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Abstract: Recent studies have led to considerable advances in the identification of genetic variants
associated with type 1 and type 2 diabetes. An approach for converting genetic data into a predictive
measure of disease susceptibility is to add the risk effects of loci into a polygenic risk score. In order to
summarize the recent findings, we conducted a systematic review of studies comparing the accuracy
of polygenic risk scores developed during the last two decades. We selected 15 risk scores from three
databases (Scopus, Web of Science and PubMed) enrolled in this systematic review. We identified
three polygenic risk scores that discriminate between type 1 diabetes patients and healthy people,
one that discriminate between type 1 and type 2 diabetes, two that discriminate between type 1 and
monogenic diabetes and nine polygenic risk scores that discriminate between type 2 diabetes patients
and healthy people. Prediction accuracy of polygenic risk scores was assessed by comparing the area
under the curve. The actual benefits, potential obstacles and possible solutions for the implementation
of polygenic risk scores in clinical practice were also discussed. Develop strategies to establish the
clinical validity of polygenic risk scores by creating a framework for the interpretation of findings
and their translation into actual evidence, are the way to demonstrate their utility in medical practice.
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1. Introduction

Diabetes mellitus is a complex and heterogeneous group of chronic metabolic diseases characterized
by hyperglycemia, now recognized as one of the most important public health challenges of the 21st
century [1]. The World Health Organization [2], estimated that diabetes was the seventh leading cause
of death in 2016, being the direct cause of 1.6 million deaths. In 2014, 8.5% of adults of 18 years and
older developed diabetes. Diabetes can be treated and its consequences avoided or delayed with diet,
physical activity, medication and regular screening and treatment for complications [2].

Diabetes is commonly divided into three subtypes. Type 1 diabetes (T1D) occurs predominantly in
people < 30 years old and is generally thought to be precipitated by an immune-associated destruction
of insulin-producing pancreatic beta cells, leading to insulin deficiency and requiring exogenous
insulin supplement [3]. Type 2 diabetes (T2D) is a progressive metabolic disease characterized by
insulin resistance [4] and eventual functional failure of pancreatic beta cells [5,6]. Maturity-onset
diabetes of the young (MODY) is a monogenic form of diabetes showing autosomal dominant mode
of inheritance. It accounts for 1%–5% of all the diabetic forms of the young and is characterized by
anomalous pancreatic beta-cell activity [7–9].

Int. J. Mol. Sci. 2020, 21, 1703; doi:10.3390/ijms21051703 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-4561-6875
https://orcid.org/0000-0003-0524-5755
https://orcid.org/0000-0002-4522-4978
http://dx.doi.org/10.3390/ijms21051703
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/21/5/1703?type=check_update&version=2


Int. J. Mol. Sci. 2020, 21, 1703 2 of 17

Between 2002 and 2012, there was an incidence increase of 1.8% and 4.8% for T1D and T2D among
American youths, respectively. Variations in the prevalence of obesity over time may contribute to
variations in insulin resistance and to the increasing incidence of T2D [10]. Differences in incidence
have been reported in populations from the same ethnic group living in different environments,
thereby highlighting the importance of environmental risk factors [11]. Different approaches in
the diagnosis area present potential for reducing the mortality and the incidence of cardiovascular
complications among patients with T1D and T2D [12]. There is an international epidemic in diabetes
with increased prevalence reported globally [13]; as the proportion of diagnosed cases of diabetes
increases, a similar increase in the cases of diabetes errors occur [14]. Errors in the primary care of
diabetes are misclassification, miscoding and misdiagnosis. A recent study conducted a cross-sectional
study in UK, trying to identify cases with potential errors; a high rate of errors was found (57%)
compared with previous studies, demonstrating that the prevalence of errors in people with diabetes
in primary care is growing [15,16]. The implications of wrong diagnosis, coding or classification
affect optimal treatment regimens and cause inappropriate financial and psychological impacts in
such patients. Patients with correct diagnosis achieve a significant improvement in their glycemic
control [16,17].

The key mission of genomics medicine aims to predict the genetic disease risk on the basis of an
individual’s genotype [18]. Identifying those in the population who are at greater risk of disease can
result in an improvement in the healthcare sector and lower costs by reducing unnecessary disease
concern and by introducing preemptive therapies of lifestyle changes for those at greater risk [19].
The generation of genome-wide variation data has become common for prediction of metabolic
diseases [20,21]. Many of the metabolic diseases such as coronary heart disease, atrial fibrillation
and T2D [19,22] have well-established risk loci and likely contain many genetic determinants with
effects too small to be detected at genome-wide levels of statistical significance [23]. This demonstrates
that all common variants across the genome actually explain a much higher proportion of heritability
(50% or more) in many complex traits than could be seen based on a small subset of significant single
nucleotide polymorphism (SNP) only [24].

The risk of developing T1D or T2D is influenced by the combination of genetic variation in multiple
sites across the genome [25,26]. Over the past decades, large-scale genetic studies have described over
400 distinct genetic signals affecting T2D risk [27] and over 50 with influence on T1D predisposition [28].
Genetic testing for T1D risk is not part of routine clinical care. This may in part be due to very modest
individual risk effects of non-human leukocyte antigen (HLA) SNPs, historic expense in genotyping
HLA alleles and SNPs, lack of available working treatments and a lack of widespread understanding
of the complex HLA nomenclature [29]. The increasing prevalence of T2D is one of the greatest
challenges in public health [30]. Although obesity is the strongest predictor of T2D, it is also known
that heritability of T2D is 26%–69% depending on age of onset, thus motivating the search for genetic
predictors for T2D [31–33]. An approach to convert genetic data to a predictive measure of disease
susceptibility is to add the risk effects of loci into a single genetic risk score (GRS)-polygenic risk score
(PRS) [34–36].

Prediction accuracy of a PRS is often assessed by measuring the area under the receiver operating
characteristic (ROC) curve (AUC). The AUC compares the rates of true positives (sensitivity) and false
positives (1—specificity) accounting for the overall performance of predictive models [37]. The use of
PRSs could become useful to identify a group of patients at risk; this will offer substantial clinical benefits
while preventing growing morbidity and mortality associated with diabetes [38–41]. Several research
groups have developed diabetes PRSs, fitting the scoring models to their study area [19,36,38,39,42–51].
All of them have used AUC as a predictive parameter to identify the sensitivity and specificity of the
outcome of interest. The estimation of T1D and T2D PRSs can be used for diagnosis-support in scientific
and clinical environment. Thus, this review aims to identify and compare the most recent studies
where a PRS has been established. These may give a lead for researchers to develop an innovative PRS
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for T1D and T2D and improve existing ones, taking into account variables that have not been used or
exploring cutting-edge algorithms.

2. Methods

2.1. Search Strategies

The databases for the literature search were chosen based on a recommendation of the optimal
database combinations [52] and database accessibility in our institution. The three databases chosen
for the literature search were Scopus, Web of Science and PubMed. The databases were searched for
studies of polygenic risk score for T1D, T2D and monogenic diabetes, published between 2000 and
September 2019. The keywords of the queries were “diabetes”, “type 1”, “type 2”, “maturity onset
diabetes of the young”, “genetic risk scores”, “polygenic risk scores” and their combinations: “diabetes
type 1 polygenic risk score”, “diabetes type 2 polygenic risk score”, “maturity onset diabetes of the
young polygenic risk score” and “diabetes genetic risk scores”.

2.2. Study Selection

During the screening stage, the exclusion criteria was based on the criteria “the strengthening the
reporting of genetic association studies (STREGA): An extension of the strengthening the reporting of
observational studies in epidemiology (STROBE)” [53]. From the 22 items mentioned in the article,
we took into account the following 12 items that studies must have extensively explained in order to go
forward for the eligibility stage: in the introduction section, objectives; in the methods section, study
design, setting, participants, variables, quantitative variables and statistical methods; in the results
section, participants, descriptive data and main results; and in the discussion section, limitations and
interpretation of the results.

2.3. Data Collection Processing

The items collected from the full text and Supplementary Information were first author, year of
publication, digital object identifier (DOI) when available, ethnicity of study panel, country, data set of
study, validation set when available, number of patients and controls, method of sequencing/genotyping,
panel of genes used, the number of SNPs used to obtain the PRS, clinical risk factors, the AUC for the
clinical risk factors and the AUC for the PRS.

2.4. Synthesis of the Results

The AUC of the PRS was taken into account to assess the accuracy and for inter-PRS comparison
purpose. The selected AUCs were grouped into three categories based on the diabetes subtypes to
discriminate. The first group included T1D PRS comparison. The second group included T2D PRS
comparison. The third group included T1D PRS comparison used to discriminate T1D vs. T2D and
T1D vs. monogenic diabetes.

3. Results

3.1. Selected Studies for the Systematic Review

A total of 63 articles were retrieved from Pubmed, Scopus and Web of Science. After removing
the duplicates, the total number of studies obtained was 26. The quality of selected studies for the
next phase of the screening stage was evaluated using a modified criteria [53], and nine articles were
excluded due to the lack of strong arguments on the 12 items of the criteria selected. In the final stage,
two articles were excluded as a result of using a different measuring technique for the accuracy of the
results. For the systematic review, 15 studies were selected (Figure 1). These studies have varying
sources of data sets, panel of genes and genotyping strategies.



Int. J. Mol. Sci. 2020, 21, 1703 4 of 17

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 4 of 17 

the Iranian and South African cohort, all of the other studies had large sample sizes in their patients 
and their controls. The databases from where the articles were retrieved are shown in Table 1. 

 
Figure 1. Flow diagram for study selection. 

Table 1. The studies selected for the systematic review. 

Study Year Country/Ethnicity Patients Controls Database 
Studies focusing on type 1 diabetes 

Winkler et al. [42] 2014 Caucasian 4574  1207 PubMed, Scopus 
Oram et al. [38] 2015 Caucasian n = 1938 PubMed 
Patel et al. [39] 2016 Caucasian 1963 805 PubMed, Scopus 

Perry et al. [43] 2018 
Caucasian, Hispanic, African-

American and Asian-American 
627 423 

PubMed, Scopus, 
Web of Science 

Sharp et al. [44] 2019 Caucasian 6670 9416 PubMed 
Yaghootkar et al. 

[45] 
2019 Iranian 121 6 

PubMed, Web of 
Science 

Studies focusing on type 2 diabetes 
Weedon et al. [46] 2006 British 2409 3669 PubMed, Scopus 
Lango et al. [47] 2008 Scotland 2309 2598 PubMed 
Lyssenko et al. 

[48] 
2008 Finland 2201 16,630 

PubMed 

Meigs et al. [49] 2008 European ancestry in USA n = 2776 
PubMed, Scopus, 

Web of Science 
Chatterjee et al. 

[50] 
2013 Caucasian 130 38,987 

PubMed 

Vassy et al. [51] 2014 European ancestry in USA 5941 5942. PubMed, Scopus 
Läll et al. [36] 2016 Estonia 1181 9092 PubMed, Scopus 

Chikowore et al. 
[54] 

2016 South African 178 178 
PubMed 

Amit et al. [19] 2018 British 26,676 120,280 
PubMed, Web of 

Science 

Figure 1. Flow diagram for study selection.

There were six studies eligible for the systematic review, which developed PRSs for
T1D [38,39,42–45], and there were nine that studied PRSs for T2D [19,36,46–51,54] (Table 1). The majority
of the studies were conducted in Caucasian populations, while some of them conducted the studies in
Hispanic, African-American, Asian-American, South African and Iranian populations. Apart from the
Iranian and South African cohort, all of the other studies had large sample sizes in their patients and
their controls. The databases from where the articles were retrieved are shown in Table 1.

Table 1. The studies selected for the systematic review.

Study Year Country/Ethnicity Patients Controls Database

Studies focusing on type 1 diabetes

Winkler et al. [42] 2014 Caucasian 4574 1207 PubMed, Scopus
Oram et al. [38] 2015 Caucasian n = 1938 PubMed
Patel et al. [39] 2016 Caucasian 1963 805 PubMed, Scopus

Perry et al. [43] 2018
Caucasian, Hispanic,

African-American and
Asian-American

627 423 PubMed, Scopus, Web of Science

Sharp et al. [44] 2019 Caucasian 6670 9416 PubMed
Yaghootkar et al. [45] 2019 Iranian 121 6 PubMed, Web of Science

Studies focusing on type 2 diabetes

Weedon et al. [46] 2006 British 2409 3669 PubMed, Scopus
Lango et al. [47] 2008 Scotland 2309 2598 PubMed

Lyssenko et al. [48] 2008 Finland 2201 16,630 PubMed
Meigs et al. [49] 2008 European ancestry in USA n = 2776 PubMed, Scopus, Web of Science

Chatterjee et al. [50] 2013 Caucasian 130 38,987 PubMed
Vassy et al. [51] 2014 European ancestry in USA 5941 5942. PubMed, Scopus
Läll et al. [36] 2016 Estonia 1181 9092 PubMed, Scopus

Chikowore et al. [54] 2016 South African 178 178 PubMed
Amit et al. [19] 2018 British 26,676 120,280 PubMed, Web of Science

The studies relied on datasets from different sources: T1DGC [55], WTCCC [56], UFDI, Iranian
Hospitals [35], the PURE study [57], UK hospital [45], GoDARTS [58], MPP [59], BPS [60], Framingham
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Offspring Study [61], Voight [62], CARDIA [63], the Estonian Biobank [64] and the UK Biobank [65]
(Table 2).

Table 2. Data set source, panel of genes used and genotyping strategies.

Study Year Data Set Panel of Genes Platform

Studies focusing on type 1 diabetes

Winkler et al. [42] 2014 T1DGC T1DGC TaqMan 5’nuclease assay

Oram et al. [38] 2015 WTCCC 1000 genomes and T1DGC Affymetrix 500K SNP chip

Patel et al. [39] 2016 WTCCC 1000 genomes and T1DGC Affymetrix 500K SNP chip

Perry et al. [43] 2018 University of Florida
diabetes institute (UFDI) Immunobase.org October 2017 Taqman SNP genotyping array

Sharp et al. [44] 2019 T1DGC 1000 genomes Affymetrix Axiom Array

Yaghootkar et al. [45] 2019
Imam Reza Hospital and

Children’s Medical Centre in
Iran

1000 genomes and T1DGC
Targeted next-

generation sequencing
(unspecified)

Studies focusing on type 2 diabetes

Weedon et al. [46] 2006 UK KCNK11, PPARG, TCF7L2. Modified TaqMan

Lango et al. [47] 2008 GoDARTS Frayling [66] and Zeggini et al.
[67] Modified TaqMan

Lyssenko et al. [48] 2008
Malmö Preventive Project

(MPP) and Botnia Prospective
Study (BPS).

Gloyn et al. [68], Grant et al.
[69], Saxena et al. [70],

Frayling [66], Scott et al. [71],
Sladek et al. [72],

Steinthorsdottir et al. [73],
Zeggini et al. [74], Zeggini et
al. [67], Lyssenko et al. [75].

Allelic discrimination
assay-by-design method,
Allele-specific (KASPar)

Meigs et al. [49] 2008 The Framingham Offspring
Study

Saxena et al. [70], Zeggini et al.
[67] iPLEX technology

Chatterjee et al. [50] 2013 Voight [62] Voight et al. [62] Illumina Omni 2.5M Platform

Vassy et al. [51] 2014 The Framingham Offspring
Study and CARDIA DIAGRAMv3

Taqman,
Illumina’s OPA technology,
Affymetrix 6.0, llumina 370

and 550

Läll et al. [36] 2016 The Estonian Biobank DIAGRAM Consortium
Illumina Human

OmniExpress, Illumina
Cardio-MetaboChip

Chikowore et al. [54] 2016 The PURE study Chikowore et al. [57] BeadXpress platform, Illumina

Amit et al. [19] 2018 The UK Biobank
1000 genome phase 3 version 5

(Linkage disequilibrium
panel)

Affymetrix UK BiLEVE Axiom
array,

Affymetrix UK Biobank Axiom

The studies also differed in the panel of genes included to obtain the PRS (Table 2). For T1D
PRS, the studies combined either the panel of genes from T1DGC (n = 4) [55], 1000 genomes project
(n = 4) [56] or the Immunobase.org on October 2017 (n = 1). For T2D PRS, the studies used either
specific genes from previous studies (n = 6), different versions of the DIAGRAM Consortium panel of
genes (n = 2) [76] or the 1000 genomes project (n =1) [56].

Lastly the studies differed in the platform used for genotyping or sequencing (Table 2). Most of
the studies used modified TaqMan assays (n = 5), different versions of Affymetrix microarrays (n = 5)
and Illumina technology (n = 4). One study used KASPar genotyping, another the iPLEX technology
and another failed reporting the sequencing platform that was operated.

3.2. Polygenic Risk Score for T1D prediction

Interacting factors such as background genetic risk, infant and adult diet, environmental exposure,
beta-cell stress and immune phenotype increase the development of autoimmunity and beta-cell loss
in clinical T1D [29]. Type 1 diabetes has a substantial heritable component, estimated to be between
65% and 88% [77,78]. Genes in the HLA region confer 50% of the genetic risk of T1D. The HLA
gene family provides the genetic blueprint for a group of related proteins that help the immune
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system to discriminate the endogenous proteins from bacterial proteins. The genes in this complex are
categorized into two major classes: class I and class II. Class-I HLA presents antigen peptides found
within the cell, to CD8 positive (cytotoxic T cells) while Class-II HLA presents antigen peptides found
outside the cell, to CD4 positive (helper T cells) [79]. The dominant genetic drivers of this risk are
Class II HLA DR and DQ genes on chromosome 6. The HLA haplotypes DR3 and DR4–DQ8, are the
two most significant risk haplotypes, with highest genetic risk for T1D occurring in the compound
heterozygote [80]. The HLA class 1 alleles have been associated with T1D; A24 is associated with
both T1D risk and progression of beta-cell loss [81] and B3906 has been shown to modulate risk when
present only with specific class 2 haplotypes [82] and B57 [83]. More than 60 common non-HLA T1D
risk variants across the genome have been identified in linkage and genome wide association studies
(GWAS) in genes including INS, PTPN22, CTLA-4 and IL2RA [84,85].

Genetic prediction for T1D has evolved from the use of HLA alleles alone [86] to the incorporation
of non-HLA variants. In 2014, Winkler et al. developed a multivariate logistic regression model to
estimate PRSs including 40 non-HLA genes SNPs, improving significantly the risk score with an AUC
of 0.87 comparing to the control [42]. Oram and colleagues [38] adjusted a log-additive PRS model to
discriminate patients versus controls for T1D and T2D. They applied a 69 SNP T2D-PRS and a 30 SNP
T1D-PRS to a panel of T1D and T2D. They found the T1D-PRS was highly discriminant with an AUC
of 0.88, while the T2D-PRS was less discriminant with an AUC of 0.64, and the combination of the
two increased slightly the AUC to 0.89. The most recent update for T1D-PRS includes 67 SNPs and
accounts for interactions between 18 HLA DR-DQ combinations. This risk score identifies individuals
with T1D with an AUC of 0.92 [44] (Table 3).

Table 3. Comparison of the accuracy of T1D PRS assessed by the AUC.

Year Author Polygenic Risk
Scores

Single-Nucleotide
Polymorphism

Area under the Curve for
Polygenic Risk Scores Ethnicity

2014 Winkler et al. [42] T1D 41 0.87 Caucasian
2015 Oram et al. [38] T1D 30 0.88 Caucasian
2015 Oram et al. [38] T1D + T2D 99 0.89 Caucasian
2018 Perry et al. [43] T1D 32 0.86 Caucasian
2018 Perry et al. [43] T1D 32 0.90 Caucasian Hispanic
2018 Perry et al. [43] T1D 32 0.75 African-American
2018 Perry et al. [43] T1D 32 0.92 Asian-American
2019 Sharp et al. [44] T1D 67 0.93 Caucasian

Currently, the majority of genetics studies on T1D are limited to Caucasian cohorts. However,
Perry et al. investigated the hypothesis that race and/or ethnicity would be contextually important for
evaluating genetic risk markers previously identified from Caucasian cohorts [43]. They applied the GRS
used by Oram [39] to Hispanic Caucasian, African-American and Asian-American populations. The
Hispanic Caucasian GRS was highly discriminant with an AUC of 0.90. The GRS for Asian-American
was also highly discriminant with an AUC of 0.92, and the analysis indicated that this PRS could
discriminate T1D subjects from controls in a small cohort for subjects of Asian-American, but larger
studies are required to validate and extend these findings. The African-American obtained a less
discriminant GRS with an AUC of 0.75; notable risk differences were observed for three SNPs: SH2B3,
CTRB1/2, GAB3 in this population [43] (Table 3).

3.3. Polygenic Risk Scores for T2D prediction

The ability of drugs and lifestyle interventions to lead to reduction in progression of diabetes
motivates efforts to determine those at the greatest future risk of developing T2D [87,88]. Dozens of
genetic loci associated with T2D risk have been discovered using GWAS; currently, 243 have been
associated [89–91]. There is still some disbelief regarding the practical value of identified SNPs in
personalized risk prediction for the disease [92]. The main reason is that the effect of individual SNPs
on complex common disease phenotypes is relatively weak; in other words that the environment is the
main driver of T2D condition [93].
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Before the first GWAS for T2D, a research describing three genetic variants (KCNJ11, PPARG
and TCF7L2) that had been associated with T2D was published, assessing the combined risk of these
variants and the predictive value of the genetic tests using the AUC. The AUC was 0.58, outpacing the
0.50 value that expressed no discriminative capacity, but short of the values seen for clinical tests [46].
Two years later, Lango and colleagues examined a 16 SNPs PGR; the score, adjusted for age, BMI and
sex, predicted diabetes incidence with an AUC of 0.789. Adding the PRS to these clinical factors had
only a modest impact on performance, pushing the AUC to 0.80 [47]. In a similar study, a research
group assessed 16 SNPs PGR; the score, adjusted for age, sex, family history, BMI, blood pressure,
triglycerides and fasting plasma glucose, predicted diabetes incidence with an AUC of 0.740; adding
the PRS to clinical risk factors (CRF), the AUC of 0.750 had a small effect on the ability to predict
T2D [48]. In the same year Meigs et al. estimated an 18 SNP PRS; the AUC for incident diabetes
adjusted for age and sex was 0.534, and an enhanced clinical model incorporating age, sex, family
history, BMI, glucose level, cholesterol level and triglyceride level reached 0.90. Adding genetic data to
those two PRSs increased the AUC, respectively, to 0.58 and 0.910 [49]. The next analysis was made
with a 22 SNP PRS; this group of researchers deduced that a ten-fold increase in effective GWAS sample
size for T2D would result in a better performance. The result of the AUC adjusted for age, sex and
family history was 0.570; after adding the PRS, the AUC increased to 0.740 [50]. An updated analysis of
a 62 SNP PRS generated an improved AUC for T2D prediction. Combined with age and sex, the AUC
was 0.72, but after the addition of other important clinical factors the score was 0.91 [51]. A recent study
analyzed a South African population; a PRS using only four SNPs was created, taking into account sex,
age, BMI and systolic blood pressure as clinical risk factors, generating an AUC of 0.665 [54].

Larger GWAS for T2D have been developed in the last years; these achievements have increased
the number of significant loci identified to the hundreds. Although comparing variants that carry
out genome-wide significance assures that the variants included in the score represent legitimate
associations with disease, an inflexible threshold ignores many other variants, which even if they
are truly associated with the phenotype, have escaped detection at genome-wide significance due to
defined sample sizes [36]. Khera et al. [19] used a different approach, handling 7 million variants, and
after adding sex, age and other important clinical factor, generated an AUC of 0.73 (Table 4).
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Table 4. Comparison of the accuracy of T2D PRS assessed by the AUC.

Year Author Polygenic Risk
Cores (PRS)

Single-Nucleotide
Polymorphism

Area under the
Curve (AUC) for

Clinical Risk Factors

AUC PRS +
Clinical Risk

Factors
Difference Clinical Risk Factors Ethnicity

2006 Weedon et al. [46] T2D 3 - 0.580 - - Caucasian

2008 Lango et al. [47] T2D 18 0.780 0.800 0.020 Age, BMI, sex Caucasian

2008 Lyssenko et al. [48] T2D 16 0.740 0.750 0.010 Age, sex, family, BMI, blood
pressure, triglycerides, glucose Caucasian

2008 Meigs et al. [49] T2D 18 0.534 0.581 0.047 Age, sex Caucasian

2008 Meigs et al. [49] T2D 18 0.595 0.615 0.020 Sex, age, family Caucasian

2008 Meigs et al. [49] T2D 18 0.900 0.910 0.010 Age, sex, family, BMI, glucose,
cholesterol, triglycerides Caucasian

2013 Chatterjee et al. [50] T2D 22 0.570 0.740 0.170 Age, sex, family Caucasian

2014 Vassy et al. [51] T2D 62 0.698 0.726 0.028 Age, sex Caucasian, USA population

2014 Vassy et al. [51] T2D 62 0.903 0.906 0.003
Sex, family, BMI, blood pressure,

HDL cholesterol, triglyceride
levels, age

Caucasian, USA population

2016 Läll et al. [36] T2D-double weighted 1000 0.699 0.74 0.042 Sex, age Caucasian

2016 Läll et al. [36] T2D-dw 1000 0.718 0.767 0.049 Sex, age, BMI Caucasian

2016 Läll et al. [36] T2D-dw 1000 0.777 0.79 0.012
Sex, age, BMI, hypertension, high
blood glucose, physical activity,

smoking, food consumption
Caucasian

2016 Chikowore et al. [54] T2D 4 0.652 0.665 0.013 Sex, age, BMI and blood pressure African

2018 Amit et al. [19] T2D 7 million 0.66 0.73 0.070 Sex, age Caucasian
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3.4. Polygenic Risk Scores to discriminate different subtypes of diabetes

As it was mention before there are three types of errors in primary care of diabetes, in this section
the misclassifications will be reviewed. Misclassification refers to giving the patient a type of diabetes
classification that he/she does not have [16]. Diagnosis of diabetes into its subtypes is becoming
an increasing dispute. There is a growing problem of obesity in young adults and teenagers, and
consequently an increase in T2D; this take us to a misclassification of T1D [94]. There is just a small
overlap in the genetics of T1D and T2D, thus a PRS could be used as a diagnostic tool [29,74]. Oram
and colleagues [38] were the first ones to accomplish the use of a PRS to discriminate T1D and T2D.
They developed a PRS of 30 SNPs, which consists of HLA and non-HLA loci; the AUC was of 0.880,
being highly discriminant. They also demonstrated that the use of the top nine SNPs had the same
highly discriminant effect that as the use of the 30 SNPs; the AUC for the PRS using the top nine SNPs
was 0.873 (Table 5).

Table 5. Comparison of accuracy of T1D PRS to discriminate diabetes subtypes, assessed by the AUC.

Year Author Polygenic Risk
Scores

Single-Nucleotide
Polymorphism

Area under the
Curve for Polygenic

Risk Scores
Ethnicity

2015 Oram et al. [38] T1D vs. T2D 30 0.88 Caucasian
2015 Oram et al. [38] T1D vs. T2D 9 0.87 Caucasian
2016 Patel et al. [39] T1D vs. MODY 30 0.87 Caucasian
2019 Yaghootkar et al. [45] T1D vs. Monogenic 9 0.90 Iranian

Differentiating patients with monogenic diabetes from T1D has important significance in scientific
and clinical environments, the treatment in the patient being a crucial factor [95,96]. Patel and
colleagues [39], generated a T1D-PRS from 30 SNPs to discriminate monogenic diabetes from T1D. They
assessed the ability of the PRS to discriminate T1D and confirmed monogenic diabetes. The analysis of
the PRS using the AUC showed that it was highly discriminant, the value being 0.87. The latest study
of Yaghootkar and his team [45] provided the first evidence to suggest that the T1D PRS proposed by
Oram et al. [38] using the top nine SNPs for a European cohort may help to distinguish monogenic
diabetes from T1D in an Iranian population. The AUC analysis showed that the T1D PRS was highly
discriminant between monogenic and T1D in the non-European cohort with a value of 0.898, which
was similar to the ability of the same PRS in the European cohort (Table 5).

4. Discussion

PRSs are powerful tools to support diagnosis; they are consistent throughout life, and thus they
could be an effective tool to determine whether a particular patient has T1D, T2D or one of the other
forms of diabetes. Thanks to them, it is less difficult to predict the risk of pre-symptomatic diabetes [97].
As stated earlier in the analysis of T1D PRS, with the exception of the cohort of African-Americans [43],
the AUC had values of more than 0.80, meaning that all of the PRSs had enough sensitivity and
specificity to discriminate patients with T1D. Genetic factors are making an important contribution in
the prevention of T1D by giving a reliable risk score. PRS for T1D can diagnose young adults with
diabetes that will require insulin treatment in European cohorts, and this will be important to classify
accurately patients, when clinical factor make incorrect diagnosis. Using PRS as a tool to discriminate
between diabetes subtypes is another advantage provided; the latest studies have shown that T1D PRS
is great at discriminating between the patients with T1D versus T2D [38] and monogenic diabetes [39].
The option of using T1D PRS validated for the Caucasian cohort in other ethnicities is under study and
could become feasible [45]. The correct diagnosis, as a result of using PRS, could help to generate a
lifestyle modification and a pharmaceutical intervention to reduce T1D progression.

Nevertheless, after an extensive review, it was found that there are potential obstacles in the
construction of PRSs that could affect how they perform in real world population studies. As it was
mentioned in the review, all the studies from the last decade have concluded that clinical risk factors
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perform quite well in predicting T2D, and there is almost no improvement when adding the PRS;
therefore, the PRSs do not have relevant value in the prediction, challenging their clinical relevancy.
Further work is still needed to be done to achieve a complete understanding of how PRS is a functional
tool for the diagnosis of T2D.

The first obstacle to overcome is the lack of innovation in the generation of PRSs for T2D. Right
now, the central target of developing a PRS is to have a correct prediction to recognize individuals at
risk [98,99]. The use of SNPs and logistic regression when making a PRS could be improved, since
logistic regression is made to understand the process but is not optimized for prediction [100]. There
are two approaches to build a PRS model, namely regression-based methods (e.g., logistic regression)
and tree-based methods (e.g., random forest) [101,102]. Regression-based methods employ polynomial
parametric or non-parametric regression methods to make a relation of the input to the output
data. Tree-based methods use the binary split rule to have correlation between the input and output
data [103–105]. Tree-based methods using machine learning approaches have been extensively used in
risk prediction for diseases such as cancer, Alzheimer’s disease, and cardiovascular disease [106–109].
The use of machine learning techniques, combined with data from GWAS will improve the prediction
of polygenic traits [110].

Secondly, the underestimation of population heterogeneity in the prediction of T2D could be the
cause of another problem, namely overfitting, which is a common concern in PRS studies. It is required
to calibrate, validate and optimize the PRS to every cohort of study to prove that it does not overfit the
training data, producing inflated results [18]. The point of reference to avoid the generation of overfit
prediction models is to implement a prediction using out of sample data [92,111]. The majority of PRS
using Caucasian GWAS are biased by the allelic drift when compared to other populations, even when
picking the same variants [25,112]. Diverse ethnic groups have different frequencies of key risk and
probably different SNP associations [36]. Therefore, there is a need for developing generalized risk
prediction methods and the inclusion of more diverse individuals in risk score studies [25]. To avoid
the possibility of obtaining false positive results due to overfitting, the adaptation of existing T2D PRSs
validated for Caucasian cohorts to other ethnicities could be the answer.

Thirdly, the environmental effect in genetic studies could be a bias in the development of a T2D
PRS, an important aspect to take into consideration. Gene–environment (GxE) interactions can be
defined as “genetic effects on a disease that differ in magnitude across environmental contexts” [113].
In most GWAS studies, it is assumed that no GxE interactions exist. If this assumption is incorrect, then
the clinical effects of genetic risk factors may be missed [114]. Genetic and environmental factors may
jointly contribute to clarify the importance of analyzing GxE interactions [113,114] and the benefits
that these interactions have, such as the detection of new disease susceptibility loci [115–117]. The
high power of PRS approaches to identify GxE interactions has been confirmed [118,119].

A genetic background seems to be fundamental for the development of diabetes, but it is only
absolutely enough in Mendelian forms of diabetes, such as monogenic diabetes [120]. The identification
of genetic variants using GWAS explain only about 10% of T2D heritability. Studies have assessed the
importance of heredity and environment on the etiology of T2D; therefore, the missing heritability may
be attributed to GxE interaction [34,121]. Documentation that environmental factors adjust phenotypic
expression in genetic risk cohorts has been demonstrated in individuals with glucose intolerance using
a multiethnic cohort [87,120], among others studies [122]. Because GxE interactions have proposed
as a way to improve genetic risk studies, these environmental factors are relevant to the diagnosis
of T2D [123]. The interactions of GxE contribute to the total genetic variance of a given trait [124],
demonstrating the importance of GxE interactions in explaining the variance of diabetes-related
studies [125]. To discard a bias of the environment in a genetic study, it will be necessary to obtain
a similar PRS for T2D prediction when fitting the model on a single homogeneous population but
exposed to different environments. In cases where the PRS will be different for the same case exposed
before, the neglect of the environment effect will be the reason.
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5. Conclusions

We have identified 15 studies that developed PRS, 12 to discriminate between patients and controls,
and three to discriminate between T1D and diabetes subtypes. We consistently assessed the accuracy
of PRSs using the AUC, regardless of the source of data, panel of genes used and genotyping strategies.
However, these findings should be taken with caution. These PRSs were identified from 15 studies with
variable study designs. In order to have a better prediction of diabetes, the use of PRSs that combine
clinical, environmental and genetic interactions must be used. It is necessary to develop strategies to
establish the clinical validity of PRSs by creating a pipeline for the interpretation of findings and their
translation into actual evidence. Taking into account all the factors for implementation is the way to
demonstrate the utility of PRSs in medical practice.
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