supplementary
2 Effect of Cholesterol on the Organic Cation 3 Transporter OCTN1 (SLC22A4)

4 Lorena Pochini, Gilda Pappacoda, Michele Galluccio, Francesco Pastore, Mariafrancesca Scalise, and Cesare Indiveri*

Department of Biology, Ecology and Earth Sciences (DiBEST), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, via P. Bucci 4c, 87036 Arcavacata di Rende, Italy; lorena.pochini@unical.it (L.P.); gilda.pappacoda@gmail.com (G.P.); michele.galluccio@unical.it (M.G.); francesco.pastore92@gmail.com (F.P.); mariafrancesca.scalise@unical.it (M.S.); cesare.indiveri@unical.it (C.I.).

* Correspondence: cesare.indiveri@unical.it; Tel..+39-0984-492939

Supplementary Figure 1. Effect of CHS on the inhibitory effect by $\mathbf{H g C l}_{2}$ on the hOCTN1. The recombinant hOCTN1 was reconstituted in liposomes as described in section 4.5. except that in the absence (\circ) or in the presence (\bullet) of 8.3% CHS corresponding to $83 \mu \mathrm{~g} \mathrm{CHS} / \mathrm{mg}$ total lipids. Transport was started adding $0.1 \mathrm{mM}\left[{ }^{[4} \mathrm{C}\right]$-TEA at time zero to proteoliposomes in the presence of increasing HgCl_{2} concentrations ($0-0.05-0.1-0.25-0.5-1 \mathrm{mM}$). The transport reaction was stopped at 20 minutes. Percent residual activity with respect to the control data were interpolated by an IC C_{50} equation (Doseresponse curves). The values are means \pm SD from three experiments.

```
OCTN1 -MRDYDEVIAFLGEWGPFQRLIFFLLSASIIPNGFNGMSVVFLAGTPEHRCRVPDAANLSS--AWR-----NNSVPLRLR
OCT2 MPTTVDDVLEHGGEFHFFQKQMFFLLALLSATFAPIYVGIVFLGFTPDHRCRSPGVAELSLRCGWSPAEELNYTVPGPGP
OCTN1 DGREVPHSCSRYRLAT-IANFSALGLEPGRDVDLGQLEQESCLDGWEFSQDVYLSTVVTEWNLVCEDNWKVPLTTTSLFFV
ост2 AGEASPRQCRRYEVDWNQSTFDCVDPLASLDTNRSRLPLGPCRDGWVYETPG--SSIVTEFNLVCANSWMLDLFQSSVNV
OCTN1 GVLLGSFVVSGQLSDRFGRKNVLFATMAVQTGFSFLQIFSISWEMFTVLFVIVGMGQISNYVVAFILGTEILGKSVRIIFS OCT2 GFFIGSMSIGYIADRFGRKLCLLTTVLINAAAGVLMAISPTYTWMLIFRLIQGLVSKAGWLIGYILITEFVGRRYRRTVG OCTN1 TLGVCTFFAVGYMLLPLFAYFIRDWRMLLLALTVPGVLCVPLWWFIPESPRWLISQRRFREAEDIIQKAAKMNNIAVPAV ОСТ2 -IFYQVAYTVGLLNLAGVAYALPHWRWLQFTVSLPNFFFLLYYWCIPESPRWLISQNKNAEAMRIIKHIAKKNGKSLPAS
OCTN1 IFDSVEELNPLKQQKAFILDLFRTRNIAIMTIMSLLLWMLTSVGYFALSLDAPNLHGDAYLNCFLSALIEIPAYITAWLL ОСТ2 LQRLRLEEETGKKLNPSFLDLVRTPQIRKHTMILMYNWFTSSVLYQGLIMHMGLAGDNIYLDFFYSALVEFPAAFMIILT
OCTN1 LRTLPRRYIIIAAVLFWGGGVLLFIQLVPVDYYFLSIGLVMLGKFGITSAFSMLYVFTAELYPTLVRNMAVGVTSTASRVG OCT2 IDRIGRRYPWAASNMVAGAACLASVFIPGDLQWLKIIISCLGRMGITMAYEIVCLVNAELYPTFIRNLGVHICSSMCDIG
OCTN1 SIIAPYFVY-LGAYNRMLPYIVMGSLTVLIGILTLFFPESLGMTLPETLEQMQKVKWFRSGKKTRDSMETEENPKVLITA ОСТ2 GIITPFLVYRLTNIWLELPLMVFGVLGLVAGGLVLLLPETKGKALPETIEEAENMQRPRKNKEKMIYLQVQKLDIPLN--
OCTN1 F
ост2 -
```

Supplementary Figure 2. CRAC and CARC cholesterol binding motif conservation. The human OCTN1 and OCT2 protein sequences were aligned by ClustalX software. CRAC and CARC motif, conserved across the two proteins, are indicated as shadowed blue and orange boxes, respectively.

