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Abstract: Zinc is an essential micronutrient that plays critical roles in numerous physiological
processes, including bone homeostasis. The majority of zinc in the human body is stored in bone.
Zinc is not only a component of bone but also an essential cofactor of many proteins involved in
microstructural stability and bone remodeling. There are two types of membrane zinc transporter
proteins identified in mammals: the Zrt- and Irt-like protein (ZIP) family and the zinc transporter (ZnT)
family. They regulate the influx and efflux of zinc, accounting for the transport of zinc through cellular
and intracellular membranes to maintain zinc homeostasis in the cytoplasm and in intracellular
compartments, respectively. Abnormal function of certain zinc transporters is associated with an
imbalance of bone homeostasis, which may contribute to human bone diseases. Here, we summarize
the regulatory roles of zinc transporters in different cell types and the mechanisms underlying related
pathological changes involved in bone diseases. We also present perspectives for further studies on
bone homeostasis-regulating zinc transporters.
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1. Introduction

Bone is the main supporting framework of the body and is characterized by its nature of rigidity
and self-healing ability [1]. It provides protection for soft organs and a stable environment for the
marrow, which is responsible for hemopoiesis and fat storage [2,3]. Bone is a highly dynamic tissue
that undergoes constant physiological activities to remove old, injured or microdamaged bone and
replace it with newly formed bone that is mechanically stronger in promoting or preserving bone
strength and adapting to changing biomechanical forces [4]. Healthy bones are always in homeostasis,
and disturbance of homeostasis causes various bone diseases, such as osteoporosis and osteoarthritis
(OA) [5–7]. Bone homeostasis involves multiple coordinated cellular and molecular events that revolve
around three main types of bone cells: osteoblasts, osteocytes and osteoclasts [8]. Osteoblasts are large
cuboidal cells that lie along the bone surface and are responsible for osteogenesis, contributing to
bone matrix synthesis and subsequent mineralization [9]. Osteoblasts produce and secrete cellular
products during bone formation, are trapped in lacunae and eventually transform into osteocytes [10].
Osteocytes are the most abundant cell type in bone, and they serve as the primary mechanosensor and
respond to hormone cues [11,12]. Osteoclasts are large multinucleated cells that are responsible for
osteoclastogenesis, accounting for bone destruction and resorption [13]. Osteoblasts originate from
mesenchymal stem/stromal cells, whereas osteoclasts are derived from monocyte fusion and have
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more than one nucleus [14]. Chondrocytes are another type of cell that is very important for bone; they
are the only cell type found in the cartilage and are responsible for cartilaginous matrix production
and maintenance [15]. Bone homeostasis is synergistically regulated by a series of regulatory factors
and sophisticated signaling pathways [16–18].

Bone itself is also an important reservoir for diverse metal ions, cytokines, and growth factors [19].
As an essential metal element, zinc plays indispensable roles in the growth and development of
humans and other animals [7,20–22]. In humans, bone contains approximately 30% of the total body
zinc, which has been shown to decrease during aging [23,24]. Zinc deficiency caused by different
pathological conditions was found to give rise to bone growth retardation, suggesting that zinc is
of great importance for the development, growth, and health of bone [25]. The majority of zinc
in the body is stored in the skeleton and enriched in the osteoid layer, where inorganic mineral
salts are deposited [26]. Specifically, zinc is found to occur in the mineral component, probably in
hydroxyapatite or in complex with fluoride, which might improve the crystallinity of apatite [27–29].
In addition to being one of the components of bone, zinc also acts as an activator or coactivator of a
variety of proteins involved in bone homeostasis in the form of zinc fingers or zinc clusters [30–32].
For instance, zinc acts as a coactivator of runt-related transcription factor 2 (Runx2), which is the
earliest determinant of osteogenic differentiation, and its downstream target gene Osterix, which is
itself a zinc finger motif-containing transcription factor [25,33].

There has been growing interest in the potential roles of zinc in bone homeostasis and bone
diseases. The transport of zinc through cellular and intracellular membranes is of great significance for
maintaining zinc homeostasis, suggesting that homeostasis-regulating zinc transporters could be very
important in the regulation of physiological and pathological processes in bone. In mammals, there are
two types of zinc transporter genes: the Slc39a family of importers encodes Zrt- and Irt-like proteins
(ZIPs), and the Slc30a family of exporters encodes zinc transporters (ZnTs). The ZIP family mediates zinc
influx from extracellular fluid or intracellular vesicles into the cytoplasm, and the ZnT family promotes
zinc efflux from cells or influx into intracellular vesicles from the cytoplasm. In mammalian genomes,
a total of 14 members of the ZIP family (ZIP1–ZIP14) and 10 members of the ZnT family (ZnT1–ZnT10)
have been identified [34]. Most ZIP proteins are homo- or heterodimers with eight transmembrane
domains, and the N-terminal and C-terminal regions are located extracellularly, with a histidine-rich
loop between the third and fourth transmembrane domains [23,35–37]. ZnT transporters have six
transmembrane domains with their termini inside the cytoplasm, and there is a long histidine-rich
loop between transmembrane domains IV and V, which is the binding site of zinc ions [34,38]. Herein,
we review the biological functions of six members of the ZIP family and two members of the ZnT
family that play regulatory roles in bone homeostasis, the imbalance of which might lead to certain
bone diseases (Table 1).
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Table 1. Zrt- and Irt-like protein (ZIP) and zinc transporter (ZnT) proteins in bone physiology
and pathology.

Name Mutation Type Physiological Events and Diseases

ZIP1
induction of osteogenesis of MSCs [39–41]

knockout no obvious bone phenotype [42–44]

ZIP2 knockout no obvious bone phenotype [43–45]

ZIP3 knockout no obvious bone phenotype [42–44]

ZIP8 cartilage destruction and osteoarthritis [46–49]

ZIP13
mutation spondylocheiro dysplastic form of Ehlers-Danlos syndrome [50]

knockout connective tissue dysplasia [51]

ZIP14
knockout growth retardation [52,53]

mutation hyperostosis cranialis interna [54]

ZnT5 knockout poor growth, osteopenia and heart failure [55]

ZnT7
impaired osteogenesis of MSCs [56]

protection of osteoblasts from apoptosis [57]

2. Roles of ZIP Transporters in Bone

2.1. ZIP1, ZIP2 and ZIP3

Zrt/Irt-like proteins 1, 2 and 3 (ZIP1, ZIP2, and ZIP3) are multipass membrane zinc transporter
proteins that are responsible for mammalian zinc homeostasis by mediating zinc uptake into the
cytoplasm [58,59]. Osteoblasts are known to be the primary functional cells for bone formation.
ZIP1 was found to be expressed early in mouse embryo development, at E15.5 in osteoblasts and later in
ameloblasts and odontoblasts, indicating that ZIP1 is closely related to bone formation [60]. Additionally,
ZIP1 is located in the cytoplasmic membrane and mediates zinc influx during mesenchymal stem cell
(MSC) differentiation into osteoblasts [40]. ZIP1 expression was induced upon osteogenic differentiation
of multipotent human MSCs and osteoblast progenitor MC3T3-E1 cells in vitro, accompanied by an
increase in intracellular zinc uptake [39–41]. Moreover, ZIP1-mediated zinc influx gave rise to higher
expression of the osteogenic master regulators Runx2 and Osterix. Enhancement of Runx2 and Osterix
expression further modulated transcriptional expression of ZIP1 by directly binding to the response
elements in the promoter. These processes resulted in a series of intertwined feed-forward loops that
induced zinc influx and osteogenic differentiation and promoted bone apatite formation [41,61,62].
On the other hand, ZIP1 is also expressed in osteoclasts, and overexpression of ZIP1 inhibited mature
osteoclast activity by exerting a negative impact on the nuclear factor kappa B (NF-κB) pathway,
which is essential for osteoclast differentiation and activity [63]. Thus, ZIP1 could play regulatory
roles in stimulating osteogenesis and suppressing osteoclastogenesis in vitro. Although ZIP1 is widely
expressed in mouse tissues, no visible bone phenotype was observed in ZIP1 knockout mice fed a
normal diet; however, a decreased embryonic survival rate was found upon feeding with a low-zinc
diet, but no obvious bone phenotype was revealed [42–44].

Unlike that of ZIP1, the expression of ZIP2 and ZIP3 is low in tissues, and few studies have been
published on the roles of ZIP2 and ZIP3 in osteogenesis or osteoclastogenesis in vitro. Although ZIP2
expression has been reported to correlate with hormones, no obvious bone phenotypes appeared
in homozygous ZIP2 knockout mice with an adequate dietary zinc supply [43–45]. Similarly,
ZIP3 knockout mice; double ZIP1 and ZIP3 knockout mice; and even triple ZIP1, ZIP2, and ZIP3
knockout mice exhibited no differences in the content of bone zinc and no bone deformity, but the
triple knockout mice exhibited a higher risk of malformations under the condition of dietary zinc
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deficiency [42–44]. These interesting phenomena imply that there might be other compensatory
pathways that contribute to the process of zinc uptake in vivo.

2.2. ZIP8

Zrt/Irt-like protein 8 (ZIP8) is an 8-transmembrane transporter that is present on the cytoplasmic
membrane or intracellular vesicles of various types of cells [64,65]. Zinc supplementation or
overexpression of ZIP8 in osteoblasts could improve zinc homeostasis, which helps to protect
against intermittent hypoxia (IH) exposure in vitro [66]. IH-treated osteoblasts exhibited reductions
in mineralization and zinc content, accompanied by decreased expression of ZIP8, Runx2, Col1α1,
and other osteogenesis-associated genes, which could be recovered by zinc supplementation or ZIP8
overexpression [66]. Notably, IH-treated animals displayed significantly impaired insulin production
and bone fragility due to an imbalance of zinc homeostasis [67,68].

Recently, ZIP8-mediated zinc influx has been revealed to be essential for the pathogenesis of
osteoarthritis [46]. OA is characterized by cartilage degradation, synovitis, osteophyte formation,
and sclerosis of subchondral bone. Tissue destruction is caused by proteins named matrix-degrading
enzymes, which are produced by cartilage cells. Matrix-degrading enzymes need zinc to function,
implying that zinc levels play an important role in OA [69]. ZIP8 expression was found to be
increased in chondrocytes from OA patients or OA mouse models, resulting in increased intracellular
zinc concentrations [46,47,70]. ZIP8 is embedded in the plasma membrane of cartilage cells and
is involved in transporting zinc into these cells from the outside environment. Mechanistically,
zinc influx through ZIP8 activates the nuclear localization of a transcription-activating protein,
metal-regulatory transcription factor-1 (MTF1), which in turn upregulates the expression of
zinc-dependent metalloprotease matrix-degrading enzymes (MMP3, MMP9, MMP12, MMP13) and
ADAM metallopeptidase with thrombospondin type 1 motif 5 (ADAMTS5), induces the destruction
of the cartilage extracellular matrix and exacerbates the pathogenesis of OA [46,48,71]. Moreover,
overexpression or transgenic manipulation of ZIP8 or MTF1 in chondrocytes causes OA pathogenesis in
mice. It is worth noting that the pathogenesis of OA caused by overexpression of ZIP8 was significantly
inhibited in MTF1-deficient mice, whereas the pathogenesis of OA caused by overexpression of MTF1
was not affected in ZIP8-deficient mice. This clearly shows that MTF1 is a downstream mediator of ZIP8
in the pathogenesis of OA. In contrast, chondrocyte-specific deficiency of ZIP8 or MTF1 ameliorated
cartilage destruction in OA mice [46]. Furthermore, the zinc-ZIP8-MTF1 axis could reciprocally
activate hypoxia-inducible factor 2α (HIF-2α), one of the key regulatory factors of endochondral
osteogenesis and OA-related cartilage degeneration, to amplifying catabolic signals and accelerating
cartilage destruction [49,72,73]. Therefore, the zinc-ZIP8-MTF1 axis might be a novel drug target for
the treatment of OA.

2.3. ZIP13

Zrt- and Irt-like protein 13 (ZIP13) possesses an 8-transmembrane structure and acts as a zinc-influx
transporter, moving zinc from the subcellular compartment into the cytosol [74]. ZIP13 is located
in the Golgi apparatus and intracellular vesicles and mainly plays roles in mesenchyme-originating
cells [51,74–76]. ZIP13 can respond to and be regulated by zinc concentrations. This process might
contribute to the influx of stored zinc from vesicles to the cytosol, meeting the requirement for zinc
in order to activate enzymes and related metabolic reactions under zinc-restricted conditions [76,77].
ZIP13 was found to be expressed in osteoblasts of the tibia and alveolar bone, in the proliferative zone
of the growth plate, in odontoblasts of the forming dentin crown in molars, and in fibroblasts of the
reticular layer of the skin [51,78,79].

The spondylocheiro dysplastic form of Ehlers–Danlos syndrome (SCD-EDS) is an inherited
connective tissue and bone disease caused by a homozygous mutation of the ZIP13 gene [50,77].
Zinc deficiency can cause bone growth retardation and increase the risk of skin fragility [80,81].
Many clinical features of SCD-EDS patients are similar to symptoms of zinc deficiency in humans or
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animal models, such as osteogenesis imperfecta, skin inelasticity, and systemic growth retardation,
which is also recapitulated in ZIP13-knockout mice [50,51]. Mice with ZIP13 deletion exhibited impaired
bone morphogenetic protein 4 (BMP4)/transforming growth factor β (TGF-β)/Smad signaling in the
corresponding tissues. Bone morphogenetic proteins and TGF-β signaling are known to play important
roles in cell proliferation and differentiation and are highly correlated with the development of bone
and various tissues [82]. Ablation of ZIP13 initiated dysregulation of a variety of differentiation-related
marker genes leading to inadequate maturation of osteoblasts, chondrocytes, odontoblasts and
fibroblasts; these markers included 1) Runx2 and Msh homeobox 2 (Msx2), which are involved in
skeletogenesis; 2) Indian hedgehog (Ihh), Fibroblast growth factor receptor 3 (Fgfr3) and SRY-box
transcription factor 9 (Sox9), which are responsible for differentiation of chondrocytes; and 3) Collagen
type I alpha 2 (Col1α2), which is responsible for fibroblast differentiation [51,75]. Furthermore, the
valosin-containing protein (VCP)-dependent ubiquitin proteasome pathway accelerates the degradation
of the pathological mutant ZIP13 protein, reduces the level of functional protein, and leads to vertebral
dysplasia in SCD-EDS [78,83].

2.4. ZIP14

ZIP14 is most closely related to ZIP8, which is known to be localized to the plasma membrane
and to function in the transport of Zn2+, Fe2+, and Mn2+ [84–86]. ZIP14 is important for mammalian
development and was found to be highly expressed in the pituitary gland and bone, which are
responsible for the production of growth hormone and bone elongation [52,53]. ZIP14 is highly
expressed in chondrocytes in the proliferation zone of growth plates and contributes to endochondral
ossification, which accounts for longitudinal lengthening of bones. Loss of ZIP14 in mice results in
dwarfism, scoliosis, osteopenia and shortening of the long bones caused by abnormal chondrogenesis
and endochondral ossification [52,53]. At the same time, intracellular zinc concentrations in the growth
plate proliferation zone as well as zinc concentrations and 3′,5′-Cyclic adenosine monophosphate
(cAMP) levels in pituitary cells of ZIP14 knockout mice were significantly reduced, and these effects
were important for maintaining the homeostasis of G protein-coupled receptor (GPCR)-mediated signal
transduction. Further research on the underlying mechanisms revealed that zinc transport mediated
by ZIP14 could prevent cAMP degradation by inhibiting phosphodiesterase (PDE) activity, through
which ZIP14 facilitates the GPCR/cAMP/cAMP response element-binding protein (CREB) signaling
pathways [52,53]. The expression of ZIP14 is stable during osteogenic differentiation of mouse MSCs,
whereas it increases during the mineralization stage. ZIP14 knockout mice exhibited markedly reduced
trabecular bone mass that was greatly amplified with aging [87]. In humans, hyperostosis cranialis
interna (HCI) is a genetic disease related to a missense mutation (P.L441R) in the ZIP14 gene, which was
confirmed by whole-exome sequencing [88]. P.L441R-ZIP14 leads to incorrect localization of ZIP14
in osteoblasts, thus increasing the accumulation of unstable cellular zinc and abnormal cellular zinc
homeostasis, causing excessive bone growth in the skull [54]. Notably, ZIP14L438R osteoblast-specific
knock-in mice, which have a missense mutation in the mouse ZIP14 gene, exhibit no effects on the
calvariae but have a severe femoral phenotype characterized by a sharp increase in cortical thickness,
similar to the underlying pathology of HCI patients. Conditional osteoblast ZIP14-mutation knock-in
mice have a significant increase in cortical thickness and a decreased midshaft due to enhanced
intimal formation caused by significantly enhanced cAMP/CREB and nuclear factor of activated T
cells (NFAT) signaling activity, which plays an important role in bone and inflammatory processes;
however, conditional osteoclast ZIP14-mutation knock-in mice display no significant difference in
skeletal phenotype.

3. Role of ZnT Transporters in Bone

The zinc transporter (ZnT)/Slc30 family is a subfamily responsible for zinc efflux, in contrast to the
function of the (ZIP)/Slc39 subfamily [89]. Few studies have been reported on the relationship between
the ZnT family and bone, except for ZnT5 and ZnT7. ZnT5 expressed after transfection in HeLa cells
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was reported to localize to Golgi membranes, mediating zinc efflux from the cytosol to the Golgi
compartment [90]. ZnT7 is localized to the Golgi apparatus and unique vesicular compartments [91].
The activity of tissue-nonspecific alkaline phosphatase (TNAP) was significantly reduced in DT40
cells in the absence of both ZnT5 and ZnT7 [92,93]. As a zinc-requiring membrane-bound enzyme,
TNAP is crucial for bone mineralization. Decreased TNAP activity inevitably leads to impaired
mineralization of the bone matrix, which mimics the skeletal defects of infantile hypophosphatasia [94].
Mice with ZnT5 deficiency displayed poor growth, osteopenia and heart failure [55]. Specifically,
ZnT5 knockout mice manifest bone abnormalities, including lower bone density due to impairment
of osteoblast maturation [55]. However, the roles of ZnT5 in bone and the related mechanisms are
largely elusive. The ZnT7 protein is abundantly expressed in mouse osteoblast MC3T3-E1 cells [57]
and is a crucial component of the functional activities of MSCs [56]. ZnT7 prevented MC3T3-E1 cells
from undergoing apoptosis induced by oxidative stress by reducing the accumulation of intracellular
cationic zinc [57]. On the other hand, the expression of ZnT7 decreased upon osteogenic induction of
MSCs. Downregulation of ZnT7 expression by small interfering RNA (siRNA) increased the levels
of osteogenesis-associated markers such as alkaline phosphatase (ALP), collagen I and osteocalcin,
whereas overexpression of ZnT7 exerted the opposite effects. Further study demonstrated that ZnT7
could interfere with Wnt/β-catenin signaling, a key pathway involved in osteogenesis [56]. ZnT5 and
ZnT7 might play opposite roles in osteogenesis; however, the underlying mechanism still needs to
be explored.

4. Conclusions and Future Prospects

Zinc is an important element for bone development, regeneration, and homeostasis, which has
been gradually recognized in recent years [95]. However, zinc is incapable of passing through the cell
membrane freely, and transporter-mediated influx and efflux of zinc are required for zinc homeostasis in
cells. Since the discovery of zinc transporters, accumulating evidence has demonstrated that mutation
and disorder of ZIP and ZnT transporter proteins are related to certain aspects of bone physiology
or disease [96]. In this review, eight zinc transporters, namely, ZIP1, ZIP2, ZIP3, ZIP8, ZIP13, ZIP14,
ZnT5, and ZnT7, were characterized to illuminate the relationship between zinc transporters and
bone homeostasis (Figure 1). Different members of the ZIP and ZnT families synergize with zinc to
participate in the processes of osteogenesis and osteoclastogenesis. The ZIP8-mediated zinc signaling
axis in chondrocytes is an essential regulator of OA pathogenesis; dysfunction of the ZIP13, ZIP14,
or ZnT5 gene gives rise to bone deformity in mice and humans. Mutations in zinc transporter genes
may lead to genetic disease or increase the risk of disease. However, studies related to the role of zinc
transporters in the pathogenesis of bone diseases are relatively rare, and further investigation is needed
to gain a deeper understanding, which might facilitate the development of zinc supplements for
bone diseases, zinc-containing bone repair materials, and molecular therapies targeting zinc signaling
pathways. In addition, recent studies suggest that zinc transporters can transport not only zinc but also
trace elements such as iron, manganese, and cadmium, which makes the functions of zinc transporters
in bone more complex and diverse. Whether a specific zinc transporter transports other divalent metal
ions, whether the same zinc transporter regulates bone development by coordinating the steady-state
metabolism of different trace elements, and whether the transport function of a zinc transporter for
multiple trace elements is independent or balanced are important scientific issues to be further studied.
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Abbreviations

ZIP Zrt- and Irt-like protein
ZnT zinc transporter
MSCs mesenchymal stem cells
OA osteoarthritis
MTF1 metal-regulatory transcription factor-1
Runx2 runt-related transcription factor 2
NF-κB nuclear factor kappa B
ADAMTS5 ADAM metallopeptidase with thrombospondin type 1 motif 5
Msx2 msh homeobox 2
Ihh Indian hedgehog
Fgfr3 fibroblast growth factor receptor 3
Sox9 SRY-box transcription factor 9
Col1α2 collagen type I alpha 2
MMPs matrix metalloproteinases
VCP valosin-containing protein
cAMP 3′,5′-Cyclic adenosine monophosphate
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NFAT nuclear factor of activated T cells
ALP alkaline phosphatase
siRNA small interfering RNA
PDE phosphodiesterase
GPCR G protein-coupled receptor
CREB cAMP response element-binding protein
BMP bone morphogenetic protein
SCD-EDS spondylocheiro dysplastic form of Ehlers-Danlos syndrome
HCI hyperostosis cranialis interna
BMP bone morphogenetic protein
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