Supplementary Materials

Engineered Glucose Oxidase Capable of Quasi-Direct Electron Transfer after Quick-and-Easy Modification with a Mediator

Nanami Suzuki ^{1,†}, Jinhee Lee ^{2,†}, Noya Loew ², Yuka Takahashi-Inose ³, Junko Okuda-Shimazaki ², Katsuhiro Kojima ³, Kazushige Mori ³, Wakako Tsugawa ¹ and Koji Sode ^{2,*}

- ¹ Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan; nsuzuki@protonmail.com (N.S.); tsugawa@cc.tuat.ac.jp (W.T.)
- ² Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA; jh.lee@unc.edu (J.L.); noya-loew@rs.tus.ac.jp (N.L.); jokudas@email.unc.edu (J.O.-S.); ksode@email.unc.edu (K.S.)
- ³ Ultizyme International Ltd., 3-9-5. Taihei, Sumida, Tokyo, 130-0012, Japan; yukappe1122@gmail.com (Y.T.-I.); katsuhiro.kojima@gmail.com (K.K.); mori_ka1213@yahoo.co.jp (K.M.)
- * Correspondence: ksode@email.unc.edu; Tel.: +1-919-966-3550
- ⁺ These authors contributed equally to this work.

Figure S1. Cyclic voltammograms of (a) unmodified AnGOx-WT in the absence of glucose; (b) unmodified AnGOx-WT in presence of 33 mM glucose; (c) PES-modified AnGOx-WT in absence of glucose; (d) PES-modified AnGOx-WT in presence of 33 mM glucose. Scan rate 50 mV/s. Arrows: peaks due to PES.

Table S1. Kinetic parameters of AnGOx-WT and AnGOx-I489K

Enzyme	PES modification	Oxidase Activity			Dehydrogenase Activity		
		V_{\max}	Km	V _{max} /K _m	V_{\max}	Km	V _{max} /K _m
		(U/mg)	(mM)	(U/mg·mM)	(U/mg)	(mM)	(U/mg·mM)
<i>An</i> GOx- WT	-	140	36	3.8	50	32	1.6
	+	170	40	4.3	53	26	2
<i>An</i> GOx- I489K	-	76	28	2.7	22	22	1
	+	130	42	3	49	23	2.2

Oxidase activity was determined by monitoring the increase of absorbance at 555 nm (formation of quinoeimine dye) of a mixture of GOx, glucose (var. concentrations), 1.5 mM 4-aminoantipyrine (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan), 1.5 mM N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3-methylaniline (Dojindo Laboratories Co. Ltd., Kumamoto, Japan), and 2 U/mL horseradish peroxidase (HRP) (Amano enzyme Inc., Gifu, Japan) in 20 mM P.P.B.. Quinoeimine dye is formed by HRP in presence of hydrogen peroxide. The formation of 1 μ mol/min hydrogen peroxide, corresponding to the oxidation of 1 μ mol/min glucose, was defined as 1 U oxidase activity.

Dehydrogenase activity was determined by monitoring the decrease of absorbance at 600 nm (reduction of 2,6-dichlorophenolindophenol, DCIP (Kanto Chemical Co. Inc., Tokyo, Japan)) of a mixture of GOx, glucose (var. concentrations), 0.6 mM PMS, and 0.06 mM DCIP in 20 mM P.P.B. The reduction of 1 μ mol/min DCIP, corresponding to the oxidation of 1 μ mol/min glucose, was defined as 1 U dehydrogenase activity.