Supplementary Material

Hepatoprotective Potency of Chrysophanol 8-O-Glucoside from Rheum palmatum L. against

Hepatic Fibrosis via Regulation of the STAT3 Signaling Pathway

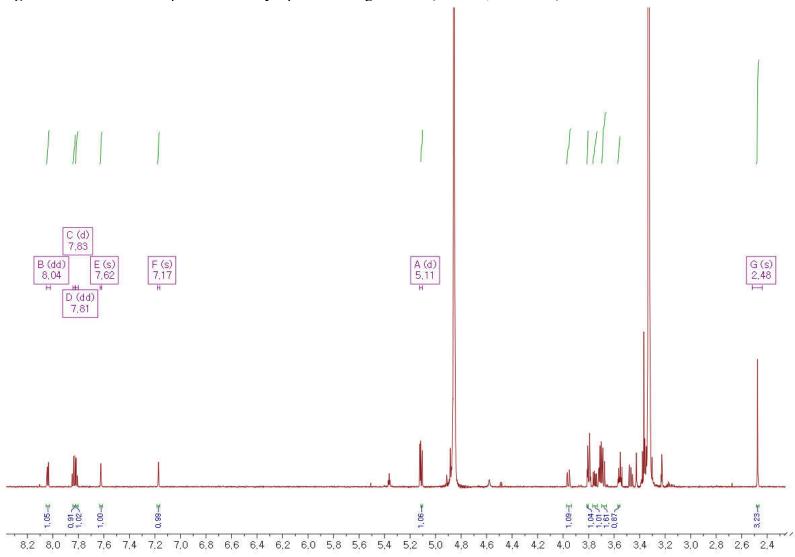
Yong Joo Park ^{1,a}, Kwang Ho Lee ^{1,a}, Mi Seon Jeon ¹, Yong Hoon Lee ¹, Yoon-Joo Ko ², Changhyun Pang ³, Bonglee Kim ⁴, Kyu Hyuck Chung ^{1,*}, and Ki Hyun Kim ^{1,*}

- ¹ School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; pyj084@msn.com (Y.J.P); <u>sholaly@naver.com</u> (K.H.L.); <u>jmsun123@naver.com</u> (M.S.J.); <u>yonghoon2090@gmail.com</u> (Y.H.L.)
- ² Laboratory of Nuclear Magnetic Resonance, National Center for Inter-University Research Facilities (NCIRF), Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea; <u>yjko@snu.ac.kr</u> (Y.J.K.)
- ³ School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; chpang@skku.edu (C.P.)
- ⁴ Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea; bongleekim@khu.ac.kr (B.K.)
- * Correspondence: khchung@skku.edu (K.H.C.); Tel.: +82-31-290-7714; khkim83@skku.edu (K.H.K.); Tel.: +82-31-290-7700

General experimental procedures

Ultraviolet (UV) spectra were determined using an Agilent 8453 UV-visible spectrophotometer (Agilent Technologies, Santa Clara, CA, USA). Infrared (IR) spectra were acquired using a Bruker IFS–66/S FT-IR spectrometer, and NMR spectra were measured using a Bruker Avance III HD 800 NMR spectrometer with a 5 mm TCI Cryoprobe (Bruker, Karlsruhe, Germany). Preparative high-performance liquid chromatography (HPLC) and semi-preparative HPLC (Waters Corporation, Milford, CT, USA) were performed using a Hector-C18 column ($250 \times 21.2 \text{ mm}, 7 \mu \text{m}$) and a Phenomenex Luna Phenyl–hexyl 100 A column ($250 \times 10 \text{ mm}, 10 \mu \text{m}$), respectively, with a Waters 1525 binary HPLC pump equipped with a Waters 996 photodiode array detector. LC/MS analysis was performed on an Agilent 1200 Series HPLC system (Agilent Technologies) equipped with a diode array detector and a 6130 Series ESI mass spectrometer using an analytical Kinetex C18 100 Å column ($100 \times 2.1 \text{ mm}$ i.d., 5 µm; Phenomenex, Torrance, CA, USA). Column chromatography was performed with a silica gel 60 (230-400 mesh; Merck) and an RP-C18 silica gel column (230-400 mesh; Merck). First-grade solvents (Samchun Pure Chemicals Co., Ltd., Pyeongtaek, Korea) were used for fractionation and isolation. Merck precoated silica gel F₂₅₄ plates and reverse-phase (RP)-18 F_{254s} plates were used for thin-layer chromatography (TLC). Spots were detected on TLC under UV light (dual wavelength 254/365 nm) or by heating after spraying with anisaldehyde-sulfuric acid.

Sample material


R. palmatum was purchased at Kyungdong herbal market, Korea (Seoul), in June 2019. The samples were identified by one of the authors (Prof. K. H. Kim). A voucher specimen (SKKU DW-2019-06) has been stored in the herbarium of the School of Pharmacy, Sungkyunkwan University, Korea (Suwon).

Cell culture

LX-2 human HSCs were obtained from the American Type Culture Collection (Manassas, VA, USA). Cells were cultured in Dulbecco's modified Eagle medium (Sigma, St. Louis, MO, USA) supplemented with 10 % of fetal bovine serum (Biotechnics Research Inc., Lake Forest, CA, USA), penicillin (100 units/mL), and streptomycin (100 µg/mL). Cells were maintained at 37°C in an atmosphere containing 95 % air and saturation humidity of 5 % CO₂.

Statistical analysis

Data were analyzed using GraphPad Prism version 7.00 (GraphPad software Inc., San Diego, CA, USA) and Excel (Microsoft, Redmond, WA, USA). Each assay was performed a minimum of three times. Data from each assay were expressed as mean \pm standard deviation (SD). Differences between the groups were assessed by Duncan's *post-hoc* test after one-way analysis of variance. Statistical significance was accepted at p < 0.05.

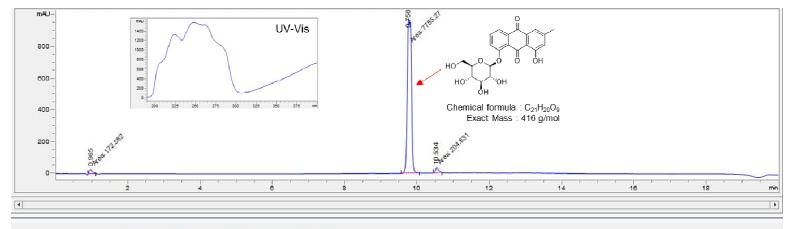
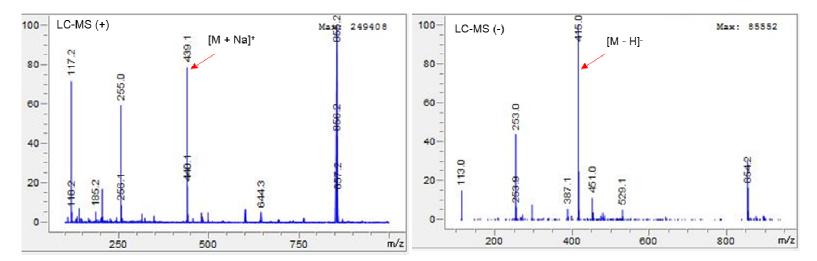
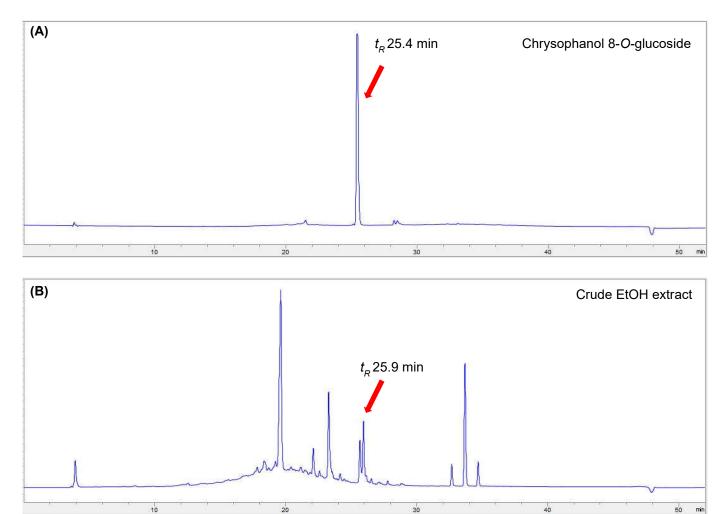


Figure S1. The ¹H NMR spectrum of chrysophanol 8-*O*-glucoside (CD₃OD, 700 MHz)


Chrysophanol 8-O-glucoside

Yellowish powder. ¹H NMR (CD₃OD, 700 MHz): δ 8.04 (1H, dd, J = 7.5, 1.5 Hz, H-5), 7.83 (1H, dd, J = 8.5, 7.5 Hz, H-6), 7.81 (1H, dd, J = 8.5, 1.5 Hz, H-7), 7.62 (1H, br s, H-4), 7.17 (1H, br s, H-2), 5.11 (1H, d, J = 7.5 Hz, anomeric-H), 3.96–3.56 (sugar-H), 2.48 (3H, s, Ar-CH₃); ESIMS (negative-ion mode) m/z = 415.0 [M – H]⁻.

Figure S2. LC/MS data of chrysophanol 8-O-glucoside


#	Time	Area	Height	Width	Area%	Symmetry	
1	0.965	172.6	26.5	0.1084	2.114	0.703	Purity : 95.376%
2	9.758	7785.3	977.9	0.1327	95.376	0.55	
3	10.534	204.8	32.6	0.1046	2.509	0.602	

LC/MS analysis

LC/MS analysis for chrysophanol 8-*O*-glucoside was performed by LC/MS (Agilent Technologies, Santa Clara, CA, USA) using a LC-MS Agilent 1200 Series analytical system equipped with a photodiode array (PDA) detector combined with a 6130 Series ESI mass spectrometer. Analysis was performed by injection of 10 μ L of chrysophanol 8-*O*-glucoside using a Kinetex C18 column (2.1 × 100 mm, 5 μ m; Phenomenex, Torrance, CA, USA) set at 25°C. The mobile phase consisting of formic acid in H₂O [0.1% (v/v)] (A) and methanol (B) was delivered at a flow rate of 0.3 mL/min by applying the following programmed gradient elution: 10%-100% (B) for 10 min, 100% (B) isocratic for 5 min, and then 100% to 10% (B) for 5 min, to perform post-run reconditioning of the column.

Figure S3. (A) UV chromatogram of LC/MS (detection wavelength was set as 254 nm) of chrysophanol 8-*O*-glucoside. (B) UV chromatogram of LC/MS (detection wavelength was set as 254 nm) of crude EtOH extract.

LC/MS analysis

LC/MS analysis for crude EtOH extract and chrysophanol 8-*O*-glucoside was performed by the same LC/MS equipment (Agilent Technologies, Santa Clara, CA, USA). Analysis was performed by injection of 10 μ L of samples using Agilent Eclipse Plus C18 column (4.6 × 100 mm, 3.5 μ m; Agilent Technologies) set at 25°C. The mobile phase consisting of formic acid in H₂O [0.1% (v/v)] (A) and methanol (B) was delivered at a flow rate of 0.3 mL/min by applying the following programmed gradient elution: 0%-100% (B) for 30 min, 100% (B) isocratic for 9 min, to perform post-run reconditioning of the column.