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Abstract: Carnosine is a natural endogenous dipeptide widely distributed in mammalian tissues,
existing at particularly high concentrations in the muscles and brain and possesses well-characterized
antioxidant and anti-inflammatory activities. In an in vitro model of macrophage activation, induced
by lipopolysaccharide + interferon-gamma (LPS + IFN-γ), we here report the ability of carnosine to
modulate pro-oxidant and pro-inflammatory activities of macrophages, representing the primary
cell type that is activated as a part of the immune response. An ample set of parameters aimed to
evaluate cytotoxicity (MTT assay), energy metabolism (HPLC), gene expressions (high-throughput
real-time PCR (qRT-PCR)), protein expressions (western blot) and nitric oxide production (qRT-PCR
and HPLC), was used to assess the effects of carnosine on activated macrophages challenged with
a non cytotoxic LPS (100 ng/mL) + IFN-γ (600 U/mL) concentration. In our experimental model,
main carnosine beneficial effects were: (1) the modulation of nitric oxide production and metabolism;
(2) the amelioration of the macrophage energy state; (3) the decrease of the expressions of pro-oxidant
enzymes (Nox-2, Cox-2) and of the lipid peroxidation product malondialdehyde; (4) the restoration
and/or increase of the expressions of antioxidant enzymes (Gpx1, SOD-2 and Cat); (5) the increase of the
transforming growth factor-β1 (TGF-β1) and the down-regulation of the expressions of interleukins
1β and 6 (IL-1β and IL-6) and 6) the increase of the expressions of Nuclear factor (erythroid-derived
2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1). According to these results carnosine is worth being
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tested in the treatment of diseases characterized by elevated levels of oxidative stress and inflammation
(atherosclerosis, cancer, depression, metabolic syndrome, and neurodegenerative diseases).

Keywords: carnosine; M1 macrophages; nitric oxide; oxidative stress; inflammation; antioxidants;
energy metabolism

1. Introduction

Different types of cells are involved in the innate immune response, with macrophage cells
representing those primarily activated [1,2], especially under several conditions characterized by
oxidative stress and inflammation [3,4]. Experimentally, both oxidative stress, obtained by stimulation
with phorbol 12-myristate 13-acetate (PMA) [5,6], and inflammation, triggered by using a combination
of lipopolysaccharides (LPS) and interferon-gamma (IFN-γ) [7], can successfully be achieved in
macrophages. Depending on the cellular environment and the stimulation signals, activated
macrophages give rise to a plethora of phenotypes, described by M1 (classically activated macrophages),
M2 (alternatively activated macrophages), and their respective sub-groups [8]. The M1 phenotype is
mainly involved in the production of pro-inflammatory cytokines as well as reactive oxygen (ROS)
and nitrogen (RNS) species, while the M2 phenotype is primarily associated with the production of
anti-inflammatory cytokines and proliferative agents, finalized to wound healing and tissue repair [9].
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) as well as its downstream gene heme oxygenase 1
(HO-1) are directly involved in the detoxification from ROS and RNS and in the anti-inflammatory
response [10]. With regard to macrophage behavior, the induction of HO-1 has been shown to determine
the switch from M1 to M2 phenotype [11], also regulating the cytoprotective activity of nitric oxide
(NO) [12].

Stimulated macrophages are particularly active in generating NO. Physiologically, NO is a
fundamental signaling gaseous molecule in the nervous, immune, and cardiovascular systems [13],
transmitting both intracellular and intercellular signals crucial for cell and organ survival [13,14].
Among its numerous functions, NO participates to the regulation of brain glutamate metabolism [15],
it is implicated in the modulation of a vascular tone [13] and it plays an important role in the integration
of host defense, and regulation of inflammation in macrophages, being able to switch the macrophage
phenotype from an activated cell to a cell susceptible to programmed cell death [14]. On the another hand,
NO is recognized as one of the main signaling molecules involved in the inflammatory processes [15];
in fact, the inducible isoform of nitric oxide synthase (iNOS), overexpressed in macrophages and some
other cell types under a variety of acute and chronic inflammatory conditions [16], is responsible of an
intense production of NO, generally accompanied by increased ROS formation. The intrinsic risk in the
temporal coincidence of the two phenomena is that superoxide anions easily react with NO producing
peroxynitrite [17,18], an extremely reactive and toxic molecule able to damage the four major classes
of biological macromolecules (DNA, carbohydrates, fatty acids and proteins,) and mitochondria [19].
The concomitant increased generations of RNS and ROS triggers a phenomenon commonly termed as
oxidative/nitrosative stress, which is often encountered in various pathological conditions (acute and
chronic neurodegenerative disorders, cancer and cardiovascular diseases).

Recently, it has been demonstrated that the uptake of carnosine (β-alanyl-L-histidine), a natural
dipeptide widely distributed in mammalian tissues [20], is highly increased in macrophages under
pro-inflammatory conditions [21]. In vivo experiments showed that carnosine is involved in the
regulation of macrophage function, increasing their phagocytic activity and ROS production [22].
Additionally, carnosine has been shown to decrease both oxidative stress and inflammation in an
in vitro model of amyloid-induced inflammation [23]. Physiologically, carnosine is synthesized from
the amino acids β-alanine and L-histidine in an ATP-dependent reaction catalyzed by the enzyme
carnosine synthetase 1 [24,25]. This dipeptide is present at high concentrations in the mammalian
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brain (micromolar to millimolar range) [26,27], but it reaches its maximal concentrations in cardiac
and skeletal muscles (up to 20 mM) [28]. Furthermore, strong evidence that carnosine protects
against pathologies characterized by oxidative stress and/or inflammation such as diabetes [29],
depression [30], cerebral ischemia [31] and Alzheimer’s disease (AD) [32] has been proved. In previous
studies, we showed that 20 mM carnosine is highly effective to positively regulating macrophage and
microglial functions [23,33]. In particular, we found that carnosine, in macrophages challenged with
LPS + IFN-γ, increases the rate of NO transformation into its stable end-product nitrite, modulates the
composition of macrophage sub-populations and decreases the release of pro-inflammatory cytokines
into the cell medium.

In the present study, using pro-inflammatory conditions that did not cause an increase in cellular
mortality, we evaluated the ability of carnosine to modulate NO metabolism as well as the variation
of parameters representative of cellular energy metabolism, oxidative stress and inflammation in
activated (M1) RAW 264.7 cells. Furthermore, in order to better understand the molecular mechanisms
underlying carnosine effects, the protein expression levels of Nrf2 and HO-1, two key proteins
regulating cellular responses to oxidative stress and inflammation, were examined.

2. Materials and Methods

2.1. Materials and Reagents

All chemicals were of analytical grade and purchased from Sigma (St. Louis, MO, USA) or
Thermo Fisher Scientific Inc. (Pittsburgh, PA, USA) unless specified otherwise. RAW 264.7 cells
(ATCC® TIB-71™), Dulbecco’s modified Eagle medium (DMEM), fetal bovine serum (FBS) and
penicillin/streptomycin antibiotic solution were purchased from American Type Culture Collection
(ATCC, Manassas, VA, USA). Interferon-γ (IFN-γ), mouse recombinant, Escherichia coli was supplied
by Calbiochem (Gibbstown, NJ, USA). Centrifuge tubes equipped with 3 kDa molecular weight cut-off

filters, water, methanol, far-UV acetonitrile and chloroform (all HPLC-grade) were supplied by VWR
International (West Chester, PA, USA). DAF-FM DA probe was purchased from Life Technologies
(Carlsbad, CA, USA). C-Chip disposable hemocytometers were purchased from Bulldog Bio, Inc.
(Portsmouth, NH, USA). A geNorm Housekeeping Gene Selection Kit was obtained by Primer Design
Ltd. (Southampton, UK). QuantiTect SYBR Green PCR Kit, RNeasy Mini Kit, RNase-free DNase Set and
QuantiTect Primer Assays were purchased from Qiagen (Hilden, Germany), while 18S rRNA primers
(forward: 5′-AGT CCC TGC CCT TTG TAC ACA-3′; reverse: 5′-GAT CCG AGG GCC TCA CTA
AAC-3′) were purchased by Eurofins MWG Synthesis GmbH (Ebersberg, Germany). Anti-GAPDH
primary antibody was obtained from Millipore (Burlington, MA, USA); anti-Nrf2 primary antibody
was obtained from Cell Signaling Technology Inc. (Danvers, MA, USA) and anti-HO-1 primary
antibody was purchased from Abcam (Cambridge, UK). Secondary goat anti-rabbit labeled with IRDye
680 and goat anti-mouse labeled with IRDye 800 were purchased from Li-COR Biosciences (Lincoln,
NE, USA). 384-well plates were obtained by Roche Molecular Systems Inc. (Pleasanton, CA, USA).
Eppendorf LoBind 1.5 mL Microcentrifuge Tubes PCR Clean and PCR tubes were obtained from
Eppendorf (Hamburg, Germany). A Sylgard 184 polydimethylsiloxane (PDMS) prepolymer and curing
agent were obtained from Ellsworth Adhesives (Germantown, WI, USA).

2.2. Cell Culture and Treatment Protocol

The specific conditions employed to culture and maintain RAW 264.7 cells are the same previously
described in details [33]. On the day of the experiment, cells were harvested, an aliquot of the cell
suspension was used for cell counting (performed by using a C-Chip disposable hemocytometer
and the trypan blue solution) and it was plated in polystyrene culture flasks or Petri dishes at the
appropriate density. LPS (1 mg/mL) and IFN-γ (200,000 U/mL) stock solutions were prepared as
previously described [34]. On the day of the experiment, once the cells adhered to the flask or Petri
dish surface, cells were left untreated (resting control cells), treated with a combination of LPS + IFN-γ,
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or pre-treated (1 h) with carnosine and then subjected to pro-inflammatory stimulation [33]. Cells were
then incubated for 6 or 24 h in a humidified environment at 37 ◦C and 5% CO2.

Supplementary Figure S1 depicts the experimental design employed to study carnosine effect on
stimulated activated RAW 264.7 macrophages along with representative images showing the changes
in cell morphology due to the M1-induced stimulation.

2.3. Cell Viability Measurement by MTT Assay

Cell viability of RAW 264.7 plated in 48-well plates (2.5 × 105 cells/well) under our different
experimental conditions was measured by the MTT assay as previously described [35,36]. Briefly, after
the stimulation process, in the absence or in the presence of carnosine, MTT solution (1 mg/mL in
DMEM medium) was added to each well followed by an incubation for 2 h at 37 ◦C. The formed
crystals were melted with DMSO and used to read the absorbance at 569 nm using a microplate reader
(Molecular Devices, Spectra Max M5, Sunnyvale, CA, USA). Cell viability data are expressed as the
percent variation with respect to the absorbance at 569 nm recorded in untreated cells.

2.4. HPLC Analysis of Metabolites Representative of Cellular Energy Metabolism, Oxidative Stress,
and Inflammation

RAW 264.7 macrophages were plated at the density of 4.5 × 106 cells/Petri dish and stimulated
as described in Section 2.2. Macrophages were deproteinized according to the organic solvent
deproteinization, suitable to measure acid labile and easily oxidizable compounds [37]. The analytes
of interest were separated and quantified by the ion-pairing HPLC method described in detail
elsewhere [38]. The identification and quantification of the different compounds of interest in
chromatographic runs of macrophage extracts were performed by comparing retention times, absorption
spectra and the area of the peaks of chromatographic runs of mixtures containing known concentrations
of ultrapure true standard mixtures.

2.5. Nitrite Determination Using the Griess Assay

The Griess assay was performed as previously described [33]. Briefly, RAW 264.7 macrophages
were challenged for 24 h with LPS + IFN-γ (100 ng/mL + 600 U/mL, respectively), in the absence or in
the presence of carnosine (20 mM). At the end of the stimulation protocol, 100 µL of supernatant were
taken from each well and added to an equal volume of Griess reagent. After 15 min at room temperature
in the dark, the absorbance was measured at 540 nm using a Varioskan® Flash spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). A nitrite standard calibration curve was prepared
using nitrite standards (from 1 to 100 µM).

2.6. Western Blot Analysis

Western blot analysis were carried out as previously described [39] on RAW 264.7 macrophages
harvested at 4 ◦C in RIPA buffer in the presence of a cocktail consisting of protease inhibitors,
serine/threonine phosphatase inhibitors, and tyrosine protein phosphatase inhibitors. Each cell lysate
was sonicated and then subjected to centrifugation followed by supernatant collection. The protein
concentration in each sample was determined by Bradford’s reagent and by measuring the absorbance
at 595 nm with a Varioskan® Flash spectrophotometer (Thermo Fisher Scientific). Bovine serum
albumin was used to build a standard curve. After a blocking step, membranes were incubated
overnight at 4 ◦C with the selected primary antibodies (1:2000 for GAPDH; 1:1000 for all other primary
antibodies). After three washing steps, membranes were incubated for 1 h at room temperature with
secondary goat anti-rabbit labeled with IRDye 680 (1:15,000) and goat anti-mouse labeled with IRDye
800 (1:15,000). The Odyssey Infrared Imaging System (LI-COR Biosciences, Lincoln, NE, USA) was
used for the detection of the hybridization signals. Western blot data were quantified by densitometric
analysis (Image J software) in three to four different blots per experiment.
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2.7. Gene Expression Analysis by Quantitative Real-Time PCR (qRT-PCR)

The concentration of total RNA, recovered from 4.5 × 105 control cells or cells treated with LPS +

IFN-γ, without or with 1 h pre-treatment with carnosine for 6 or 24 h, was determined by measuring
the absorbance at 260 nm with a NanoDrop® ND-1000 (Thermo Fisher Scientific, Waltham, MA, USA).
The protocol employed for reverse transcription, sample amplification, fluorescence data collection,
and sample quantification is the same previously described by us [23], with slight modifications.
Briefly, the mRNA extracted (RNeasy Mini Kit) from each sample (1 µg) was retrotranscripted
(SuperScript III First-Strand Synthesis SuperMix kit) and the resultant cDNAs, loaded on a 384-well
plate, were amplified by using specific, genomewide, bioinformatically validated primer sets. Table 1
reports the official name, official symbol, alternative titles/symbols, detected transcript, amplicon length
and primers catalogue number of all the QuantiTect Primer Assays (genomewide, bioinformatically
validated primer sets) employed for the gene expression analysis.

Table 1. The list of primers used for quantitative real-time PCR (qRT-PCR).

Official Name # Official
Symbol

Alternative
Titles/Symbols Detected Transcript Amplicon

LENGTH Cat. No. §

nitric oxide synthase 2,
inducible Nos2

iNOS; Nos-2;
Nos2a; i-NOS;

NOS-II; MAC-NOS
NM_010927 118 bp QT00100275

cytochrome b-245, beta
polypeptide Cybb

Cgd; Cyd; Nox2;
C88302; gp91-1;

gp91phox;
CGD91-phox

NM_007807 XM_006527565 146 bp QT00139797

superoxide dismutase 2,
mitochondrial Sod2 MnSOD; Sod-2 NM_013671 159 bp QT00161707

catalase Cat Cas1; Cs-1; Cas-1;
2210418N07 NM_009804 XM_006498624 121 bp

121 bp QT01058106

glutathione peroxidase 1 Gpx1

Gpx; CGPx; GPx-1;
GSHPx-1;
AI195024;
AL033363

NM_008160 133 bp QT01195936

prostaglandin-endoperoxide
synthase 2 Ptgs2

COX2; Cox-2;
PES-2; PHS-2;
Pghs2; TIS10;

PGHS-2; PHS II;
gripghs

NM_011198 95 bp QT00165347

interleukin 1 beta Il1b Il-1b; IL-1beta;
IL-1β NM_008361 XM_006498795 150 bp

682 bp QT01048355

interleukin 6 Il6 Il-6 NM_031168 128 bp QT00098875
interleukin 4 Il4 Il-4; BSF-1 NM_021283 132 bp QT02418311

interleukin 10 Il10 CSIF; Il-10 NM_010548 103 bp QT00106169

transforming growth
factor, beta 1 Tgfb1

Tgfb; Tgfb-1;
TGFbeta1;
TGF-beta1

NM_011577 145 bp QT00145250

glyceraldehyde-3-phosphate
dehydrogenase Gapdh Gapd NM_008084 XM_001003314 XM_990238 NM_001289726 144 bp QT01658692

#https://www.ncbi.nlm.nih.gov/gene/; §https://www.qiagen.com/it/shop/pcr/real-time-pcr-enzymes-and-kits/two-
step-qrt-pcr/quantitect-primer-assays/.

Each sample amplification consisted of a total reaction volume of 10 µL (5 µL PCR Master Mix
+ 1 µL specific primers + 4 µL of cDNA (50 ng)). Amplification conditions and fluorescence data
collection included: one cycle at 95 ◦C for 15 min, 50 cycles at 94 ◦C (15 s each), one annealing step at
56 ◦C for 30 s, and one cycle at 72 ◦C for 30 s. The negative control consisted of a reaction in absence of
cDNA (5 µL PCR Master Mix + 1 µL specific primers + 4 µL of Tris-EDTA buffer) indicated as NTC
(no template control). The relative RNA expression level for each sample was calculated using the
2−∆∆CT method (threshold cycle (CT) value of the gene of interest vs. CT value of the housekeeping
gene) [40,41]. For accurate gene expression measurements with qRT-PCR, the results were normalized
to the GAPDH housekeeping gene, selected using the geNorm Housekeeping Gene Selection Kit.

2.8. Statistical Analysis

Statistical analysis was performed using Graphpad Prism (Graphpad software, version 6, San
Diego, CA, USA). The within group comparison was performed by the one-way analysis of variance

https://www.ncbi.nlm.nih.gov/gene/
https://www.qiagen.com/it/shop/pcr/real-time-pcr-enzymes-and-kits/two-step-qrt-pcr/quantitect-primer-assays/
https://www.qiagen.com/it/shop/pcr/real-time-pcr-enzymes-and-kits/two-step-qrt-pcr/quantitect-primer-assays/
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(ANOVA). The post hoc Tukey test was used for multiple comparisons. Only two-tailed p-values less
than 0.05 were considered statistically significant.

3. Results

3.1. LPS + IFN-γ Stimulation do not Change Cell Viability in RAW 264.7 Macrophages

In order to exclude any relevant toxic effect caused by the exposure to pro-inflammatory conditions,
cell viability in RAW 264.7 macrophages, stimulated with a combination of LPS + IFN-γ, without and
with 20 mM carnosine, was evaluated after 24 h incubation. As shown in Figure 1, cells receiving any
of the two treatments had viability equal to that of resting (untreated) cells.

Figure 1. Cell viability in resting (control) RAW 264.7 macrophages and in RAW 264.7 macrophages
stimulated with LPS (100 ng/mL) + IFN-γ (600 U/mL), in the absence or in the presence of carnosine
(20 mM). Data are the mean of five independent experiments. Values were normalized with respect to
control untreated macrophages (resting) and are expressed as the percent variation of cell viability.

This indicates that any further metabolic, gene and protein expression changes are not linked to
cytotoxic effects of LPS + IFN-γ, at least at the concentrations and time of incubation chosen in our
experimental conditions.

Therefore the subsequent experiments were finalized to determine whether: (1) the absence
of toxicity under M1 polarization was connected to any variation of different cellular biochemical
functions related to oxidative/nitrosative stress, energy metabolism, and inflammation and (2) the
natural dipeptide carnosine had significantly beneficial immuno-regulatory effects.

3.2. Carnosine Increases the Rate of Degradation of NO into NO2
− with no Inhibition of iNOS Activity

We have previously shown that carnosine, but not its constituting amino acids (β-alanine and
L-histidine), is able to modulate NO in stimulated murine RAW 264.7 macrophages [33].

To further investigate the carnosine’s ability to modulate the NO status, we performed experiments
in which the formation of NO metabolites (nitrite, NO2

−; nitrate, NO3
− and NO2

− + NO3
−) as well as

the expression of iNOS (the most representative enzyme implicated in NO production) were evaluated
(Figure 2).
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Figure 2. (A) Concentrations of NO metabolites (NO2
−, NO3

−,and NO2
− + NO3

−) in resting (control)
RAW 264.7 macrophages and in RAW 264.7 macrophages stimulated with LPS (100 ng/mL) + IFN-γ
(600 U/mL), in the absence or in the presence of carnosine (20 mM). Values are means ± SD of three to
four independent experiments and are expressed as nmol/million cells. Measurement of iNOS gene
expression after (B) 6 h or (C) 24 h in cells treated as aforementioned. The abundance of iNOS mRNA
was expressed relative to that of the housekeeping gene GAPDH. Values are means ± SD of three to
four independent experiments. * p < 0.05 vs. resting; ** p < 0.01 vs. resting; *** p < 0.001 vs. resting;
### p < 0.001 vs. LPS + IFN-γ.

Figure 2A shows the formation of NO2
− and NO3

− as well as their sum (NO2
− + NO3

−) in
resting RAW 264.7 macrophages and in macrophages following the stimulation with LPS and IFN-γ,
in the absence or in the presence of carnosine. NO2

− (0.001 ± 0.001 nmol/106 cells) and NO3
−

(2.75 ± 0.18 nmol/106 cells) concentrations were quite low and low, respectively, in resting macrophages.
As expected, the sum of NO metabolites was significantly increased following LPS + IFN-γ stimulation,
both in the absence (+3.45 folds, p < 0.001 vs. resting) and in the presence (+2.84 folds, p < 0.001 vs.
resting) of carnosine. The relative contribution of NO2

− and NO3
− to the aforementioned sum was

greatly differed depending on the treatment. In fact, despite the absence of significant differences
in the sum of the two metabolites, NO2

− (Figure 2A, insert) increased 9.19 folds in LPS + IFN-γ +

carnosine stimulated macrophages (0.239 ± 0.026 nmol/106 cells, p < 0.001 vs. resting) compared
to LPS + IFN-γ only (0.027 ± 0.002 nmol/106 cells). Concentration of NO3

- strongly increased from
2.75 ± 0.18 nmol/106 cells in resting macrophages to 9.48 ± 1.96 nmol/106 cells in LPS + IFN-γ treated
macrophages (p < 0.001). The presence of carnosine caused a slight, but not significant, decrease in
NO3

−
, levels (7.57 ± 0.87 nmol/106 cells) compared to LPS + IFN-γ treated macrophages. The gene

expression of iNOS at 6 h (Figure 2B) dramatically increased by 216.02 ± 72.66 folds in LPS + IFN-γ
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treated macrophages (p < 0.001 vs. resting). A slight reduction occurred in the presence of carnosine
(+183.76 ± 55.77 folds, p < 0.001 vs. resting). After 24 h stimulation without or with carnosine
(Figure 2C), iNOS expression was still higher than that observed in resting cells (+18.36 ± 2.65 and
+15.42 ± 4.62 folds in LPS + IFN-γ and LPS + IFN-γ + carnosine, respectively; p < 0.001 vs. resting).

To shed more light on the implication of iNOS in the observed increase in NO production
in M1-activated macrophages, we also performed experiments employing two well-known iNOS
inhibitors, namely L-NMMA and L-NAME. As shown in Supplementary Figure S2, iNOS activation is
undoubtedly linked to the production of NO under our experimental conditions.

3.3. Carnosine Beneficially Affects High Energy Phosphates of LPS + IFN-γ-Stimulated RAW
264.7 Macrophages

Figure 3A shows the effects of LPS + IFN-γ, in the absence or in the presence of carnosine, on the
concentrations of high energy phosphates of RAW 264.7 macrophages.

Figure 3. (A) Changes in nucleoside triphosphate concentrations (ATP, GTP, UTP, CTP and sum of
nucleoside triphosphates), expressed as nmol/million cells, and (B) ATP/ADP ratio in resting (control)
RAW 264.7 macrophages and in macrophages stimulated with LPS (100 ng/mL) + IFN-γ (600 U/mL),
in the absence or in the presence of carnosine (20 mM). NTPs = nucleoside triphosphates. Values are
means ± SD of three to four independent experiments. * p < 0.05 vs. resting; ** p < 0.01 vs. resting;
# p < 0.05 vs. LPS + IFN-γ; ## p < 0.01 vs. LPS + IFN-γ.
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After 24 h incubation with LPS + IFN-γ, a significant 18%, 29%, 26% and 50% decrease in
the concentrations, respectively, of ATP, UTP, GTP, and CTP was recorded. Therefore, an overall
26% depletion in the sum of nucleoside triphosphates occurred in stimulated macrophages.
Carnosine pre-treatment allowed maintaining both the concentrations of each compound and the high
energy phosphate pool equal to those of control resting macrophages. Notably, concentration of ATP
was fully restored by carnosine pre-treatment (5.28 ± 0.18, 4.35 ± 0.28 and 5.25 ± 0.13 nmol/106 cells in
resting, LPS + IFN-γ and LPS + IFN-γ + carnosine, respectively; p < 0.01 vs. both resting and LPS +

IFN-γ + carnosine treated cells).
After 24 h in presence of the pro-inflammatory stimulus, 42% decrease of the ATP/ADP

ratio (Figure 3B), which is considered an indicator of the mitochondrial phosphorylating
capacity [42], was recorded (p < 0.01 vs. both resting and LPS + IFN-γ + carnosine treated
cells). Carnosine pre-treatment restored ATP/ADP ratio values in macrophages, indicating unaltered
mitochondrial function of energy production.

3.4. Carnosine Counterbalances the Changes in NAD+/NADH and NADP+/NADPH Ratio Induced by LPS +
IFN-γ in RAW 264.7 Macrophages

Data illustrated in Figure 4A show the beneficial effects of carnosine in preventing the imbalance of
nicotinic coenzymes (NAD+, NADH, NADP+ and NADPH) caused by the incubation of macrophages
with LPS + IFN-γ for 24 h.

Figure 4. Changes in the concentrations of (A) nicotinic coenzymes (NAD+, NADH, NADP+

and NADPH) and (B) their corresponding ratio (NAD+/NADH and NADP+/NADPH) of RAW
264.7 macrophages incubated with LPS (100 ng/mL) + IFN-γ (600 U/mL), in the absence or in the
presence of carnosine (20 mM). Values are means ± SD of three to four independent experiments.
* p < 0.05 vs. resting; ** p < 0.01 vs. resting; # p < 0.05 vs. LPS + IFN-γ.
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The pro-inflammatory stimulus provoked a significant decrease in the concentrations of NAD+

(−41%) and NADPH (−59%), as well as an increase in the levels of NADH (+57%; p < 0.05 vs. both
resting and LPS + IFN-γ + carnosine treated cells) and NADP+ (+18%; not significant). The presence
of 20 mM carnosine in the incubation medium prevented the aforementioned changes, so that
concentrations of reduced and oxidized nicotinic coenzymes did not differ from those determined in
control resting macrophages.

The calculations of the oxidized to reduced nicotinic coenzyme ratio (Figure 4B) allowed it to
evidence the influence of LPS + IFN-γ and of LPS + IFN-γ + carnosine on oxidative metabolism of
glucose (NAD+/NADH), as well as on oxidative stress and antioxidant defenses (NADP+/NADPH),
of stimulated macrophages.

A decrease by 61% of the NAD+/NADH ratio (suggesting increased glycolysis and potential
mitochondrial dysfunction, and connected to the decrease in the ATP/ADP ratio) and increase by 186%
of the NADP+/NADPH ratio (suggesting increase of NADPH-oxidase activity and decrease of pentose
phosphate pathway and/or malic enzyme activity) were induced by the pro-inflammatory treatment
(p < 0.05 vs. both resting and LPS + IFN-γ + carnosine), whilst no differences with respect to resting
macrophages were observed in cells receiving LPS + IFN-γ + carnosine.

3.5. Carnosine Decreases LPS + IFN-γ-Induced Oxidative Stress in RAW 264.7 Macrophage Cells

In order to assess the ability of carnosine to counteract oxidative/nitrosative stress, we measured
the gene expressions of ROS scavenger enzymes and of those generating ROS and RNS overflow in
resting RAW 264.7 macrophages and in macrophages stimulated with LPS + IFN-γ, in the absence or in
the presence of carnosine, for 6 h or 24 h. We found that the early increase of Nox-2 mRNA expression
(Figure 5A), induced at 6 h by LPS + IFN-γ (p < 0.01 vs. resting) was abolished by 20 mM carnosine
(p < 0.05 vs. LPS + IFN-γ).

No differences between the three different experimental conditions were observed at 24 h. Both at
6 h and 24 h, LPS + IFN-γ strongly increased Cox-2 mRNA expressions (+81.93 ± 31.22 folds at 6 h vs.
resting, p < 0.01; +17.52 ± 5.14 folds at 24 h vs. resting, p < 0.001; Figure 5B). Carnosine significantly
counteracted this phenomenon at 24 h only (p < 0.05 vs. LPS + IFN-γ). Stimulation of macrophages
with LPS + IFN-γ remarkably decreased Gpx1 expression (Figure 5C), both at 6 h (p < 0.001 vs. resting)
and 24 h (p < 0.01 vs. resting). Carnosine was able to restore Gpx1 expression to values equaling
those found in controls only at 24 h (p < 0.05 vs. LPS + IFN-γ). The pro-inflammatory stimulus did
not cause changes in the expressions of SOD-2 and Cat, although almost significant decrease in Cat
mRNA expression was observed at 6 h (Figure 5D). Interestingly, the presence of carnosine during LPS
+ IFN-γ stimulation caused a significant two times increase in the gene expression of SOD-2 at 6 h
(p < 0.05 vs. resting) and a significant three times increase in Cat gene expression at 24 h (p < 0.05 vs.
resting and LPS + IFN-γ).

To further investigate the ability of carnosine in counteracting oxidative stress, we also measured
the concentration of malondialdehyde (MDA; Figure 6), as a marker of ROS-mediated lipid peroxidation
of polyunsaturated fatty acids of biological membranes phospholipids [43].

The concentration of MDA increased more than 5.5 times upon LPS + IFN-γ stimulation
(1.02 ± 0.05 pmol/106 cells in resting and 5.78 ± 0.46 pmol/106 cells in stimulated macrophages;
p < 0.001). Carnosine prevented the increase in MDA levels (2.75 ± 1.50 pmol/106 cells; p < 0.01 vs.
LPS + IFN-γ), indicating effective antioxidant activity.
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Figure 5. Measurement of (A) Nox-2, (B) Cox-2, (C) Gpx1, (D) SOD-2, and (E) Cat mRNA expression
levels (qRT-PCR) in resting (control) RAW 264.7 macrophages and in macrophages stimulated with LPS
(100 ng/mL) + IFN-γ (600 U/mL), in the absence or in the presence of carnosine (20 mM). The abundance
of each mRNA of interest was expressed relatively to the abundance of GAPDH-mRNA. Values are
means ± SD of three to four independent experiments. * p < 0.05 vs. resting; ** p < 0.01 vs. resting;
*** p < 0.001 vs. resting; # p < 0.05 vs. LPS + IFN-γ.
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Figure 6. Concentration of MDA in resting (control) RAW 264.7 macrophages and in macrophages
stimulated with LPS (100 ng/mL) + IFN-γ (600 U/mL), in the absence or in the presence of carnosine
(20 mM). Values are means ± SD of three to four independent experiments. *** p < 0.001 vs. resting;
## p < 0.01 vs. LPS + IFN-γ.

3.6. Carnosine Decreases Inflammation Mediators and Increases TGF-β1 Expression

Levels of the gene expression of IL-1β (Figure 7A) and IL-6 (Figure 7B) were strongly upregulated
in macrophages following the stimulation with LPS + IFN-γ.

Specifically, the treatment of LPS + IFN-γ strongly increased IL-1βboth at 6 h and 24 h. The presence
of carnosine during the pro-inflammatory stimulus had significant beneficial effects at both time points
(p < 0.05 at 6 h and p < 0.01 at 24 h). A similar scenario was observed for IL-6 (Figure 7B), with LPS +

IFN-γ inducing hundreds and six fold increase in gene expression of IL-6 at 6 (p < 0.001 vs. resting) and
24 h (p < 0.01 vs. resting). As in the case of IL-1β, carnosine was able to significantly decrease the gene
expression levels of IL-6 at both time points (p < 0.05 vs. LPS + IFN-γ). TGF-β1 mRNA expression,
compared to that of resting macrophages, was unchanged at both 6 and 24 h by the treatment with LPS
+ IFN-γ. In accordance with the trend of the pro-inflammatory cytokines, the addition of carnosine
during the challenge with LPS + IFN-γ did not cause a change in the gene expression of TGF-β1 at
6 h and produced an almost six times increase at 24 h (p < 0.001 vs. resting and LPS + IFN-γ),
thus confirming that this compound is able to induce a late effective anti-inflammatory response.
No significant differences were observed between LPS + IFN-γ and LPS + IFN-γ + Carnosine for
IL-4 and IL-10 expression levels at both time points (data not shown).



Int. J. Mol. Sci. 2020, 21, 776 13 of 22

Figure 7. Gene expressions of IL-1β (A), IL-6 (B), and TGF-β1 (C) in resting (control) RAW
264.7 macrophages and in macrophages stimulated with LPS (100 ng/mL) + IFN-γ (600 U/mL),
in the absence or in the presence of carnosine (20 mM), at 6 h and 24 h. The abundance of each mRNA
was expressed relative to the abundance of GAPDH-mRNA. Values are means ± SD of three to four
independent experiments. ** p < 0.01 vs. resting; *** p < 0.001 vs. resting; # p < 0.05 vs. LPS + IFN-γ;
## p < 0.01 vs. LPS + IFN-γ; ### p < 0.001 vs. LPS + IFN-γ.
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3.7. Carnosine Strengthens the Antioxidant Machinery in RAW 264.7 Macrophages

To further investigate the ability of carnosine in counteracting oxidative stress and/or reinforcing
the antioxidant response in M1-polarized macrophages, we also considered its effect on the protein
expression levels of Nrf2 and its downstream gene HO-1. Protein expression of Nrf2 was not
significantly affected by the stimulation with LPS + IFN-γ, while it significantly increased when
macrophages were pre-treated for 1 h with carnosine (p < 0.05 vs. resting; Figure 8A). Different effects
were observed in the case of HO-1. In fact, the treatment of RAW 264.7 macrophages with LPS +

IFN-γ induced a significant increase in HO-1 expression (+3.17 folds, p < 0.01 vs. resting), while
carnosine pre-treatment strongly increased HO-1 concentration giving values 2.1 folds higher than
LPS + IFN-γ-stimulated macrophages (p < 0.001) and 6.7 folds higher than those found in resting cells
(p < 0.001; Figure 8B).

Figure 8. Representative immunoblots of (A) Nrf2 and (B) HO-1 in total protein extracts from resting
(control) RAW 264.7 macrophages and in macrophages stimulated with LPS (100 ng/mL) + IFN-γ
(600 U/mL), in the absence or in the presence of carnosine (20 mM). The abundance of each protein
of interest was expressed relative to the abundance of the GAPDH protein, as an internal control.
Histograms refer to the means ± SD of three to four independent experiments. ** p < 0.01 vs. resting;
*** p < 0.001 vs. resting; ### p < 0.001 vs. LPS + IFN-γ.

4. Discussion

Using an established in vitro model of inflammation (induced by LPS + IFN-γ) characterized by
oxidative/nitrosative stress [7,33,44,45], in the present study we demonstrated that carnosine exerts
potent anti-inflammatory and antioxidant activities, beneficially influencing gene expressions, protein
expressions and energy metabolism of stimulated RAW 264.7 macrophages.

Macrophages play a pivotal role in initiating both inflammation and immune response [46].
When properly stimulated (e.g., using LPS), they undergo a series of processes involving the activation
and release of pro-inflammatory and pro-oxidant mediators [47,48].

In our experiments, we stimulated RAW 264.7 cells with LPS (100 ng/mL) + IFN-γ (600 U/mL)
concentrations properly chosen to avoid an increase in cell death during the exposure to these stimuli,
but sufficient to produce changes in gene and protein expressions connected to inflammation and
oxidative/nitrosative stress, as well as to cell energy metabolism. Molecular changes of our activated
macrophages concerned modifications in the expression of genes encoding for proteins involved in
NO production (increase in iNOS), ROS formation (increase in Nox-2), antioxidant defenses (decrease
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in Gpx) and pro-inflammatory stimulations (increase in Cox-2, IL-1β, and IL-6), indicating an overall
M1 polarization [33]. Unlike Nrf2, the increase in protein expression of HO-1 was the only significant
endeavor to counteract these changes. Notwithstanding HO-1 raise, stimulated macrophages did
not only show increase of oxidative/nitrosative stress biomarkers (MDA, nitrite and nitrate), but also
showed an imbalance of energy (decrease of ATP and other nucleoside triphosphates) and redox
metabolism (alterations of NAD+/NADH and NADP+/NADPH ratio).

Whilst the decrease in the ATP/ADP ratio and the increase of the NAD+/NADH ratio suggested,
respectively, reduced mitochondrial phosphorylating capacity [49] and compensatory increase of the
glycolytic rate [50,51], the increase in the NADP+/NADPH ratio seems to be linked to the increase in
Nox-2 levels, thus strongly supporting a major role of NADPH-oxidase (Nox-2) as a ROS generator
during macrophage activation [52,53].

The switch to an inflammatory M1 phenotype of stimulated macrophages was effectively
counteracted by the presence of 20 mM carnosine in the cell medium. This compound, having
well-demonstrated minimal adverse effects [49,50] has been suggested as nutraceutical agents with a
multimodal pharmacodynamic profile with potential applications in different pathological states such
as inflammatory and neurodegenerative diseases [54,55].

In agreement with previous results, showing the ability of carnosine to indirectly counteract
oxidative stress by enhancing the expression of members of the endogenous antioxidant system,
including HO-1 and Nrf2 [56–58], under our experimental conditions we found that carnosine
up-regulated both Nrf2 and, particularly, its downstream product HO-1 (Figure 8). Since the activity of
HO-1 has been addressed as one of the main actors in the defense system towards oxidative/nitrosative
stress [10,59–62], it is presumable that the carnosine-mediated positive HO-1 modulation contributes in
part to the generalized decrease in metabolic indicators of sustained oxidative/nitrosative stress (sum
of nitrite + nitrate, MDA; Figures 2 and 6). On the other hand, carnosine effects on Nrf2 might have
led stimulated macrophages to have lower expressions of Nox-2 and Cox-2 and concomitant higher
expressions in canonical scavenger enzymes (Gpx, Cat, and SOD-2; Figure 5). All the above-mentioned
results, showing an antioxidant activity of carnosine on activated macrophages, are in accordance with
other studies in which the presence of this dipeptide protected brain macrophages and/or endothelial
cells against cell death oxidative stress-induced [63,64].

According to this (Figure 2) and previous studies [31], we found that the presence of
carnosine during macrophage stimulation with LPS + IFN-γ did not decrease the production of
NO. Results of qRT-PCR of iNOS expression showed only a significant, but modest, effect of carnosine.
However, the HPLC analysis of nitrite and nitrate, the stable end-products of NO, in the cell extracts
allowed us to make new discoveries about the mechanisms underlying carnosine-induced NO
degradation; in fact, our results clearly indicated that carnosine was able to produce a drastic 10 folds
increase in nitrite (but not nitrate) concentration (Figure 2A, insert), thereby suggesting an increased
degradation rate of NO into NO2

- mediated by carnosine.
This peculiar carnosine activity might certainly be of relevance for its potential therapeutic

applications. It is well-known that excessive levels of iNOS-induced NO in macrophages are closely
associated with different inflammatory diseases [57,58] and that when overproduced, NO reacts with
superoxide ion generating peroxynitrite [22]. Carnosine, by accelerating NO degradation into NO2

−,
might efficiently decrease the levels of one of the substrates needed for the formation of peroxynitrite,
diminishing risks of peroxynitrite-mediated damages to fundamental macromolecules [59]. In addition,
NO overproduction in macrophages, induced by infectious agents, initiates apoptosis [17]; by decreasing
NO bioavailability carnosine could prolong the immune response by preventing macrophages
programmed cell death. It should also be considered that, during the last decade, several studies have
shown the beneficial effects of NO2

− supplementation. Parthasarathy and Bryan showed that the use
of foods or diets enriched with nitrite could have profound positive health benefits [60]. DeVan et
al. provided evidence that ten weeks of sodium nitrite supplementation (80 or 160 mg/day) is able to
significantly increase plasma nitrite concentrations acutely and chronically and was well tolerated with
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few side effects, improving endothelial function, and lessens carotid artery stiffening in middle-aged
and older adults [65]. Hence, the carnosine activity on NO, leading to increase nitrite, would not cause
any adverse effect but might rather represent an additional positive pharmacological effect of this
natural compound.

Previous studies, using 500 ng/mL of LPS [66] or 1000 ng/mL LPS [67] to stimulate macrophages,
showed significant changes in energy metabolism and mitochondrial functions. In the present study,
using five and 10 times lower LPS concentrations than those used in the aforementioned studies,
we found that 100 ng/mL LPS was sufficient to significantly perturb the energy and redox metabolism of
macrophages (Figures 3 and 4), whilst being completely free of any cytotoxic effect. The relevant finding
was that all high-energy phosphates (ATP, UTP, GTP, and CTP) in stimulated RAW 246.7 were lower than
corresponding values determined in resting control macrophages, indicating profound alterations of
metabolic pathways and cycles devoted to the cell energy supply. Since the value of the NAD+/NADH
ratio concomitantly halved, it is highly conceivable that a decrease in nucleoside triphosphates and in
the ATP/ADP ratio (an index of mitochondrial phosphorylating capacity) were due to mitochondrial
malfunctioning, particularly of the electron transfer chain coupled to oxidative phosphorylation,
inducing a compensatory increase in glycolytic rate [50]. Interestingly, the pro-inflammatory and
pro-oxidant stimulus produced an almost three times increase in the NADP+/NADPH ratio, strongly
suggesting that this phenomenon (increase in the oxidized form of the coenzyme) is closely linked to
the increase in the expression of NAPH-dependent Nox-2 (Figure 4A), one of the most active ROS
generating system of activated macrophages [68].

From the metabolic point of view, the presence of 20 mM carnosine during macrophage stimulation
was able to rescue both energy and redox metabolism. Particularly, carnosine allowed stimulated
macrophages to maintain correct mitochondrial functions, as evidenced by ATP/ADP and NAD+/NADH
ratio equal to those of controls and evidencing correct mitochondrial phosphorylating capacity and
functioning of the electron transport chain (Figures 3 and 4 ). These results are in line with previous
studies showing that carnosine has beneficial effects on energy metabolism during periods of cell
sufferance induced by various stimuli [69,70].

Restoration of cell metabolism by carnosine was accompanied by the downregulation of the
expression of two of the major pro-inflammatory cytokines, namely IL-1β (Figure 7A) and IL-6
(Figure 7B), having a crucial role in initiating the inflammatory process. Different studies have linked
the deleterious effects of IL-1β with different pathological conditions, including type 1 diabetes [71,72],
gout [73], Alzheimer’s disease [74] and many auto-inflammatory disorders [75]. Pre-clinical studies in
rodents have demonstrated a robust activation of both astrocytes and microglia following IL-1β injection
or induction [74]. Additionally, IL-1β is capable of triggering further increases in its own expression
and the production of additional pro-inflammatory cytokines, such as IL-6 [76]. The up-regulation of
IL-6 has been reported in different neuroinflammatory and neurodegenerative disorders of the central
nervous system [77], pulmonary hypertension [78], metabolic syndrome [79], depression [80] as well
as cancer [81]. Altogether, our results and those reported in the aforementioned studies underline the
potentially beneficial roles of carnosine administration in counteracting inflammatory phenomena
characterized by elevated levels of IL-1β and/or IL-6.

In addition to IL-1β and IL-6, carnosine pre-treatment was able to up-regulate the expression of
the TGF-β1 gene in LPS + IFN-γ-stimulated macrophages (Figure 7C). TGF-β1 is an anti-inflammatory
cytokine of key importance in the control of cell growth and differentiation as well as for the immune
response [82,83]. It has been shown in vivo that the administration of TGF-β1 is able to protect
against Aβ-induced neuroinflammation and neurodegeneration [84–86], whilst mutations of the
TGF-β1 gene in mice lead to death from multifocal inflammation and autoimmune disorders in
internal organs [87,88]. Additionally, a significant deficit of TGF-β1, paralleling memory deficits and
depressive-like phenotype, has been found in the hippocampus of Aβ-injected mice [89]. Very recently,
the ability of carnosine to protect brain macrophages and neurons against Aβ-induced cell toxicity by
increasing TGF-β1 expression and secretion has been proposed [23].
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Lastly, with the aim to reinforce the importance of carnosine in the “antioxidant scenario”,
we evaluated the ability of this molecule to modulate Nrf2 and HO-1, both of them playing a pivotal
role in the intracellular antioxidant system [90,91]. Carnosine significantly up-regulated both proteins,
giving expression values higher than those observed in resting and LPS + IFN-γ-stimulated cells
(p < 0.001 for both of them) for HO-1 and higher than resting (p < 0.01) for Nrf2 (Figure 8). These results
are in agreement with previous studies showing the ability of carnosine to indirectly counteract
oxidative stress by enhancing the expression of members of the endogenous antioxidant system,
including HO-1 and Nrf2 [56–58]. According to the role of Nrf2 signaling pathway [92], our data
suggest that carnosine-mediated induction of HO-1 and Nrf2 may contribute to the inhibition of
oxidative and inflammatory responses in RAW 264.7 macrophages. This effect may certainly be
achieved due to the carnosine-induced rescue of Gpx1 and increase of SOD-2 and Cat gene expressions.

The above-mentioned findings provide us with a solid foundation for a further investigation of
the multimodal mechanism of action of carnosine in animal model characterized by both inflammation
and oxidative stress such as depression and/or AD.

5. Limitations of the Study

The present study clearly shows the antioxidant and anti-inflammatory features exerted by
carnosine on activate macrophages. Despite that, an additional mechanism working along with the
well characterized “Carnosine-NO axis” should be identified in order to give a high-level overview
of the process. Furthermore, this study was conducted in one particular cell line under specific
conditions (M1 activation in absence of cell toxicity), and then caution should be exercised in making
generalizations across different cell lines and/or protocols.

6. Conclusions

In the present study we provided strong evidence about carnosine ability to modulate pro-oxidant
and pro-inflammatory activities of activated (M1) macrophages. Our results clearly show a dual
antioxidant role of carnosine highlighted by its ability to reinforce the antioxidant machinery (Nrf2,
HO-1, and ROS scavenger enzymes up-regulation), simultaneously decreasing the expression of
pro-oxidant enzymes (Nox-2 and Cox-2) and lipid peroxidation (MDA). The presence of carnosine was
also able to counteract the imbalance in energy and redox metabolism observed in M1 macrophages by
restoring nucleoside triphosphates and counterbalancing the changes in ATP/ADP, NAD+/NADH and
NADP+/NADPH ratio obtained by LPS + IFN-γ induction. We again showed the peculiar carnosine
ability to increase NO degradation rate into its non-toxic end-products, providing deeper insights into
the carnosine-mediated transformation into NO2

−. Carnosine also exerted a strong anti-inflammatory
activity by down-regulating the LPS + IFN-γ-induced expression of IL-1β and IL-6, simultaneously
up-regulating the expression of the anti-inflammatory cytokine TGF-β1.

All the aforementioned carnosine effects suggest a preclinical and clinical relevance of these
results in light of potential therapeutic use of this naturally occurring dipeptide in counteracting
pro-oxidant and pro-inflammatory phenomena as a novel pharmacological tool for the treatment of
diseases characterized by elevated levels of oxidative stress and inflammation.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/21/3/776/s1.
Figure S1. The protocol and methods employed to evaluate cytotoxicity (MTT assay), energy metabolism (HPLC),
gene expressions (high-throughput real-time PCR (qRT-PCR)), protein expressions (western blot) and nitric oxide
production (qRT-PCR, HPLC), in activated macrophages. Figure S2. Extracellular concentrations of nitrite in
resting RAW 264.7 macrophages and in macrophages stimulated for 24 h with LPS + IFN-γ (100 ng/mL + 600 U/mL,
respectively), in the absence or in the presence of L-NMMA (500 µM) or L-NAME (1 mM) (1 h pretreatment).
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