of their greater relative abundance. Sequence analysis showed that the short form contains
the open reading frame encoding full-length functional CIRP (Figure 2). The long form retains an
intron including a stop codon, and then it would be translated to an isoform of CIRP, of which a
number of amino acids in the C-terminal region are replaced (Figure 2). It has been reported that the
C-terminal arginine-glycine-rich domain is associated with functional activation of CIRP [132,139].
Therefore, it can be postulated that the CIRP isoform, in which C-terminal amino acids are replaced,
is not functional. On the other hand, the RNA binding activity of the isoform would remain normal
because the RNA-binding domain in the N-terminal region is totally conserved. These structural
considerations suggested that the C-terminally replaced isoform plays a dominant-negative role over
the full-length CIRP. In accordance, generation of isoforms that have a dominant negative effect on
the active isoforms by alternative splicing has been widely demonstrated in several genes encoding
enzymes, transporters, channels, or transcription factors [5]. The findings that expression of the splicing
variant encoding the putative dominant-negative isoform is greatly decreased and that the variant
encoding functional CIRP is predominantly expressed in hibernating animals [13,14] are meaningful
for estimating the physiological significance of the temperature-dependent regulation of alternative
splicing of CIRP transcripts.
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Figure 2 illustrates our hypothesis. The most important point is rapid manifestation of
the protective effects of CIRP. Under a non-hibernating euthermic condition, expression of the
dominant-negative isoform would constitutively compete with the functional CIRP. This may be
helpful to mask an unnecessary function during a euthermic active state. Once the decline of body
temperature begins, the route for generating mRNA encoding a dominant-negative isoform is shut
down, resulting in efficacious production of mRNA for functional CIRP without accompanying
transcriptional regulation. It is therefore expected that the shift from the splicing pattern of a euthermic
condition to that of a hibernating condition contributes to both the preferential expression of functional
CIRP and removal of the masking effect of a dominant-negative isoform. Importantly, the switching of
the splicing pattern can be triggered automatically in response to a mildly cold temperature, ensuring
its operation at the proper timing. The mechanism of splicing would permit rapid establishment of
cold-resistant properties in various organs during gradual reduction of body temperature.

We believe that the temperature-dependent switching of the splicing pattern plays a significant
role in protection of cells against untoward effects of hypothermia, although no definitive evidence
has so far been provided. One of the supportive findings is a simultaneous occurrence of the shift in
the splicing pattern in most organs. Taking into consideration the fact that the reaction is commonly
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observed in mice and rats, it is probable that the regulation of CIRP expression at the level of splicing
is a fundamental event for survival at a low temperature. In hamsters, the occurrence of cardiac
arrhythmias and/or cardiac damage is correlated with the pattern of alternative splicing of CIRP
transcripts (Table 2). Regardless of the method used for inducing hypothermia, a rapid decline in
body temperature, which does not cause a shift of splicing, results in abnormal electrocardiograms
(ECG) such as J wave and/or signs related to artioventricular block. The origin of the J-wave during
hypothermia has been due to injury current, delayed ventricular depolarization and early repolarization,
tissue anoxia and acidosis [140]. On the other hand, a slow decline in body temperature promotes
the shift of splicing, and normal sinus rhythm can be maintained. More strikingly, induction of deep
hypothermia is unsuccessful (i.e., cardiac arrest is induced) when body temperature is decreased in the
absence of the shift in splicing of CIRP transcripts (Table 2). It is noteworthy that the hearts of mice
and rats can keep beating even in a deep hypothermic condition (~ 15 ºC) when the shift in splicing is
induced by keeping a state of mild hypothermia before cooling the animals. These findings suggest
an indispensable role of the temperature-dependent splicing in protection of cells against a harmful
low temperature.

Table 1. Temperature-dependent alternative splicing.

Species Genes Related Functions References

Arabidopsis FLM Flowering [23,27–36]
Arabidopsis MAF2 Flowering [11,25,38–42]
Arabidopsis CCA1 Circadian clock [57–61]
Arabidopsis LHY Circadian clock [57,59,60,64,90,141]
Arabidopsis TOC1 Circadian clock [59,64]
Arabidopsis PRR3 Circadian clock [59,64]
Arabidopsis PRR5 Circadian clock [59,64]
Arabidopsis PRR7 Circadian clock [59,64]
Arabidopsis PRR9 Circadian clock [59,64]

Barley LHY Circadian clock [65]
Barley PPD-H1 Circadian clock [65]

Neurospora FRQ Circadian clock/thermosensing [67–69]
Drosophila PER Circadian clock [71,73]
Drosophila TIM Circadian clock [66,74,77]

Tilapia PER1/2 Circadian clock [72]
Mouse U2AF26 Circadian clock/alternative splicing [70,75]
Mouse CIRP Circadian clock [130,138]

Crocodile Sox9 Sex determination [82]
Turtle WT1 Sex determination [84,86]
Turtle Dmrt1 Sex determination [78]

Mugger (Crocodile) Dmrt1 Sex determination [83]
Arabidopsis U2AF65A Alternative splicing [88]
Arabidopsis CDKG1 Alternative splicing [33,88]
Arabidopsis SR1 Alternative splicing/temperature adaptation [89]
Arabidopsis PTB1/2 Alternative splicing [90]
Arabidopsis SUA Alternative splicing [90]

Tilapia SR splicing factors Alternative splicing/temperature adaptation [72]
Arabidopsis RID1 Plant development [91]
Arabidopsis AP3-1 Floral phenotype [92]

Rice OsbZIP58 Grain filling [93]
Sugar beet Bvnpcg2/3 Sense seasonal temperature changes [94]
Medicago MtJMJC5 Circadian clock [95]

Arabidopsis Cold stress response [100,103]
Tea plant Cold stress response [102]
Jujuncao Cold stress response [101]

Chlamydomonas CGE1 Chaperone [107,108]
Yeast APE2 Thermosensing [109,111]

Human (HeLa cell) β-globin [112]
Human (fibroblast) Collagen [113]

Hamster (CHO cells) Dnml1/ Mff [114]
Syrian Hamster CIRP Hibernation [13,14]

Mouse CIRP Hypothermia [15]
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Table 2. Decline rate of body temperature, shift in splicing pattern of CIRP and cardiac state in hamsters
and non-hibernators under deep hypothermia.

Hamsters

Method of Inducing Deep
Hypothermia

Decline Rate of
Body Temperature

Shift in Splicing
Pattern of CIRP

Cardiac
Arrhythmias

and/or Cardiac
Damage

References

Natural hibernation Slow Yes No [13,128]
Central administration of

adenosine A1-receptor agonist
combined with cooling

Slow Yes No [128]

Cooling under pentobarbital
anesthesia Rapid No Yes [128]

Cooling under isoflurane
anesthesia Rapid No Yes [13]

Cooling under isoflurane
anesthesia after keeping 30 ◦C

for few hours
Slow Yes (during

keeping 30 ºC) No [13]

Non-Hibernators (Mice and Rats)

Method of Inducing Deep
Hypothermia

Decline Rate of
Body Temperature

Shift in Splicing
Pattern of CIRP

Cardiac
Arrhythmias

and/or Cardiac
Damage

References

Central administration of
adenosine A1-receptor agonist
combined with cooling (Rats)

Slow Yes No [142]

Cooling under isoflurane
anesthesia (Mice and Rats)

Rapid (until ~ 20
ºC) No Lethal [15]

Cooling under isoflurane
anesthesia after keeping 30 ◦C
for few hours (Mice and Rats)

Slow Yes No [15]

5. Conclusions and Perspectives

Temperature-dependent alternative splicing of pre-mRNAs is widely conserved in eukaryotes
including both plants and animals. The post-transcriptional regulatory system affected by the
temperature shift plays important roles in many physiological and developmental processes such as
flowering, circadian clock, sex determination, thermosensing, stress response and hibernation. Further
studies on temperature-dependent alternative splicing may provide a breakthrough in understanding
multiple functions that are associated with adaptation to change in ambient or body temperatures.

We have demonstrated that a shift in the alternative splicing pattern of CIRP transcripts is elicited
depending on change in body temperature during hibernation [13,14]. Here, we point out that not only
the shift of splicing itself but also NMD-dependent degradation of the long form splicing variant, which
contains a premature termination codon (PTC), might occur under hibernation or/and hypothermia.
In future, it would be useful to examine whether NMD is involved in regulation of gene expression
during hibernation. Notably, the change of CIRP transcripts is not specific to hibernators but also
occurs in non-hibernators. Therefore, the establishment of a method for inducing hibernation-like
hypothermia in humans would be feasible.
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Abbreviations

pre-mRNA Precursor mRNA
CIRP Cold-inducible RNA-binding protein
FLM Flowering locus M
SVP Short vegetative phase
FT Flowering locus T
SOC1 Suppressor of overexpression of constans 1
MAF2 MADS affecting flowering 2
CCA1 Circadian clock associated 1
LHY Late elongated hypocotyl
ELF Early flowering
LUX Lux arrhythmo
PRR Pseudo response regulator
TOC1 Timing of CAB expression 1
NMD Nonsense-mediated decay
PPD-H1 Photoperiod-H1
FRQ Frequency
PER Period
TIM Timeless
U2AF U2 snRNP auxiliary factor
GSD Genotypic sex determination
ESD Environmental sex determination
TSD Temperature-dependent sex determination
Sox9 SRY-box9
WT1 Wilms tumor 1
Dmrt1 Doublesex and mab3-related transcription factor 1
CDKG1 Cyclin-dependent kinase G1
PTB Polypyrimdine tract-binding protein
SUA Suppressor of abi3-5
RID1 Root initiation defective1
SR Serine-arginine-rich
AP3 Apetala3
TRPs Transient receptor potentials
CHO Chinese hamster ovary
CLK CDC-like kinase
SF Splicing factor
PSI P-element somatic inhibitor
H3K36me3 Trimethylated histone H3 at lysine 36
RBM3 RNA-binding motif 3
ECG Electrocardiograms
PTC Premature termination codon
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