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Abstract: Among the severe side effects induced by cisplatin chemotherapy, muscle wasting is
the most relevant one. This effect is a major cause for a clinical decline of cancer patients, since
it is a negative predictor of treatment outcome and associated to increased mortality. However,
despite its toxicity even at low doses, cisplatin remains the first-line therapy for several types of solid
tumors. Thus, effective pharmacological treatments counteracting or minimizing cisplatin-induced
muscle wasting are urgently needed. The dissection of the molecular pathways responsible for
cisplatin-induced muscle dysfunction gives the possibility to identify novel promising therapeutic
targets. In this context, the use of animal model of cisplatin-induced cachexia is very useful. Here, we
report an update of the most relevant researches on the mechanisms underlying cisplatin-induced
muscle wasting and on the most promising potential therapeutic options to preserve muscle mass
and function.
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1. Introduction

Cis-diamine-dichloroplatinum (II) (best known as cisplatin or CDDP) is a very effective cancer
drug having a major clinical impact, particularly for patients with bladder, head and neck, lung,
ovarian, and testicular cancers. Cisplatin is intracellularly activated by the aquation of one of the
two chloride leaving groups, and thereafter it binds covalently to DNA adducts. DNA modifications
activate various intracellular pathways including those involved in DNA-damage recognition and
repair, cell-cycle arrest, and programmed cell death/apoptosis [1,2]. Cisplatin-based chemotherapy is
associated with severe side effects, including nephrotoxicity, ototoxicity, neurotoxicity, and muscle
wasting. In particular, a significant body weight loss is often present in cancer patients treated with
cisplatin, mainly due to muscle wasting. Despite its toxicity even at low doses, cisplatin remains the
first-line therapy for several types of solid tumors. Therefore, the necessity of developing more effective
and safe chemotherapeutic adjuvants or nutritional supplements to ameliorate cisplatin-induced
muscle wasting is crucial. Preserving muscle mass could have a high impact on the patients’ quality
of life. The definition of molecular pathways underlying cisplatin-induced muscle dysfunction is
fundamental for identifying targets with high therapeutic potentials. In this setting, the use of
animal models to evaluate in vivo cisplatin effects is very valuable. Cancer and chemotherapy
may cause the appearance of a cachectic phenotype by activating the same or similar mechanisms.
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Accordingly, cisplatin administration to healthy rats can reproduce some of the alterations typical of
cancer cachexia, including body weight loss, adipose tissue remodeling, skeletal muscle wasting, and
weakness. Furthermore, it is also well known that molecular mechanisms controlling muscle wasting
in chemotherapy and cancer share common features with pathophysiology of other relevant muscle
neurodegenerative such as muscular dystrophies [3,4]. The animal model commonly used to study the
derangements specifically associated with chemotherapy and for testing new therapies for cachexia is
the rat or mouse intraperitoneally treated with cisplatin (1–3 mg/kg) for 3–4 consecutive days to induce
weight loss without over-toxicity [5–9]. Body weight and food intake of these animals are significantly
reduced following cisplatin administration. In particular, the final body weights of cisplatin-treated
animals show a reduction of about 30% [5–9]. These adverse effects appear already from the first day of
cisplatin administration and remain evident for the duration of the experimental protocol [8,9]. After
cisplatin administration is halted, cisplatin-treated animals restart gaining weight and increase their
food intake, but their body weight remains significantly lower than that of control animals [5,8,9].

Herein, we report an overview of the molecular mechanisms underlying muscle wasting induced
by cisplatin-damaging chemotherapy, also focusing on the potential therapeutic strategies that have
been suggested to counteract cisplatin-related toxicity at skeletal muscle level.

2. Molecular Mechanism Underlying Cisplatin-Induced Muscle Wasting

The balance between protein synthesis and degradation ensures the physiological muscle proteins
turnover. The most common symptoms associated with cisplatin administration in patients with
cancer are muscle weakness and fatigue mainly due to skeletal muscle mass depletion [10].

Cisplatin-induced muscle dysfunction is caused by the activation of several mechanisms
ranging from the alteration of ubiquitin-proteasome, autophagy and insulin-like growth factor-1
(IGF-1)/PI3K/Akt pathway to calcium homeostasis and lipid metabolism dysregulation, mitochondrial
damage, oxidative stress and pro-inflammatory cytokines upregulation (Figure 1).
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Figure 1. Molecular mechanism underlying cisplatin-induced muscle wasting. AMPK: 5’-adenosine
monophosphate-activated protein kinase; Akt: Protein kinase B; Atgs: Autophagy-specific genes; Bnip3:
BCL2 interacting protein 3; FoxO3: Forkhead boxO, Gabaralp1: GABA type A receptor-associated
protein-like 1; IGF-1: Insulin-like growth factor-1; IL-1: Interleukin-1; IL-6: Interleukin-6; LC3B:
Lipidated microtubule-associated protein 1 light chain 3 alpha; mTOR: Mammalian target of rapamycin;
MuRF-1: Muscle ring-finger-1; NFκB: Prototypical nuclear factor kappa light-chain-enhancer of
activated B cells; NRF1/2: Nuclear respiratory factor 1/2; p62: Sequestosome-1; PGC-1α: Peroxisome
proliferator-activated receptor γ coactivator-1α; PI3K: Phosphoinositide 3-kinases; Smad2/3: Small
mother against decapentaplegic.
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2.1. Ubiquitin-Proteasome Pathway

Weight loss characterizing cachexia involves a reduction of protein synthesis and the activation
of several proteolytic systems, such as those calcium-dependent and ubiquitin-dependent, and the
lysosomes [11]. Ubiquitin-dependent proteolysis is the main mechanism for the increase degradation
of muscle protein in cancer cachexia [12]. Ubiquitin-proteasome pathway (UPP) is characterized by
reactions involving three classes of proteins: Ubiquitin-activating enzymes (E1), ubiquitin-conjugating
enzymes (E2), and ubiquitin protein ligases (E3) [13]. Muscle atrophy F-Box (MAFbx)/atrogin-1 and
muscle ring-finger-1 (MuRF-1), are two muscle-specific E3 ubiquitin ligases that are increased in
skeletal muscle under atrophy-inducing conditions and considered markers for muscle atrophy [14,15].
Cisplatin-treated animals develop significant muscle atrophy and weakness followed by an increased
expression of the ubiquitin ligases MAFbx/atrogin-1 and MuRF-1 systems [7–9]. This activation
is partially due to dephosphorylation of the transcriptional factor Forkhead boxO (FoxO3a) [16],
which is in turn regulated by the pivotal mediator Akt and regulates genes coding for the autophagy
pathway contributing to the degradation of muscle proteins, finally promoting atrophy [17]. MyoD
and myogenin, two markers of muscle differentiation, also play an important role in counteracting
cancer-induced cachexia by stimulating muscle regeneration. However, their activities are dependent
on Akt phosphorylation, p38, myostatin (Mstn), and TNF-α levels [17,18]. Cisplatin administration
induces a significant reduction of MyoD and myogenin expression [19]. Muscle mass is regulated
through an interplay between anabolic and catabolic pathways. The IGF-1/PI3K/Akt/mammalian target
of rapamycin (mTOR) pathway along with the UPP and Mstn pathway maintain this homeostasis
supported by various transcriptional factors [20]. The activation of Mstn signaling, a member of the
transforming growth factor beta (TGF-β) family, synthesized and secreted predominantly from skeletal
muscle fibers, causes muscle atrophy [21]. The upregulation of Mstn has been recently associated with
muscle wasting in cancer cachexia and after cisplatin administration. Particularly, Mstn inhibits Akt
signaling through the activin type II receptor, and therefore the downstream mammalian target of
rapamycin (mTOR) pathways that lead to protein synthesis, resulting in the activation of a Smad2
and Smad3 transcription factor complex, which mediates myogenesis genes inhibition, leading to
skeletal muscle atrophy [22–24]. It has been also proposed that the catabolic muscle protein breakdown
observed in cachexia could be due primarily to an increase in the expression and activation of the
prototypical nuclear factor kappa light-chain-enhancer of activated B cells (NF-κB) [25]. In skeletal
muscle, when a signal of tissue injury is present, toll-like receptors are activated, leading to an
inflammatory response which terminates in NF-kB nuclear translocation. Moreover, TNF-α and other
pro-inflammatory cytokines, which are major mediators of atrophy in skeletal muscle are produced [26].
Indeed, NF-κB may lead to muscle wasting by upregulating the expression of various proteins and
inflammatory mediators involved in UPP, as well as impairing the myogenic program associated
with the regeneration of atrophied skeletal muscle fibers [27]. Chemotherapy, including cisplatin
treatment, induces NF-κB activity which is associated with muscle wasting in the absence of MuRF-1
induction [28,29]. It has been demonstrated that cisplatin-induced DNA damage causes the activation
of NF-κB through the phosphorylation of its p65 subunit [29].

2.2. Autophagy Pathway

Autophagy is fundamental to maintain intracellular protein homeostasis in skeletal muscle [30].
Among the several components underlying the autophagy multistep pathway, the levels of lipidated
microtubule-associated protein 1 light chain 3 alpha (LC3) form (LC3-II) and of p62 are widely used as
indexes to evaluate the activation of autophagy [31]. Furthermore, the FoxO3a factor has a pivotal role
for autophagy activation in skeletal muscle [32]. As it is well known, the localization of the FoxO3a
factor can be in the cytoplasm or into the nucleus, depending on its phosphorylation state mediated by
Akt [33]. Active Akt phosphorylates FoxO3a on residues Thr32 and Ser253 leading to its inhibition by
cytosolic retention via various binding proteins [34]. When Akt is inactive instead, FoxO3a remains in
its dephosphorylated state and can migrate to the nucleus to activate the transcription of autophagy-
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or atrophy-related genes such as Murf1, Bnip3, and several autophagy-specific gene proteins (Atgs),
including LC3B, Gabarapl1, and Beclin1, thus promoting autophagosome formation and muscle
wasting [33,35]. In animal models of cisplatin-induced cachexia, it has been shown that cisplatin
treatment in fast-twitch skeletal muscle stimulated cell autophagy by decreasing the level of active
Akt and therefore, phosphorylated FoxO3a, thus favoring its localization in the nucleus. Accordingly,
a parallel upregulation of genes coding for autophagy proteins such as Beclin-1, a protein involved in
autophagy starting, and LC3-II and p62 has also been observed [36]. A similar effect has been also
associated to cisplatin in an in vitro study performed on C2C12 myotubes [37].

2.3. Calcium Homeostasis

Calcium ions (Ca2+) are an intracellular messenger necessary for physiological cellular processes.
In skeletal muscle fibers, Ca2+ signaling plays a pivotal role in the regulation of the excitation–contraction
coupling (ECC) process, as well as in the regulation of the activities of several Ca2+-regulated
enzymes and transcription factors, finally impacting on muscle mass composition and mitochondrial
dynamics [38]. The two main players in skeletal muscle ECC process are the ryanodine receptor (RYR1),
the sarcoplasmic reticulum Ca2+ release channel, and the voltage-sensitive calcium channel (DHPR).
RYR1 is located on the sarcoplasmic reticulum (SR) junctional face membrane, and DHPR is located on
the plasmalemma. Transverse tubules (T-tubules), which are plasmalemmal invaginations, run deep
into the muscle fiber. The junctional SR membrane contains RYR1, as well as many other smaller proteins
which ensure the maintenance of the structural integrity of the Ca2+ release apparatus. The binding of
Ca2+ released from the SR to troponin C allows actin and myosin interaction, causing muscle contraction.
The activation of sarcoplasmic/endoplasmic reticulum Ca2+ATPase (SERCA), together with RYR1
closure, ensures the termination of the contraction cycle and the consequential muscle relaxation.
It has been widely demonstrated that store operated calcium entry (SOCE), a phenomenon mainly
sustained by the stromal interaction molecule (Stim1) and the Ca2+ release-activated Ca2+ modulator
1 (Orai1), is also essential to ensure proper intracellular Ca2+ handling for muscle function [39,40].
Indeed, upon depletion of the Ca2+ store in the SR, cells take up extracellular Ca2+ to replenish
the cytosolic stores via SOCE. Maintenance of muscle cell Ca2+ homeostasis is crucial for sustained
contractility, as evidenced by a clear link between Ca2+ homeostasis alterations and muscle performance
decline observed in several pathophysiological conditions affecting skeletal muscle. Accordingly, the
patho-mechanism underling cisplatin-induced cachectic effect also involves a dysregulation in Ca2+

handling. In particular, resting [Ca2+]i of EDL muscle after cisplatin administration was 2-fold increase
compared to the one registered in control rats [9]. This effect was associated with a reduced response to
the application of a depolarizing solution or caffeine, and to a reduced SOCE. Expression genes analysis
also revealed that cisplatin reduced expression pattern of genes related to Ca2+ homeostasis apparatus,
such as Dhpr, Ryr1, Orai1, and Stim1 [9]. Other than interfering with ion channels function regulating
cell excitability [9,41,42], calcium homeostasis alteration has generally an important impact on enzymes
activity. Intracellular Ca2+ overload can be considered a cause of the increased protein degradation
and muscle atrophy characterizing cisplatin-induced cachexia. Indeed, increased intracellular Ca2+

activates calpains, calcium-activated proteases, that play a pivotal role in the initiation of most
proteolytic pathways such as the ubiquitin-proteasome pathway [43]. Furthermore, several studies
show that intracellular calcium increase stimulates the mitochondrial apoptotic process through the
activation of proapoptotic protein Bax which favors the formation of the mitochondrial permeability
transition pore (mPTP) allowing the release of cytochrome C from mitochondria and promoting cell
apoptosis [44].

Finally, all these effects induced by cisplatin could contribute to Ca2+ overloading in the cytoplasm
of muscle cells, detrimentally interfering with muscle maintenance and function. Indeed, the disruption
of Ca2+ homeostasis could impair the functionality of Ca2+-dependent proteases and phospholipases
that are essential for various muscle functions [45,46]. Thus, calcium dysfunction could be strictly
related to cisplatin-induced muscle impairment.
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2.4. Mitochondrial Biogenesis and Dynamic

The peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), the nuclear respiratory
factor 1 (NRF-1), and the mitochondrial transcription factor A (TFAM) represent the three main proteins
involved in mtDNA replication and maintenance [47,48]. PGC-1α is a nuclear coactivator acting as a
master regulator of mitochondrial biogenesis and activating, among others, the expression of NRF-1.
NRF-1 is a nuclear transcription factor that operates the expression of many mitochondrial genes,
including TFAM. Particularly, TFAM is a mitochondrial protein controlling mtDNA maintenance and
replication, as well as mitochondrial transcription [47,48]. Cisplatin treatment induced a decline of
mitochondrial biogenesis and mitochondrial mass in rat tibialis anterioris (TA) muscle [36]. Indeed,
levels of PGC-1α, NRF-1, and TFAM decreased in rats treated with cisplatin to an extent ranging from
30% to 50% compared to control animals. The change of PGC-1α might be due to the impairment
of the PI3K-Akt-mTOR signaling pathway induced by cisplatin in this cachectic animal model [36].
Accordingly, changes in mtDNA levels were also observed [36]. Mitochondria are highly dynamic
organelles that continuously change their morphology by fission and fusion. These two events are
coordinated and necessary to satisfy the variable needs of cells [49]. Dysregulated mitochondrial
dynamics have been reported in various diseases including cancer, and can cause oxidative stress,
inflammation, and cell death [50]. Mitofusins 1 and 2 (MFN1 and 2) are crucial molecules for
mediating fusion of mitochondrial outer membranes and tethering the outer membrane to the
endoplasmic reticulum (ER). The main regulator of mitochondrial fission process is the dynamin-related
protein 1 (Drp1), which translocates from cytosol to mitochondrial outer membrane upon activation.
Phosphorylation of Drp1 can dictate its activation status. In particular, the phosphorylation at
Ser-637 inhibits Drp1 activity thus preventing mitochondrial fission, whereas phosphorylation at
Ser-616 activates Drp1 activity and induces mitochondrial fission [51]. Skeletal muscle fibers of
cisplatin-treated animals are characterized by an increase of both fusion and fission proteins, with a
prevalence of fission compared to fusion [36]. Indeed, a decrease in the level of Drp1 phosphorylated
at S637 site has been observed, indicating an enhancement of fission activity of the protein leading
to mitochondrial fragmentation, which is typically associated with atrophic muscles characterizing
various metabolic disorders.

2.5. Oxidative Stress and Pro-Inflammatory Cytokines

Reactive oxygen species (ROS) production increases in various pathophysiological conditions such
as in muscle atrophy [52]. It is well known that in the tumor microenvironment increased ROS levels
coexist with hypoxia. Mitochondria are the main source of physiological and pathological cellular ROS
production. During the oxidative phosphorylation process, mitochondria use oxygen to generate ATP
from organic fuel molecules, but they also generate ROS. Two proteins are involved in ROS metabolism:
(1) Peroxiredoxin III (PRX III); and (2) mitochondrial manganese superoxide dismutase (MnSOD).
Peroxiredoxins (PRXs) are amongst the most abundant cellular antioxidants displaying high reactivity
toward H2O2, a key mediator of redox signaling [53]. Under high levels of H2O2, hyperoxidation of PRX
to its sulfinylated (PRX-SO2) and sulfonylated (PRX-SO3) forms leads to enzymatic inactivation and
inhibition of peroxidase function favoring the increase of intracellular ROS levels [53]. The superoxide
dismutase (SOD) family is important in oxidative stress modulation and MnSOD is the primary
antioxidant that scavenges superoxide generated within the mitochondria [54]. During cancer
chemotherapy, oxidative stress-induced lipid peroxidation generates numerous electrophilic aldehydes
that can attack many cellular targets. Cisplatin chemotherapy has been associated with increased
production of mitochondrial muscle ROS, demonstrated by the presence of an increased level of
PRX-SO3 proteins and a decreased level of mitochondrial PRX III and MnSOD [36]. Oxidative
stress can increase inflammation by stimulating the production of inflammatory cytokines including
tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), and interferon-γ (IFN-γ).
Physiologically, the role of pro-inflammatory cytokines is necessary to balance anabolism and catabolism
and to maintain the correct myogenesis process. However, in cancer or in muscle wasting, increased
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pro-inflammatory expression leads to activation of p38 and downregulation of Akt [55], thus triggering
a destructive metabolism in skeletal muscles. Cisplatin induces TNF-α and IL-1 overexpression
causing IkB kinase (IKK) complex activation, and leading to the phosphorylation of the NF-κB-bound
inhibitors of NF-κB (IκBs), which are consequently ubiquitinated and degraded. This leads to nuclear
translocation of activated NF-κB which then induces the expression of MAFbx/atrogin-1 and MuRF1
favoring muscle wasting and cachexia [56]. At the same time, IL-6, whose expression is also induced
by cisplatin, can bind its receptor IL-6R causing homodimerization of gp130. This homodimerization
activates the associated JAKs (Janus kinases) resulting in the activation of transcription factors of the
signal transducer and activator of transcription (STAT) family suppressing protein synthesis [55,56].

2.6. Lipid Metabolism

Lipid homeostasis plays a critical role in energy metabolism and body weight control. Many
studies have shown that activation of lipolysis [57,58] and reduction of de novo lipogenesis [59,60]
contribute to adipose cachexia and weight-loss in cancer [58], whereas the inhibition of lipolysis protects
against cancer-associated weight loss and muscle wasting [61]. The alteration of fat metabolism is
often caused by cancer, but is further aggravated by chemotherapeutic agents such as cisplatin that
induced fat atrophy, increased lipolysis and lipid oxidation, and a decrease in lipogenesis. Other than
in white adipose tissue (WAT) and liver, these effects occur also in skeletal muscles. Indeed, in all
these peripheral tissues cisplatin suppresses both fatty acid synthase (FAS), a key enzyme in de novo
lipogenesis, and stearoyl coenzyme A desaturase-1 (SCD-1), the enzyme that catalyzes the rate-limiting
step in the biosynthesis of polyunsaturated fatty acids (FA). At the same time, in WAT cisplatin increases
carnitine palmitoyl transferase-1(CPT-1), the key regulatory enzyme for fatty acids [62]. The adipocyte
fatty acid binding protein (also known as aP2) plays an important role in macrophage activation during
inflammation [63,64]. Moreover, it is also able to enhance lipolysis and fatty acids mobilization by
interacting with the hormone sensitive lipase (HSL) and decreases de novo lipogenesis [65]. In WAT,
cisplatin induces an overexpression of aP2 and HSL stimulating lipolysis [62]. Finally, cisplatin induces
an increase in liver and WAT β-oxidation, raising the level of CPT-1α, a marker of β-oxidation. Based
on the critical role played by WAT and liver in energy homeostasis, cisplatin-induced WAT and liver
dysfunction also influence muscle function [65]. Energy metabolism in muscle is pivotal to maintain a
normal physiologic function given that contractility is highly dependent on muscle ability to synthesize
and use lipids as a source of energy.

3. Therapeutic Strategies for Counteracting or Minimizing Cisplatin-Induced Muscle Wasting

The loss of skeletal muscle is a key adverse event induced by cisplatin therapy, often accompanied
by a reduction in appetite, increased catabolism, and lowering in body weight. These effects are a
major cause for a clinical decline of patients, since it is a negative predictor of treatment outcome and
it is directly associated with increased mortality [66]. Effective pharmacological treatments for this
condition are urgently needed.

3.1. Ghrelin

Ghrelin, an octanoylated 28-amino acid peptide secreted mainly by the stomach, is the endogenous
ligand of the growth hormone secretagogues receptor 1 a (GHS-R1a). Its administration increases
not only GH secretion but also food intake and body weight in animals and humans [67–69]. Ghrelin
effectively prevents muscle atrophy induced by dexamethasone and angiotensin II [70,71]. The
observation that also unacylated ghrelin, a ghrelin derivative which does not bind to GHS-R1a, exerts
a protective effect on muscular functions, strongly supports the idea that ghrelin effects are also
independent from GHS-R1a activation [70].

Based on its orexigenic and neuroprotective properties, ghrelin and other agonists of the GHS-R1a
have been proposed as potential therapies for cancer cachexia. They could improve anorexia, muscle
mass and strength, and weight loss in patients with cancer, particularly those receiving cisplatin-based
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chemotherapy [62,72]. Importantly, by using two different animal models of cachexia, Garcia et al.
convincingly demonstrated that ghrelin prevents tumor- and cisplatin-induced muscle wasting through
multiple mechanisms of action [19]. As described above, the cachectic condition is characterized
by the activation of p38/C/EBP-β, Mstn, and inflammatory cytokines, and a decrease in Akt and
myogenin/MyoD ultimately leading to increased proteolysis, decreased muscle mass, and strength.
Ghrelin prevents muscle atrophy by downregulating inflammation, p38/C/EBP-β/Mstn, and by
increasing Akt phosphorylation and activating myogenin and MyoD. These changes appear, at least in
part, to target muscle cells directly. Ghrelin administration in this setting is associated with improved
muscle strength and survival [5,19].

As previously reported, lipid metabolism plays a critical role in energy homeostasis and body
weight regulation. Ghrelin prevents cisplatin-induced weight and fat loss by modulating de novo
lipogenesis in liver, WAT, and muscle [62].

3.2. Growth Hormone Secretagogues

The acronym GHS (growth hormone secretagogues) indicates a large family of synthetic
compounds with a heterogeneous chemical structure, which includes peptidyl, peptidomimetic, and
nonpeptidic moieties. GHS, named also as growth hormone releasing peptides (GHRP), were developed
in the late 1970s for their capability to stimulate GH secretion, both in vitro and in vivo [73–75].
Originally, the great interest towards their endocrine activity ensued from the lack of knowledge of the
natural hypothalamic hormone that promotes GH secretion, the endogenous GH-releasing hormone
(GHRH), discovered only in the 1982 [76]. About twenty years later it was found out that GHS mimic the
activity of ghrelin [77–79], which exerts its biological actions by binding to GHS-R1a [80]. The GHS-R1a
is a G-coupled receptor, member of the Gq/i family, activating the phospholipase C (PLC) and inducing
intracellular Ca2+ mobilization [80]. As well as ghrelin, GHS activities are mainly mediated by acting on
the GHS-R1a, although different research groups strongly agreed with the assumption of the existence
of more than one receptor [81–84]. GHS share with ghrelin many endocrine and extra-endocrine
activities, targeting both peripheral tissues and central nervous system (CNS). Novel GHS have
improved pharmacokinetics profiles, major stability, better bioavailability, and higher CNS penetrance,
characteristics that make them better candidates than ghrelin for drug development. Reportedly,
GHS enhance GH secretion [81], exert anti-inflammatory [85–87] and anti-convulsivant actions [88],
increase food intake, body weight, and lean body mass (LBM) [81,89], play a role in the regulation
of bone metabolism [90], display effects on gastric acid secretion and gastric emptying [91–93], and
possess protective activity on the cardiovascular system both in vitro [94,95] and in vivo, both in
animals [96–98] and humans [99,100]. GHS also prevent skeletal muscle damage in muscle wasting
conditions associated to cancer cachexia [101–103] and/or cancer chemotherapy [8,9,36]. Indeed, because
of positive effects on energy balance, ghrelin or GHS are considered a possible treatment option for all
these cachexia-related conditions. Studies performed with ghrelin are summarized in Section 3.1; here,
we provide a viewing of the investigations focused on GHS. Among the GHS’s family, two molecules
have been investigated to evaluate their potential beneficial effect on cisplatin-induced muscle damage:
Hexarelin and JMV2894 [8,9,36]. Hexarelin, an old GHS [104], and JMV2894, a novel peptidomimetic
derivative [89], are widely investigated for their pleiotropic actions, including the acute stimulation of
GH secretion and food intake. In cisplatin-treated rats both the GHS, but in particular JMV2894, are able
to inhibit the cisplatin-impact, improving body weight gain without significantly affecting food intake
or the adipose tissue deposition, but rather increasing muscle mass therefore avoiding its atrophy [8,9].
Regarding the morphology of muscle tissue, the GHS increased the cross-sectional area of myofibers,
which is an important measure of skeletal muscle plasticity. Moreover, it is also able to reduce the
size of the damaged area, usually expressed as the sum of necrotic area, the amount of inflammatory
cells infiltration and nonmuscle area. The latter is characterized by the deposition of wasting material
and debris, which replace muscle tissue during the atrophic process [9]. The muscle protective effects
displayed by hexarelin and JMV 2894 are corroborated also by gene expression analysis that reveals
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the downregulation of MuRF1 mRNA levels [8,9], a key component of proteasome system that plays
important roles in muscle catabolism [105], and an upregulation of PGC-1α, a marker of muscle
oxidative phenotype [106]. Ex vivo experiments made on extensor digitorum longus (EDL) muscles of
cisplatin-treated rats suggested that GHS could boost skeletal muscles functionality, measured in terms
of electrophysiological and Ca2+ handling machine properties [9]. Although to a different extent, both
GHS and JMV 2894 effectively prevented all cisplatin-induced calcium homeostasis alterations, such
as changes in resting cytosolic Ca2+, voltage-dependent and caffeine-induced calcium release, and
SOCE [9]. GHS also modified the expression profile of genes related to calcium homeostasis machinery.
Interestingly, all the beneficial activities mediated by hexarelin and JMV2894 have a significant impact
on muscle function as proven by in vivo functionality measurements showing an increase of forelimb
force in cisplatin + GHS-treated rats in comparison with cisplatin only treated rats [9]. This outcome is
very important since the clinical studies with anamorelin in nonsmall cell lung carcinoma patients
did not show any increase of handgrip strength [107]. GHS could exert protective actions on skeletal
muscle also by modifying mitochondrial biogenesis and dynamics. Indeed, GHS administration can
prevent mitochondrial deficiency in cisplatin-induced cachectic muscles by stimulating mitochondrial
biogenesis and cellular antioxidant defenses, by ensuring the maintenance of the mitochondrial fission
and fusion balance and by decreasing the accumulation of oxidized proteins [36]. The GHS beneficial
impact could be mediated by direct and indirect effects on skeletal muscles. It should be specified that
the molecular mechanisms activated by hexarelin and JMV2894 at skeletal muscle level have not been
fully characterized. Thus, it is likely that, similarly to ghrelin, they may activate multiple pathways, and
their effects could occur also in the absence of the GHS-R-1a receptor. All the positive effects mediated
by GHS in the cisplatin-induced model of cachexia strongly support the idea that GHS could represent
a therapeutic option to preserve muscle function in cachectic patients. HM01, a novel orally available
GHS-R1a agonist, is endowed of a high affinity for the GHS-R1a, good brain permeability, and a longer
plasma half-life compared with ghrelin [93]. HN01 has also been tested in different tumor-bearing
hosts [101–103] characterized by reduced muscle protein synthesis due to catabolism activation, as
a result of a complex inflammatory, endocrine, and nutrition-related effect [108]. In rat Morris-7777
hepatoma tumor model, chronic subcutaneous HM01 injections antagonized tumor anorexia and body
weight loss, reduced muscle wasting, by enhancing gastrocnemius, soleus, and total muscle mass [101].
Similarly, in mice bearing colon-26 (C26) tumors, chronic HM01 oral administration significantly
increased body weight and muscle mass [102]. In this case, the effects on muscle mass were not
correlated with an activation of the E3 ligase pathway, because HM01 did not affect MuRF-1/MAFbx
gene expression [102]. Furthermore, Z-505, another highly selective GHS-R1a agonist, significantly
attenuated muscle wasting in tumor-bearing C-26 mice and inhibited the progression of cachexia
symptoms [103]. The anabolic effects of Z-505 on muscle are likely not direct, since the GHS-R1a
mRNA has not been detected in skeletal muscle, but are rather mediated by the increased plasma
levels of IGF-1 and insulin [103] that in turn, could affect the E3 ubiquitin ligases system, as previously
demonstrated in vitro in C2C12 myotube cells [109].

3.3. D-Methionine

D-methionine (D-met), the dextro-isomer of the methionine, is a sulfur-containing micronutrient,
essential for life, as it can serve as a precursor of cysteine, taurine, and glutathione (GSH) via
trans-sulfuration [110]. D-met is contained in egg albumin [111]. The first researches on D-met
properties focused on its efficacy in preventing cisplatin-induced ototoxicity in rat by its specific ability
to counteract oxidative stress, without affecting the tumor response to an antineoplastic agent [112–116].
The D-met antioxidant activity is displayed also in other areas of the body: (i) in the liver, preventing
the decrease of mitochondrial glutathione levels [117]; (ii) in the CNS, improving neurogenesis of
hippocampal neurons [118]; (iii) in the kidney, through elevation of antioxidative activities [119]; and
(iv) in the gastrointestinal system, protecting the mucosa and the gut microbiome from cisplatin-induced
imbalance [120]. Recently, some evidences in the rat showed that D-met could alleviate skeletal muscle
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wasting caused by cisplatin, opening new perspectives in taking care of common and heavy side
effects associated with anticancer platinum-based chemotherapy [121]. Pretreatment with D-met
results in a significant increase of muscle mass, coupled with an improvement of muscle atrophy as
demonstrated by a better morphometric phenotype, characterized by increased myofiber diameter
and cross-sectional area. The myoprotective action is partially due to a limitation in FOXO-1 and
atrogin-1 mRNA overexpression [121]. The in vivo outcome of D-met administration is confirmed by
in vitro experiments. Indeed, in C2C12 cells cisplatin reduces myogenin and MyoD mRNA levels,
an effect that is inhibited by 24-h incubation with D-met [121]. These first experimental evidences
support a D-met protective action against muscle atrophy/muscle mass loss; however, the research on
D-met modulation of muscle atrophy is still at embryonic stage and further studies are mandatory to
strengthen this hypothesis.

3.4. Taurine

Taurine (2-aminoethanesulfonic acid) is a natural amino acid present as a free form in many
mammalian tissues where it is an essential regulator of intracellular osmolarity. Taurine endogenous
synthesis is variable between individuals and depends on nutritional state, amount of protein intake,
and cysteine availability. The intracellular concentration of taurine ranges between 5 and 20 µmol/g
wet weight in many tissues, especially in excitable ones, such as brain, heart, and skeletal muscle. The
concentration of taurine is 100-fold lower in plasma compared to tissues, suggesting that it is indeed
required as a modulating key for cellular functions. The primary source of taurine in humans is diet and
the estimated intake is 40–400 mg/day [122]. Taurine is commonly known for its effects as energizer and
anti-fatigue compounds and it is present in many energy soft drinks including supplement cocktails
for athletes. Taurine supplementation modulates autophagy and reduces both ER stress and apoptosis
induced by cisplatin in renal cell [123].

Skeletal muscle is a tissue capable of concentrating the largest amount of body’s taurine, through
the presence of a specific active transporter that uptakes taurine inside cells against concentration
gradients [124]. In skeletal muscle, taurine stabilizes phospholipids in the sarcolemma, regulates
Ca2+ and Cl− channel activity, and limits exercise-induced weakness [124–126]. In addition, through
yet unclear mechanisms taurine may control muscle metabolism and gene expression. Importantly,
a study performed on C2C12 cells demonstrates that taurine pretreatment rescues myotubes from
cisplatin-induced atrophy and regulates the activity of the autophagy-lysosome system by maintaining
proper perinuclear autophagic vesicles and mitochondria size and density [127]. This promising taurine
action in vitro in preventing cisplatin-induced muscle atrophy opens the way to in vivo molecular and
biochemical studies aimed to define taurine impact on muscle homeostasis.

3.5. ACVR2B/Fc

Skeletal muscle size is negatively regulated by a set of secreted growth factors belonging to
the transforming growth factor (TGF)-β superfamily, including GDF8, also known as Mstn, growth
differentiation factor-11 (GDF11), and activins [128,129]. The activins (A, B, and AB) are proteins closely
related to inhibin, presenting effects functionally opposite to those induced by inhibin. Importantly,
other than inducing follicle-stimulating hormone (FSH) biosynthesis and secretion [130,131], activins
show several biological activities regarding embryonic, as well as differentiated cells [132]. In particular,
activin A has been shown to affect myotube differentiation [133] and negatively regulate muscle
mass [19]. All these ligands initiate their effects by binding to activin receptor type 2B (ACVR2B),
a serine–threonine kinase receptor, which dimerizes with Alk4/5 and signals intracellularly via
Smad2/3 [132]. Genetic deletion of Mstn, ACVR2B, and Smad3 in mice leads to a significant increase
of skeletal muscle mass [19,128,133–135]. Thus, for treating conditions characterized by loss of
muscle mass and strength in humans, considerable efforts have been made to develop therapeutics to
antagonize ACVR2B signaling [136–140]. ACVR2B/Fc is a soluble ACVR2B fusion protein and activin
2B receptor signaling inhibitor. Other than potently counteracting muscle wasting induced by FOLFIRI
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and doxorubicine, ACVR2B/Fc was effective in counteracting muscle toxicity induced by cisplatin
treatment [141].

Table 1 summarizes the promising potential therapeutic options and the related mechanism
of action.

Table 1. Ghrelin, GHS, D-methionine and Taurine: mechanisms of action in counteracting muscle-cisplatin
induce toxicity.

Molecular Mechanisms of
Cisplatin-Induced Muscle Toxicity

Specific Mechanism Prevented or Counteracted
by Each Indicated Molecule

Ghrelin GHS D-Methionine Taurine

Altered ubiquitin-proteasome system
√ √ √

Altered autophagy
√

Inhibition of myogenic programme
√ √ √ √

Altered calcium homeostasis
√

Mitochondrial damage
√ √

Oxidative stress
√

Pro-inflammatory effect
√

Altered lipid metabolism
√

4. Conclusions

Cisplatin is a cytotoxic chemotherapic drug whose mechanism of action involves covalent binding
to purine DNA bases, which primarily leads to cellular apoptosis. Despite significant advances
in the development of novel cancer treatment, cisplatin is still used for tumors such as lung, head
and neck, ovary, testicular, and bladder cancer, irrespective of its associated toxicity [142]. Among
cisplatin-induced side effects, the most relevant are muscle mass loss and decline of muscle function.
These muscle wasting conditions could significantly affect the patient’s quality of life, as well as
therapy expected outcomes. Indeed, patients suffering from cisplatin-induced muscle wasting are
often unable to complete treatment regimens and may require delays in treatment, dose limitation,
or discontinuation of therapy [143]. It is well known that cisplatin administration promotes muscle
wasting by activating a wide range of mechanisms. Indeed, muscle size and function are primarily
affected by the activation of signaling pathways that have been implicated in promoting muscle atrophy
and that are driven by processes that mainly impact on muscle protein homeostasis, calcium handling
machinery, and mitochondrial metabolism. The dissection of the molecular pathways responsible for
this condition gives the possibility to identify novel promising therapeutic targets for counteracting
cisplatin-induced muscle dysfunction, such as ghrelin mimetics, D-methionine, taurine, and activins
modulators. Although up to date there are no approved treatment for muscle wasting induced by
cisplatin administration, all these proposed therapeutic strategies could hopefully pave the way to the
identification of drugs effectively ameliorating the patients’ quality of life.
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Abbreviations

ACVR2B activin receptor type 2B
aP2 adipocyte fatty acid binding protein
cisplatin cis-diamine-dichloroplatinum (II)
CNS central nervous system
CPT-1 carnitine palmitoyl transferase-1
DHPR voltage-sensitive calcium channel
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D-met D-methionine
Drp1 dynamin-related protein 1
ECC excitation–contraction coupling
ER endoplasmic reticulum
FA fatty acids
FAS fatty acid synthase
FoxO3a forkhead boxO
FSH follicle-stimulating hormone
GDF11 growth differentiation factor-11
GHRP growth hormone releasing peptides
GHS growth hormone secretagogues
GHS-R1a growth hormone secretagogues receptor 1 a
HSL hormone sensitive lipase
IFN-γ interferon-γ
IGF-1 insulin-like growth factor-1
IL-1 interleukin-1
IL-6 interleukin-6
LBM lean body mass
LC3 lipidated microtubule-associated protein 1 light chain 3 alpha
MAFbx muscle atrophy F-Box
MFN1 mitofusins 1
MFN2 mitofusins 2
MnSOD mitochondrial superoxide dismutase.
Mstn myostatin
mTOR mammalian target of rapamycin
mPTP mitochondrial permeability transition pore
MuRF-1 muscle ring-finger-1
NF-κB prototypical nuclear factor kappa light-chain-enhancer of activated B cells
NRF-1 nuclear respiratory factor 1
Orai1 Ca2+ release-activated Ca2+ modulator 1
PGC-1α peroxisome proliferator-activated receptor γ coactivator-1α
PI3K phosphoinositide 3-kinase
PLC phospholipase C
PRX III peroxiredoxin III
ROS reactive oxygen species
RYR ryanodine receptor
SCD-1 stearoyl coenzyme A desaturase-1
SERCA sarcoplasmic/endoplasmic reticulum Ca2+ATPase
Smad2/3 small mother against decapentaplegic
SOCE store-operated calcium entry
SOD superoxide dismutase
SR sarcoplasmic reticulum
STAT transcription factors of the signal transducer and activator of transcription
Stim1 stromal interaction molecule
TA tibialis anterioris
Taurine 2-aminoethanesulfonic acid
TFAM mitochondrial transcription factor A
TGF-β transforming growth factor beta
TNF-α tumor necrosis factor-α
UPP ubiquitin-proteasome pathway
WAT white adipose tissue
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