2-hydroxy-4-methylbenzoic anhydride (HMA) attenuates microglia-mediated neuroinflammatory responses in in vitro activated microglia and in vivo experimental models of Parkinson's disease

Soo-Yeol Song^{1‡}, In- Su Kim^{1‡}, Sushruta Koppula¹, Ju-Young Park², Byung-Wook Kim¹, Sung-Hwa Yoon², Dong- Kug Choi^{1*}

¹ Department of Biotechnology, Konkuk University, Chungju 380-701, Korea ; go_world87@nate.com, kis5497@kku.ac.kr, koppula@kku.ac.kr, kbwxfile@nate.com

² Department of Molecular Science and Technology, Ajou University, Suwon 443–749, Korea ; pink1209juyoung@empas.com, shyoon@ajou.ac.kr

^{*} Correspondence: choidk@kku.ac.kr; Tel.: +82-43-840-3616

[#] Both authors contributed equally to this work.

Materials and Methods

Cell culture

The BV-2 microglial cells were obtained as described previously [34]. Briefly, cells were cultured and maintained in DMEM supplemented 5% FBS and 50 μ g/mL penicillin–streptomycin in a humidified incubator at 37 °C with 5% CO2.

NO assay

 2.5×10^4 cells/mL BV-2 cells were seeded in 96-well plate. Cells were pre-treated with indicated synthetic HTB derivatives for 1h with or without LPS (100 ng/mL) for 24 h. The inhibitory effect of synthetic HTB derivatives on nitrite concentration was determined as described previously [1]. Briefly, a standard curve was generated using range of dilutions of known concentration of sodium nitrite. Approximately 540 nm wavelength was used to measure the absorbance in a microplate reader (Tecan Trading AG).

Results

In a microglia cell-based assay, methyl group of R (named HMA; 2-hydroxy-4-methylbenzoic an hydride) was identified as a novel synthetic compound among the synthetic anhydride derivativ es of HTB. Among them, three HTB anhydride derivatives with -CH₃ -Cl and -NHBoc of R group showed significant (p < 0.001) inhibitory effects of NO release (sup. Fig. 1B). Based on the st rong efficacy (more than 70 % in reduction of NO) exhibited by -CH₃ group, we performed furt her experiments with HMA having -CH₃ in the R group (sup. Fig. 1B). Further, HTB strongly at tenuated the production of NO without any significant toxicity seen in MTT assay in LPS-stimu lated BV-2 microglial cells. Besides, we also compared two HTB derivatives OPTBA (2-((2-oxopr opanoyl) oxy)-4-(trifluoromethyl) benzoic acid: HTB-pyruvate ester), and OPMBA (2-((2-oxopropa noyl) oxy)-4-methylbenzoic acid: conversion of HTB-pyruvate ester) with two HTB anhydride d erivatives HTBA (2-hydroxy-4-trifluoromethylbenzoic anhydride: HTB anhydride), and HMA (su p. Fig. 1C). Although significant, (p<0.05), the HTB derivatives and HTBA showed lower percentage of inhibition (10-20 %) in LPS-induced NO release. However, HMA strongly attenuated N O production at the same concentration tested (10 μ M) (sup. Fig. 1C).

Figure S1. Synthesis of HTB and Evaluation of the reduction of NO secretion of synthetic HTB anhydride derivatives in LPS-treated BV-2 microglial cells. The detailed synthetic procedure is shown (A). (B) The effect of HTB anhydride derivatives on nitric oxide (NO) production and cytotoxicity in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. BV-2 microglial cells were treated with LPS (100 ng/ml) in the absence or presence of the novel synthetic HTB anhydride derivatives (10 μ M) for 24 h. (C) BV-2 cells were pretreated with two HTB derivatives (OPTBA, OPMBA) (1000, 100, 10 μ M) and two HTB anhydride derivatives (HTBA, HMA)(10 μ M) for 1 h, followed by LPS treatment (100 ng/mL) for 24 h. NO release was evaluated using culture media in the Griess assay (B,C) Data are mean ± S.E.M. (n=8). ###P < 0.001, compared with control group; *P<0.05, **P < 0.01 and ***P < 0.001 compared with LPS alone group by One-way ANOVA.

References

1. Kim, B. W.; Koppula, S.; Kim, J. W.; Lim, H. W.; Hwang, J. W.; Kim, I. S.; Park, P. J.; Choi, D. K., Modulation of LPS-stimulated neuroinflammation in BV-2 microglia by Gastrodia elata: 4-hydroxybenzyl alcohol is the bioactive candidate. *J Ethnopharmacol* **2012**, 139, (2), 549-57.