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Abstract: Intrinsically disordered proteins and regions typically lack a well-defined structure and
thus fall outside the scope of the classic sequence–structure–function relationship. Hence, classic
sequence- or structure-based bioinformatic approaches are often not well suited to identify homology
or predict the function of unknown intrinsically disordered proteins. Here, we give selected examples
of intrinsic disorder in plant proteins and present how protein function is shared, altered or distinct
in evolutionary distant organisms. Furthermore, we explore how examining the specific role of
disorder across different phyla can provide a better understanding of the common features that
protein disorder contributes to the respective biological mechanism.
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1. Introduction

Despite the progress made in recent decades, a large proportion of plant protein sequences still
lacks useful functional annotation. These proteins represent a promising source for basic research pursuing
functional novelty or for translational research seeking new perspectives on biological mechanisms and
their disruption in disease. Intriguingly, despite 1.6 billion years of divergent evolution, the majority of
genes in Arabidopsis thaliana have conserved orthologs in humans, highlighting the similarity of fundamental
biological processes between the two organisms [1]. As a result, research on Arabidopsis often enhanced our
understanding of many molecular mechanisms associated with human diseases like cancer, Parkinson’s
disease and Alzheimer’s disease [2,3]. Conversely, homology detection allows for information transfer
from the heavily studied mammalian organisms to protein sequences that lack annotation in plants.

Resulting from the recent advances in high-throughput sequencing techniques, the genomes of
more than 200 plant species were sequenced, outpacing the more laborious process of experimental
protein classification. Hence, only approximately 1% of the protein sequences in the UniProt database
have experimentally verified functions [4]. To address this discrepancy, putative or hypothetical proteins
are typically classified into protein families that may share evolutionary relationships or molecular function
by sequence-based computational analysis. However, this approach works insufficiently for proteins
lacking sequence conservation or experimentally verified, functional annotation in orthologous proteins.

2. Functional Annotation of Intrinsically Disordered Proteins

Intrinsically disordered proteins (IDPs) and regions (IDRs) lack a well-defined and folded
three-dimensional structure in the absence and/or presence of a binding partner. Disorder is a
fundamental property of the proteome and can be robustly predicted from primary sequence relying
on characteristic patterns of amino acid distribution and overall amino acid content [5,6]. This class of
proteins operates largely outside the classic structure–function relationship, with their functionality
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being defined by a separate set of parameters compared to their structured and globular counterparts [7].
Hence, identification of distantly related IDPs cannot rely on structure, which can help to detect
relationships of folded proteins that would remain undetected by conventional sequence-based
methods [8]. Methods that use antibodies to metazoan proteins to identify putative plant homologues
may result in a higher incidence of artefacts when compared to folded protein targets, due to the
smaller size of disordered epitopes and their comparably higher sensitivity to epitope variation [9].

In contrast to folded proteins, IDPs and IDRs show an overall increased rate of evolution, while these
rates can strongly vary between different parts of the IDP [10,11]. Moreover, disordered regions appear
to be more permissive to mutation, further complicating sequence–function analysis. Overall, genome
duplication events seem to influence the distribution of IDRs within genomes, as the amount of identical
paralogous IDRs positively correlates with the number of chromosomes [12]. Interestingly, proteins can
display different modes of how sequence conservation can relate to disorder as a functional feature [13].
While in some cases only the disorder itself is conserved, but not the sequence facilitating it (flexible disorder),
other IDPs retain disorder together with a highly conserved sequence (constrained disorder). Short-linear
motifs (SLiMs) represent conserved functional modules that can mediate low-affinity interactions and
are often interspersed by regions of flexible disorder [14]. As many alignment algorithms require long
stretches of sequence similarity to satisfy statistical significance, the high modality and low complexity
of SLiMs can obscure the search for homologous sequences considerably. Due to their limited size (7–12
residues), these motifs can easily develop in unrelated proteins in convergent evolution. Furthermore,
post-translational modifications (PTMs) that often regulate IDP function complicate the analysis, as
they can drastically alter the biophysical features of a protein and phosphorylation sites display short
and weakly conserved motifs that are often difficult to detect via computational sequence analysis [15].

Within protein interaction networks, IDPs often represent hubs carrying multispecific binding sites
that adapt to different binding partners [16]. These complexes regularly retain wide conformational
flexibility (e.g., fuzzy complexes) even if the binding induces folding in parts of the IDP [17]. Depending
on the state of the cell, this flexibility can be rapidly modulated, providing the organism a sensitive
framework to respond to changing environments under stress conditions [18]. Indeed, protein disorder
is significantly increased in signalling and stress-related processes, providing flexible and rapid
adaptation networks for sessile organisms like plants in response to environmental cues [18]. However,
despite the numerous IDPs characterized in the animal kingdom and particularly in human diseases,
the study of protein intrinsic disorder in plants is still in its infancy.

3. Different Frameworks of Protein Similarity

Determining the similarity or difference between entities pre-requires a conceptual system that
inevitably creates a hierarchy within sets of features deemed ‘relevant’. The different frameworks of
protein similarity, like function, biological context, biophysical properties or evolutionary relationship,
will operate on a set of categories that may or may not be compatible with other frameworks. Beyond this,
the features within a defined system may not be fixed but draw meaning from reciprocal determination
of features (e.g., a protein with a folded domain will likely be classified by that domain rather than
by a non-folded, multivalent IDR ‘tail’). Given the ambiguous modes of sequence conservation of
disordered regions, it is tempting to assume that the determination of similarity or difference along
the lines of function and biophysics will provide a better understanding of the common features
that protein disorder contributes to biological mechanisms. However, disregarding evolutionary
relationships artificially divorces molecular function from its developmental constraints. In this review,
we exemplify the functional kinship of disordered proteins across evolutionary distant organisms and
give insights into the essential features that underpin it.

4. LEA Proteins as Disordered Spatial Organizers under Cell-Stress Conditions

Although first identified in cotton seeds, Late Embryogenesis Abundant (LEA) proteins are no
longer viewed as being restricted to the plant kingdom [19,20]. The members of this family represent
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one of the most prominent examples of IDP-mediated stress responses in plants [19]. Most notably,
LEA proteins accumulate in response to water-deficit conditions and are particularly abundant in
anhydrobiotic plants [21]. LEA proteins have been shown to play important roles for the plant
responses to salinity, drought, freezing, heat and desiccation [22]. Overexpression studies of selected
LEA proteins resulted in increased resistance against diverse abiotic stresses, which underscores their
importance as safeguarding proteins [23–27]. Within plants, LEA proteins localize ubiquitously in the
cytoplasm and subcellular organelles like the nucleus, mitochondria, endoplasmic reticulum, plasma
membrane, chloroplast, and peroxisome [28].

LEA proteins do not display any clear sequence similarity with other proteins of known function
and can be classified into several broadly defined families or classes based on conserved protein
domains [29], the occurrence of defined sequence motifs [28] or their physico-chemical features [30].
Overall, their amino acid composition is dominated by hydrophilic residues, charged amino acids, small
amino acids like glycine or serine and a high proportion of disorder-promoting amino acids, although
there is some significant variation within the LEA protein family regarding overall hydropathy and
charge (Figure 1A). Indeed, experimental and bioinformatic evidence suggests that a key feature of the
LEA protein family is their total or partial lack of stable structure, resulting in a flexible conformation [31].
Some bacterial and plant LEA proteins also carry folded domains like the Water stress and Hypersensitive
response (WHy) domain, which is involved in the desiccation response and may originate from an ancestral
domain in Archaea [32,33]. As seen in other disorder-containing protein families, LEA proteins display a
diverse multifunctionality, for example as protein and membrane chaperones, as DNA-binding proteins, or
sequesters of metal ions and radicals [20]. As many interactions and functions have only been characterized
using in vitro approaches, the full scope of this family’s functional repertoire remains obscure.

Previous studies showed LEA proteins to be sufficient desiccation protectants both in vivo and
in vitro [34,35]. Indeed, LEA proteins exhibit increased expression during the desiccation-tolerant
stages of plant seed development and in dividing cells of root tips [36]. Leaves of Arabidopsis are
not desiccation tolerant, but experimental evidence suggests that the LEA proteins COR15A and
COR15B assert a cryoprotective function by mediating freezing-induced crowding effects [37]. In vitro
experiments showed that hydrophilins like the LEA protein family together with trehalose, or other
disaccharides, can vitrify, which directly protects cells from protein aggregation and membrane
disintegration [38–40]. The formation of these intracellular, glass-like matrices is hypothesized to
prevent non-specific protein–protein interactions that otherwise lead to denaturation and aggregation,
and thus protect seeds and roots during drought. The general mechanism was proposed to be mediated
by the protein’s ability to acquire secondary structure during drying, when intra-protein hydrogen
bonds become energetically more favourable [41–44]. However, the structural aspects of the mechanism
have yet to be validated in vivo. In recent years, in-cell solid and solution state, Nuclear Magnetic
Resonance (NMR) methodologies have advanced to the point that experimental approaches to study
structural transitions under physiological conditions are now conceivable [45,46].

Besides plant organisms, LEA proteins have also been found in other desiccation-tolerant organisms,
such as bacteria, fungi, and some invertebrates, suggesting a common mechanism across distinct life
forms [47]. However, the full scope of LEA involvement in desiccation tolerance across species is hard
to estimate since relatedness identified by sequence-based methods can be compromised given the low
sequence complexity of IDPs. Moreover, many organisms carry multiple types of LEA proteins that
display diverse subcellular localisation and divergent functions within different species and cellular
contexts. Typically, a desiccation-tolerant state is triggered by pre-exposure to slow drying that induces
changes in the expression profile of the cell (Figure 1C). Thus, the functional annotation of many LEA
and LEA-like proteins was often based on gene expression analyses under stress conditions. These
include the two divergent LEA-like proteins (ArLEA1A, ArLEA1B) in the freshwater rotifer Adineta
ricciae [48], or the desiccation-induced expression of AavLEA1 in the nematode Aphelenchus avenae [49].
Another example are the desiccation-tolerant larval stages of the brine shrimp Artemia franciscana, in
which mRNA levels of AfrLEA1 and AfrLEA2 transcripts are increased 7- and 14-fold when compared
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to the stages that do not share the capacity for anhydrobiosis [50]. Although LEA proteins are
not represented in mammalian genomes, AfrLEA2 transfected into human HepG2 cells enhanced
desiccation tolerance in the presence of intracellular trehalose, and resulted in increased membrane
integrity after rehydration [51]. Similarly, eight out of fifteen Arabidopsis LEA proteins increased
tolerance to desiccation when heterologously expressed in Saccharomyces cerevisiae [34]. Furthermore,
the disordered yeast hydrophilin HSP12 alleviated the damage caused by severe water loss, indicating
a synergistic and independent activity together with trehalose [52]. Interestingly, although HSP12
shares the general biophysical features (size, charge, disorder) of the eleven other hydrophilins in yeast,
it appears to be unique in mediating desiccation tolerance amongst the hydrophilin family.
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Figure 1. Late Embryogenesis Abundant (LEA) proteins and the role of intrinsically disordered 
proteins (IDPs) in desiccation and liquid–liquid phase separation. A Boxplot of the Grand Average of 
Hydropathy (GRAVY) and the fraction of charged residues (DEKR) calculated for the 12 LEA protein 
classes, based on statistical analysis of physico-chemical properties and amino acid usage [30]. 
Adapted and modified with permission from http://forge.info.univ-angers.fr/~gh/Leadb/index.php. 

Figure 1. Late Embryogenesis Abundant (LEA) proteins and the role of intrinsically disordered proteins
(IDPs) in desiccation and liquid–liquid phase separation. (A) Boxplot of the Grand Average of Hydropathy
(GRAVY) and the fraction of charged residues (DEKR) calculated for the 12 LEA protein classes, based on
statistical analysis of physico-chemical properties and amino acid usage [30]. Adapted and modified with
permission from http://forge.info.univ-angers.fr/~{}gh/Leadb/index.php. (B) Disorder prediction (teal)
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and hydrophobicity plot (red) for hydrophilin representatives from yeast (HSP12), plant (AtLEA14) and
nematode (AavLEA1), all involved in desiccation tolerance. (C) Cartoon representation of the molecular
processes involved in desiccation. Upon slow drying, trehalose and LEA proteins accumulate in the
cell and vitrify, forming an amorphous matrix to stabilize and protect other proteins and membranes
during desiccation. (D) Cartoon representation of the molecular processes involved in phase separation.
Upon reaching a critical concentration, certain IDPs undergo liquid–liquid phase separation to form
membrane-less organelles. They undergo a transition from a compacted state in solution to an expanded
state in the phase separated droplet. The process can furthermore be modified by other features such
as post-translational modifications (PTMs) or protein composition.

Similar to rotifers, tardigrades display desiccation tolerance despite naturally lacking trehalose [53].
Only recently, tardigrade-specific IDPs were shown to vitrify in vitro and in vivo, when heterologously
expressed in yeast [54]. Moreover, RNA interference experiments reduced survival to desiccation
independently of any sugar mediator. The authors proposed that tardigrade-specific IDPs mediate
desiccation tolerance by protecting proteins against denaturation, trapping them in an amorphous
matrix [54]. Similar to the examples above, these proteins were identified using differential gene
expression analyses of hydrated and slowly drying tardigrades. Interestingly, these mechanistic
similarities between tardigrade-specific IDPs and LEA proteins seem to have developed independently
in convergent evolution, highlighting the importance of IDPs in organizing cellular matter in response
to stress across phyla.

5. Protein Disorder as a Driving Force for Liquid–liquid Phase Separation

A classic example of spatio-temporal separation of biochemical processes in eukaryotic cells is the
formation of canonical membrane-enclosed organelles. However, eukaryotes also contain numerous
membrane-less compartments (MCs), such as the nucleolus or P-bodies [55]. MCs have liquid-like
properties and undergo dynamic liquid–liquid phase separation (LLPS). This behaviour enables them
to rapidly form on demand, fuse, shear, exchange their content, or disassemble and thus concentrate
proteins and biochemical reactions at distinct locations when needed [56,57].

To achieve LLPS and formation of MCs, their contents have to reach a critical concentration to
enable a de-mixing effect and form non-miscible phases [58]. Under these conditions, intermolecular
interactions between IDPs stabilize the condensed phase overcoming intramolecular and solvent
interactions [59,60]. The level of anisotropy remarkably increases in phase separated droplets, indicating
an expanded state of IDPs in comparison to a more compacted state in solution [59,60] (Figure 1D). The
resulting MCs are highly concentrated in proteinous components and can also rapidly dissociate once
the concentration falls below the critical point or protein interactions are altered (e.g., by PTMs) [61–65].
Indeed, the lack of defined structure renders IDPs more accessible to regulation through PTMs that can
change the biophysical properties of IDPs and consequently modify protein–protein interaction [64].

Almost all MCs contain a large proportion of IDPs [66,67] and their molecular features were
suggested to be essential for LLPS and thus MC formation [67,68]. The lack of defined secondary
or tertiary structure and thus high flexibility might provide the needs for the dynamic behaviour of
MCs [67,69]. Furthermore, the capacity of IDPs to exhibit promiscuous protein–protein interactions [70]
might permit the spontaneous and reversible formation of sufficient, local protein concentrations
to initiate LLPS. These multivalent protein interactions are proposed to be mediated by repetitive
sequence elements that result in overall IDP sequence simplicity [57,64,71]. A prominent example of
an MC-forming IDP is the Essential Pyrenoid Component 1 (EPYC1). It is an indispensable part of the
Pyrenoid, a MC in the chloroplast of many algae that concentrates components of the carbon fixation
machinery to increase its efficiency [72]. EPYC1 contains four sequentially simplistic regions that have
been proposed to form weak multivalent interactions with Rubisco and thus might be central to the
liquid-like properties of the pyrenoid [72]. Other examples from the mammalian and fungal kingdoms
are DEAD-box helicase 4 (DDx4) proteins that harbour clusters of FG and GF repeats [73] or the polyQ
tract of Whi3 [74], respectively.
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MCs of plants and other eukaryotes contain overlapping sets of proteins, indicating a common
function in eukaryotic metabolism. For example, stress granules, small cytoplasmic MCs that form upon
a variety of stresses contain RNA, translation initiation factors, RNA-binding, and other proteins [75,76].
Curiously, also components of the cell cycle regulation machinery (see paragraph below), such as
cyclin-dependent kinases localize to stress granules in both plant and human cells [76,77]. However,
plants and green algae also contain specific MCs. The chloroplasts of green algae contain the above
mentioned pyrenoid and plant photobodies contain light receptors and signalling proteins [78].
Cryptochromes (see paragraph below) are components of photobodies and undergo rapid LLPS upon
blue light perception and are thus a valuable optogenetic tool in mammalian cells [79].

Members of the SR protein family were recently shown to adopt similar functions in plant and
mammalian MCs. SR proteins are intrinsically disordered, exhibit RNA-binding capacity, are involved
in alternative splicing, and contain long repeats of serine and arginine residues [80,81]. The plant-specific
SR45 selectively accumulates in nuclear body MCs, in a temperature- and phosphorylation-dependent
manner [82]. It was suggested that plant SR proteins might regulate splicing activity in response to
stress by undergoing LLPS and thereby concentrating the splicing machinery into MCs [56]. Similarly,
the mammalian SR protein SRSF9 was recently shown to regulate nuclear stress body formation upon
heat exposure, depending on the phosphorylation state of the protein [83,84]. SR45 and SRSF9 can
adopt similar functions in plants and mammals, despite significant differences in protein size (414 vs
221 residues, respectively) and no sequence conservation except in the conserved RNA recognition
motifs. Overall, information on plant IDPs that undergo LLPS is still scarce but investigating the
composition of plant-derived MCs may represent a promising path towards a better understanding
of the fundamental and species-specific features of membrane-less compartmentalization in cell
biology. Moreover, features like prion-like domains are important predictors of LLPS in RNA-binding
proteins [85]. In Arabidopsis, nearly 500 proteins were predicted to carry such domains [86]. Indeed,
the plant-specific Flowering Locus CA and FLL2 proteins have recently been shown to be in vivo
regulators of LLPS within the autonomous flowering pathway of Arabidopsis [87].

6. The Role of Disordered Proteins in Microtubule Organisation

Beyond their roles in the structural integrity and division of the cell, plant microtubules also
adopt a sensory function for the perception of abiotic stress conditions [88]. Recently, we showed that
the intrinsically disordered region of the Cellulose synthase Companion (CC) proteins is critically
involved in the salt-stress response of Arabidopsis [89]. Representing one of the primary responses
to salt stress, the plant’s cortical microtubule network is re-structured and rendered stress tolerant
under saline conditions [90]. Plant cortical microtubules steer the movement of the cellulose synthase
complex and thus are essential for the organism’s morphology and growth [91]. The CC protein family
is an essential player in the microtubule re-assembly process during salt exposure [92]. Interestingly,
the mechanism by which the cytosolic N-terminus of CC1 regulates and interacts with microtubules
appear to be remarkably similar to that of the human Tau microtubule-associated protein, which is
widely known for its potential role in multiple neurodegenerative diseases [89,93]. Both proteins are
intrinsically disordered and contain multiple short hydrophobic microtubule-binding motifs that can
bind tubulin and microtubules transiently and independently [94] (Figure 2).



Int. J. Mol. Sci. 2020, 21, 2105 7 of 26

 
Figure 2. Disordered microtubule-binding proteins. The dynamic nature of the CC1- and Tau-binding 
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dimers (light- and dark-blue) via their individual binding motifs (light-green), thereby increasing the 
local tubulin concentration, connecting and stabilizing protofilaments or bundling microtubules. 
Image by Barth van Rossum. 
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Figure 2. Disordered microtubule-binding proteins. The dynamic nature of the CC1- and Tau-binding
(dark- and light-green) behaviour suggests that both might be able to bind multiple distinct tubulin
dimers (light- and dark-blue) via their individual binding motifs (light-green), thereby increasing the
local tubulin concentration, connecting and stabilizing protofilaments or bundling microtubules. Image
by Barth van Rossum.

Thus, both proteins can promote polymerization and bundling of microtubules, while also being
able to diffuse along the microtubule lattice [95,96]. While Tau controls microtubule dynamics and
organisation in neurons [97], the CC1-mediated microtubule bundling may underpin microtubule array
stabilization of the plant cell during salt stress. Notably, microtubule-associated proteins display an
increased content of disorder in eukaryotes [98]. The observation that key biophysical and functional
properties are shared across distantly related kingdoms may spark new perspectives on the evolution
of microtubule-associated IDPs and their function in stress and disease-related processes.

7. The Multivalent Role of Protein Disorder in Cryptochrome Signalling

Cryptochromes (CRYs) are blue-light receptors that regulate varying functions such as cell growth
and circadian rhythm in a range of organisms like plants, insects and bacteria. The conserved and
folded N-terminal domain of all CRYs resembles photolyases (Photolyase homology region (PHR); [99]).
As such, CRYs are flavoproteins but lost their photolyase activity and hence are not involved in DNA
damage repair [99]. Nearly all C-terminal extensions of CRYs are predicted to be disordered and vary
greatly in length and sequence between species [100,101]. Nevertheless, the function of cryptochromes
is critically dependent on these C-terminal IDRs [102–106]. Arabidopsis harbours two cryptochromes
(CRY1 and CRY2), whose C-terminal IDRs differ in sequence, but are functionally equivalent as
they can be interchanged [107,108]. Proteolytic analysis of human and Arabidopsis CRYs revealed
that the C-terminal IDRs show increased susceptibility to proteolytic digestion after illumination,
which suggests a conformational change that exposes the IDR [101]. This observation is in line with
the crystal structure of full-length Drosophila cryptochrome, which revealed that the flexible IDR
resides in a grove of the PHR domain in the non-excited state [109,110]. Transgenic Arabidopsis plants
overexpressing the CRY C-terminal extension phenotypically show a constant light response, indicating
that it is sufficient to activate the otherwise light-induced signalling pathway [102]. Indeed, it directly
interacts with several downstream regulatory proteins such as Constitutive Photomorphogenic 1
(COP1) or Suppressor of Phytochrome A1 (SPA1) [111–114] and is heavily phosphorylated upon
light perception [115–117]. Figure 3A summarizes the general action model of plant CRYs, which
includes the following steps: 1. In the dark, PHR and the C-terminal IDR interact and form a closed
conformation; 2. Light induces a dimerization of CRYs and phosphorylation of the IDR leads to an
exposed IDR conformation; 3. The IDR binds to regulatory proteins that subsequently modulate
developmental processes [101,113,114,116–118].
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the C-terminal extension is responsible for translocation of CRYs to the nucleus, where they are 
involved in regulating gene expression as part of the central circadian clock regulation complex 
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The circadian clock regulation in Drosophila requires the tightly regulated binding of multiple 
proteins to CRYs, e.g., Timeless (TIM) and Jetlag (JET) [119,120]. In response to light, the C-terminal 
IDR is released from the PHR, which then allows binding of both TIM and JET to the 
PHR [109,119,120]. In contrast to plant CRYs, the IDRs of Drosophila CRYs thus do not facilitate 
binding to regulatory proteins but inhibit it (Figure 3A). Consistent with this conclusion, the 
Drosophila PHR domain, deficient of its C-terminal IDR, induced a constitutive light response, in 
contrast to plant CRYs that transmit their response directly via their disordered C-terminus [102,121]. 

In contrast to both plant or insect CRYs, their mammalian orthologs lack any known direct 
photosensory function [122,123]. However, mutant mice deficient in the photoreceptors opsin or 
melanopsin show impairment in circadian clock regulation, indicating that mammalian CRYs are 
dependent on light perception of other photoreceptors [124,125]. Indeed, they are part of a 
transcription/translation feedback loop to establish the circadian rhythm. In a complex with Period 
(PER), they repress the activity of the circadian transcription activator complex circadian locomotor 
output cycles kaput (CLOCK)/brain and muscle Arnt-like protein 1 (BMAL1) and thus repress their 
own transcription [126–128]. The C-terminal IDR extension of mammalian CRYs regulates the import 
of the protein into the nucleus as well as the interaction of the PHR with the CLOCK/BMAL1 complex 
(Figure 3B) [99,105,106]. Interestingly and reminiscent of plant CRYs, phosphorylation of the C-
terminal IDR plays an important role to modulate mammalian CRY proteins. Phosphorylation of the 
mammalian CRY1 IDR stabilizes the protein [129], while phosphorylation of the CRY2 IDR 
destabilizes the protein and leads to its degradation [130,131]. Curiously, the C-terminal IDR of the 
mammalian-like CRY ortholog from the green algae Chlamydomonas reinhardtii was recently 
suggested to bind to its PHR upon light perception [132]. Thus, a similar mode of action might be 
possible for mammalian CRYs, potentially through a light dependent signalling pathway in 
conjunction with other photoreceptors. 

In summary, despite having a conserved PHR domain, the members of the CRY protein family 
have adopted varying, species-dependent functions, which are mediated by their highly variable C-
terminal IDR extensions and may have developed independently. The CRY proteins are thus an 
excellent example of how protein disorder, despite the presence of other, folded regions with a 
conserved mechanism, can represent the primary determining factor of molecular function between 
kingdoms of life. 

8. Disordered Proteins Represent Key Regulators in Cell Cycle Progression 

Figure 3. The intrinsically disordered C-terminal extension of cryptochromes (CRYs) has diverse
functions. (A) Upon light perception through a photolyase homology region (PHR), the C-terminal
extension (red) is released from the PHR and acquires an exposed conformation. In plants, the C-terminal
extension directly binds to partner proteins, e.g. COP1 and SPA1. In insects it is not involved in binding
to proteins, instead the PHR binds to partner proteins, e.g. TIM and JET. (B) In mammals, the C-terminal
extension is responsible for translocation of CRYs to the nucleus, where they are involved in regulating
gene expression as part of the central circadian clock regulation complex together with proteins like
BMAL1, CLOCK and PER.

The circadian clock regulation in Drosophila requires the tightly regulated binding of multiple
proteins to CRYs, e.g., Timeless (TIM) and Jetlag (JET) [119,120]. In response to light, the C-terminal
IDR is released from the PHR, which then allows binding of both TIM and JET to the PHR [109,119,120].
In contrast to plant CRYs, the IDRs of Drosophila CRYs thus do not facilitate binding to regulatory
proteins but inhibit it (Figure 3A). Consistent with this conclusion, the Drosophila PHR domain, deficient
of its C-terminal IDR, induced a constitutive light response, in contrast to plant CRYs that transmit
their response directly via their disordered C-terminus [102,121].

In contrast to both plant or insect CRYs, their mammalian orthologs lack any known direct
photosensory function [122,123]. However, mutant mice deficient in the photoreceptors opsin
or melanopsin show impairment in circadian clock regulation, indicating that mammalian CRYs
are dependent on light perception of other photoreceptors [124,125]. Indeed, they are part of a
transcription/translation feedback loop to establish the circadian rhythm. In a complex with Period
(PER), they repress the activity of the circadian transcription activator complex circadian locomotor
output cycles kaput (CLOCK)/brain and muscle Arnt-like protein 1 (BMAL1) and thus repress their
own transcription [126–128]. The C-terminal IDR extension of mammalian CRYs regulates the import
of the protein into the nucleus as well as the interaction of the PHR with the CLOCK/BMAL1 complex
(Figure 3B) [99,105,106]. Interestingly and reminiscent of plant CRYs, phosphorylation of the C-terminal
IDR plays an important role to modulate mammalian CRY proteins. Phosphorylation of the mammalian
CRY1 IDR stabilizes the protein [129], while phosphorylation of the CRY2 IDR destabilizes the protein
and leads to its degradation [130,131]. Curiously, the C-terminal IDR of the mammalian-like CRY
ortholog from the green algae Chlamydomonas reinhardtii was recently suggested to bind to its PHR
upon light perception [132]. Thus, a similar mode of action might be possible for mammalian CRYs,
potentially through a light dependent signalling pathway in conjunction with other photoreceptors.

In summary, despite having a conserved PHR domain, the members of the CRY protein family
have adopted varying, species-dependent functions, which are mediated by their highly variable
C-terminal IDR extensions and may have developed independently. The CRY proteins are thus
an excellent example of how protein disorder, despite the presence of other, folded regions with a
conserved mechanism, can represent the primary determining factor of molecular function between
kingdoms of life.
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8. Disordered Proteins Represent Key Regulators in Cell Cycle Progression

The cell cycle is one of the most intensively studied processes in biology, especially due to
its misregulation in many human diseases. Unlike animal development, plants largely develop
post-embryonically and, thus, organ formation, like flowers, leaves, stems, or roots, continuously
develops throughout the plant life cycle. Plant cell division is located in meristems, containing
pluripotent stem cells whose progeny is subsequently developing into specialized cells. Despite
these striking differences in developmental organisation, all eukaryotic cells essentially undergo the
same cell cycle that is defined by characteristic phases. Cyclin-dependent kinases (CDKs) play an
essential role in the progression of the cell cycle and are conserved in all eukaryotes. A multitude of
CDK–cyclin complexes control the transition from the post-mitotic gap phase (G1) to the synthetic
(S) phase and second gap phase (G2) to mitosis (M) phases by phosphorylating downstream target
proteins [133]. Cyclins hereby act as mediators between the CDKs and multiple substrates. Because of
the essential role in the continuation of the cell cycle, CDK–cyclin complexes are heavily regulated by
several mechanisms, like phosphorylation and proteolysis initiated by ubiquitination, all of which
were reviewed elsewhere [133–135].

Cyclin-dependent kinase inhibitors (CKIs) bind CDKs and inhibit their activity to regulate the
progression of the cell cycle. Consequently, CKI misregulation is associated with a multitude of
diseases [136–139]. CKIs are IDPs that only share a conserved inhibitory domain (CID), which
acquires a folded state when involved in cooperative binding to both CDKs and cyclins [140–143].
The budding yeast CKI SIC1 and its mammalian counterparts of the p27kip1 family share very low
sequence homology [141]. However, prediction tools indicated structural similarity of the CIDs.
Intriguingly, the positioning of the CID within the overall topology of the CKIs varies between different
species. While the domain is located at the C-terminus of SIC1, its position is N-terminal in p27kip1

(Figure 4A) [140,144]. Despite these positional differences, heterologously expressed SIC1 can bind and
inhibit the activity of the Cdk2–cyclin A complex, the mammalian binding partner of p27kip1, in vitro
and overexpression of mammalian p27kip1 in a SIC1 deficient yeast strains can rescue its cell cycle
related phenotype [141]. The first plant CKI was identified by a yeast two-hybrid assay employing
A. thaliana CDKA;1 as a bait protein and subsequent sequence analysis, in which the CID was found to
be distantly homologous to that of mammalian p27kip1 [145]. This Kip-related protein (KRP) family
subsequently expanded to seven members in Arabidopsis [146,147] and fulfils an analogous function
in cell cycle control as their yeast and mammalian counterparts [147–150]. Curiously, like the yeast
protein, they carry the conserved inhibitory domain at their C-terminus (Figure 4A) [145,147,149] and
heterologously expressed Zea mays KRPs furthermore decrease overall cell size when expressed in
fission yeast [151], hinting at a delay in cell cycle progression. In contrast to the functional conservation
between yeast and plant CKIs, classic sequence alignment of the CIDs show no homology better
than expected by chance, while KRPs and mammalian p27kip1 are at least distantly related [152].
However, the CIDs of all three CKIs acquire or are predicted to acquire a common fold of two α-helices
interspaced by a flexible linker (Figure 4B).
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Figure 4. Features of cyclin-dependent kinase inhibitors (CKIs). (A) Overview of general CKI architecture
across organisms. Arabidopsis KRP1, human p27kip1, and yeast SIC1 all share a large intrinsically disordered
region (grey) that shows no sequence conservation. A sequentially conserved inhibitory domain (CID;
green) is located at different positions in the proteins. Dotted lines denote known (p27kip1, SIC1) or
predicted (KRP1; NetPhos 3.1 score > 0.9) phosphorylation sites in the IDR. (B) Sequential comparison
of the conserved CID. KRP1 and p27kip1 are sequentially conserved, while SIC1 only shows similar
amino acids (bold letters) in several positions to either protein. Two alpha helices (boxes) comprise
the binding domain of the CIDs, as shown by the crystal structure of p27kip1, modelling of SIC1,
or prediction with JPRED for KRP1. (C) All three CKIs show conserved, charge-based features in the
IDR region between important phosphorylation sites (highlighted by hatched, red lines in (A).

The IDR domains of the CKIs presented here, especially p27kip1, have been associated with many
functions, e.g., transcriptional regulation, regulation of the cytoskeleton or tumour development,
but these were reviewed elsewhere [153–155]. One of the most investigated functions is the regulation
of their own CID domain. To release CKIs from their respective CDK–cyclin complexes and thus
activate them, phosphorylation of the IDR domains at multiple positions is required. The process
is best described in budding yeast. SIC1 is tightly bound to Clb (B-type cyclins)-CDK complexes at
the beginning of the cell cycle and therefore inhibits them [156,157]. To initiate deactivation of SIC1
through ubiquitination and subsequent degradation through the 26S proteasome [158–160], at least six
out of multiple phosphorylation sites in its IDR domain (Figure 4A) have to be phosphorylated in a
specific cascade [161–164]. Yeast cells enter the (S) phase of their cell cycle afterwards. Furthermore,
phosphorylation of other, differential positions in SIC1 seems to play a role in cell cycle progression [165,166].

The mammalian analogue p27kip1 is also heavily regulated by phosphorylation. An overview
of important p27kip1 phosphorylation sites can be found in Figure 4A. While phosphorylation of
residues S10 and T198 is mainly involved in protein stability in interphase cells [167–169], together
with T157 they also contribute to the subcellular localization of the protein [170]. When progressing
through the cell cycle Y88 gets phosphorylated, which partially releases p27kip1 from the CDK2/cyclin
A complex [171]. Further phosphorylation of Y74 leads to CDK2 activation and phosphorylation of
T187 in p27kip1 in an intra-complex manner [172,173]. This leads to deactivation of p27kip1 through
ubiquitination and subsequent degradation through the 26S proteasome [174] and ultimately entry
into (S) phase [171].

The regulation of plant KRPs is not well understood to date. However, KRPs are phosphorylated
before deactivation, although the key sites remain unknown [175]. Phosphorylation in all three protein
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classes is thus an important regulatory factor. Indeed, SIC1 acquires different transient folding states
when being phosphorylated or dephosphorylated, influencing the electrostatic field experienced by the
SIC1 binding partner [176]. Furthermore, a region in p27kip1, in between the important phosphorylation
sites Y88 and T187, shows a charge pattern that is important for the selective phosphorylation of T187
in the cascade of events leading to deactivation of p27kip1 and (S) phase entry [177]. Remarkably,
SIC1 exhibits a comparable charge pattern in between annotated, important phosphorylation sites.
Furthermore, predicted phosphorylation sites in KRP1, identified with the NetPhos 3.1 server [178],
frame a region with such a charge pattern. The region thus seems to be functionally conserved through
biophysical properties, despite no classic sequence conservation (Figure 4C).

9. The Role of Protein Disorder in Transcriptional Regulation

While the general principles of protein–DNA recognition are well conserved among eukaryotes,
transcriptional control that relies on protein–protein interactions is more species-specific [179].
This situation is further complicated by the fact that these regulatory domains often employ disordered
SLiMs that are difficult to robustly predict de novo from sequence and can develop functionality
through both rapid convergent and divergent evolution [180]. The overall disorder content of TFs
may be linked to the capacity of to establish more complex gene regulatory networks in multicellular
organisms [181]. In Arabidopsis thaliana, a large proportion of transcription factors (TFs) contains
extended regions of disorder (82%–94%, [182], disorder in eukaryotic TFs is reviewed in [183]).
In particular, their transactivation domains (TADs), scaffolding domains responsible for recruiting
transcriptional co-regulators that are critical for transcription initiation, display a high degree of
disorder (73%–95%, [182]). The “Nine amino acid Transactivation Domain” (9aaTAD) family is a
prominent example of an important generic TAD in eukaryotes. Its motif is defined by a tandem of
hydrophobic clusters, hydrophilic residues with proportional positive/negative charge and a 3 aa
hydrophobic region towards its N-terminus [184]. Despite showing wide variability across species,
the 9aaTAD represents a universal module that mediates binding to the transcriptional machinery.
For instance, plant (e.g., MYB63), yeast (e.g., Oaf1p) and animal (e.g., SREBP) TFs were found to
harbour 9aaTADs that facilitate interaction with the Med15 KIX domain of the Med Mediator Tail
module [185–187].

Understanding the mechanistic details of TAD recruitment promises the opportunity of protein
design for crop optimization in food and feed production due to their prominent involvement in
plant stress responses. TAD engineering by design principles taken from other organisms was
applied early on in plant research. Many studies used the viral protein 16 (VP16) acidic activation
domain from the herpes simplex virus to change transcript levels of specific target genes [188,189].
For instance, a zinc finger DNA-binding protein-VP16 fusion construct targeting the b-KETOACYL-
ACP-SYNTHASE II allowed for the modification of the oil content in rapeseed leaves and seeds [190].
Much like the TAD of human tumour suppressor p53, the VP16 TAD contains two disordered activation
subdomains, each with transcription activation potential that may form amphipathic α-helices upon
complex formation [191,192]. Recently, Krois and co-workers gave remarkable structural insights
into the binding specificity of p53 by showing how the p53 TADs directly compete with non-specific
DNA sequences for binding to the DNA-binding core domain [193]. As neither VP16 nor p53 are
present in the genome of vascular plants, the VP16 design principles were used to screen for TADs of
plant regulatory regions [194]. Interestingly, some of the identified domains significantly improved
transcriptional activation and exhibited higher efficacy in planta when compared to VP16. Approaching
the design challenge in a high-throughput manner, Ravarani and co-workers developed an IDR-Screen
framework for TADs [195]. Using a yeast transcription factor assay with Heat shock factor protein
1 as a bait protein, the authors screened a random sequence library and variants of known TADs to
derive sequence patterns that underlie TAD function. The surprisingly large amount of functional
TAD sequences was enriched in negatively charged amino acids and aromatic hydrophobic residues.
However, also highly degenerate and redundant sequences were sufficiently functional within the
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assay, which may indicate broad compatibility with co-factor interaction and/or non-specific binding to
the components of the transcriptional machinery. Moreover, the high sequence degeneracy of the TAD
sequences hints for a binding mechanism that is primarily mediated by multiple and fuzzy interactions
rather than strong specific binding.

With representatives in over 100 land plant species and over 100 genes in Arabidopsis alone,
the NAM/ATAF1/CUC2 (NAC) family is one of the largest plant-specific transcription factor families
and of vital importance in the stress response and cell wall synthesis of the plant organism [196,197].
These proteins contain a conserved and structured N-terminal DNA-binding domain, while a highly
variable C-terminal domain is predicted to be largely disordered [198,199]. NAC proteins interact with
a number of different proteins but it is yet unclear which are mediated by the disordered C-terminal
domain [200,201]. Upon complexation with the stress regulator and hub-protein Radical-induced Cell
Death 1, the C-terminal domains of ANAC046 and ANAC013 do not adopt an induced structure,
which is consistent with an inherent conformational flexibility and fuzziness of the interaction [202].
The Suppressor of Gamma Response 1 (SOG1) is a plant-specific NAC transcription factor that regulates
the DNA damage response [203]. Similar to p53, SOG1 regulates a variety of genes involved in cell
cycle arrest, apoptosis, DNA damage response and repair. Due to these similarities and since the plant
genome lacks a p53 ortholog, SOG1 has been put forward as a functional analogue of p53 [204]. Indeed,
in an analysis of the Arabidopsis DNA damage response transcriptional network, SOG1 represented
a major activator targeting other TFs, repair factors, and cell cycle regulators and thus coordinates
the induction of DNA damage repair [205]. Interestingly, many of the identified genes targeted by
SOG1 have human orthologs that are p53 targets and thus share a similar role within their respective
regulatory networks. One example is the SOG1 target KRP6, a CKI resembling p21 and p27 (see
above), which conversely represents a major target of p53 activity and mediates the down-regulation
of cell cycle genes [206]. Despite functional similarities, the domain architecture and sequence are not
conserved between p53 and SOG1, suggesting that the kinship of the two proteins is not rooted in
common ancestry, but may have developed independently in response to unique demands imposed
by their respective species’ DNA damage repair networks. Similar to the NAC family members
described above, the SOG1 C-terminal domain is predicted to be disordered and appears to be strongly
post-transcriptionally regulated [207]. Hence, it is conceivable that a disordered C-terminus may
enable SOG1 to display a broad functional and structural repertoire similar to p53, which interacts
with a large number of protein partners. The much lower number of confirmed SOG1 interaction
partners in comparison to p53 may stem from the less extensive characterization of the plant DNA
damage repair mechanism.

10. Methodological Advances and Outlook

From the shape of the cell, the ultrastructure of the cytoskeletal network, down to protein
structure at atomic resolution, structural observations have traditionally been the predominant
framework of comparisons between the molecular life of plant and metazoan organisms. As the
conservation of proteins is more pronounced at the structural than the sequential level, IDPs and
IDRs thus represent a challenging target for functional comparison [208]. Computational approaches
of high-throughput protein functional annotation are highly desirable to guide more in-depth and
laborious in vitro and in vivo analysis. Besides structural considerations, current computational
protein function predictions rely either on sequence or information-based methods [209]. In IDPs, the
sequence–function relationship is often independent of structural restraints and thus requires novel
methods for analysis. Applying an average distance map technique, Shimomura and co-workers
were able to identify disordered regions that show a tendency to adopt an ordered structure in their
bound state [210]. Zarin and co-workers could show that biophysical features like net charge or
hydrophobicity of amino acids rather than sequence seem to be the determining factor in the evolution
of IDPs [211]. The authors could demonstrate that intrinsically disordered regions can be readily
exchanged based on their physical properties without the need for classic sequence conservation.
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Interestingly, the pattern of protein disorder itself was put forward as an alternative approach to
trace distant relatives in classes of proteins with high levels of intrinsic disorder [212]. These patterns
may have developed in response to species-specific requirements and biological context and will
thus likely aid in establishing the key determinants of the molecular mechanism. Disregarding the
premises of the sequence–structure–function relationship altogether, information-based methods are
well suited to identify disordered proteins of analogous function in distantly related phyla. Recent
advances made in high-throughput transcriptomics at single-cell resolution and the analysis of elaborate
co-expression networks will allow researchers to gain insights into complex regulatory relationships
and identify novel players in the targeted biological processes [213,214]. Multiple methods have
been developed that exploit protein–protein interaction networks in order to identify protein function
based on the topological features of the target proteins interaction network independent of structure
or sequence homology [215,216]. Hence, the ever-increasing amount of protein–protein interaction
and co-expression data may help to illuminate common biological mechanisms of proteins between
distantly related phyla by comparing their position within the respective networks. However, despite
recent improvements in the analysis, identifying hub proteins is critically dependent on the quality
and origin of the underlying data [217].

The arsenal of biophysical methodologies to characterize structural features of IDPs has
significantly expanded in recent years and thus enables a more refined functional comparison
between proteins from different phyla. The integration of experimental data from NMR, small-angle
X-ray scattering and molecular dynamics simulations can yield a detailed structural description
of IDP conformational ensembles [218,219]. Although the capacity to resolve protein disorder
with cryogenic electron microscopy (cryo-EM) remains limited, the method can make significant
contributions to elucidate IDP binding to higher-order molecular complexes [220]. Magic-angle
spinning (MAS) NMR carries the potential to study both rigid and flexible protein regions and can also
be applied to study structural properties in living cells although plant cells pose a special challenge
for protein delivery due to their cell wall [46,221,222]. Beyond the improvements in high-throughput
phosphoproteomics by mass spectrometry, time-resolved solution-state NMR methods have been
developed to probe phosphorylation patterns in cell extracts, intact cells, or under defined physiological
conditions [223,224]. Furthermore, elaborate single-molecule and microfluidic techniques can describe
the collective properties of IDPs in LLPS or during oligomerization [225,226]. Characterization of
single molecules and their dynamic behaviour in vivo is still challenging. Live cell confocal imaging
based on single-molecule Förster resonance energy transfer (FRET) is an established tool to study
biophysical features of IDPs in vitro [227,228], but was recently also proven to be a versatile tool
to study biophysical features of IDPs in vivo, e.g., dimensions, submicrosecond chain dynamics or
conformational changes upon interaction with binding partners [229–232]. However, plant proteins are
usually imaged at the organismal level and imaging is thus based on expression of fluorescent fusion
proteins, rather than on microinjected proteins that are chemically linked with fluorescent dyes. Due to
weaker photophysical features of these fusion proteins, their application for extended single molecule
FRET is limited [227]. Additionally, fusion proteins are bulky molecules in comparison to fluorescent
dyes and might influence the accuracy of measurements. Introduction of non-canonical amino acids and
subsequent click chemistry based labelling [233,234] of plant IDPs might circumvent these limitations
in the future and enable single-molecule FRET for in vivo biophysical property determination.

Targeted creation of IDP chimeras in vivo with similar functionality and biophysical signatures
might reveal regions and distinct features that are crucial for protein function and open novel avenues
for protein design. Chimeric protein approaches were successfully used for folded proteins involved in
the development of multiple diseases such as breast cancer, neuroinflammation, Alzheimer’s disease,
or addiction [235–237]. Chimeras of plant and metazoan IDPs may thus reveal potential targets to
improve plant growth under stress conditions or to improve our understanding of key players in
human diseases.
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11. Conclusions

Since protein disorder emerged as a systematically studied field some 20 years ago, the challenge
of devising a scheme of classification and functional annotation for the disordered proteome has been
widely discussed within the scientific community. Indeed, making meaningful comparisons within the
enigmatic realm of disordered proteins that operates outside the classic sequence–structure–function
relationship requires navigating between different frameworks of similarity. With this contribution,
we want to illustrate the need for curated knowledge transfer across phyla that works in concert with
traditional computer-based annotation methods. Describing the functional versatility of IDRs requires
a broad and integrative approach that must include evolutionary and structural, as well as, functional
and biophysical considerations. Beyond this, deciphering the properties that are common or species
specific across evolutionary distant organisms can improve our understanding of how IDP function
can evolve in diverse biological contexts and how the interplay between protein structure and disorder
creates the diverse functional repertoire found in the proteome.
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Abbreviations

CC Companion of Cellulose Synthase
CDK Cyclin-Dependent Kinase
CID Conserved Inhibitory Domain
CKI Cyclin-Dependent Kinase Inhibitor
CRY Cryptochrome
EPYC Essential Pyrenoid Component
GRAVY Grand Average of Hydropathy
LEA Late Embryogenesis Abundant
LLPS Liquid–Liquid Phase Separation
MC Membrane-less Compartment
IDP Intrinsically Disordered Protein
IDR Intrinsically Disordered Region
PHR Photolyase Homology Region
PTM Post-Translational Modification
Slim Short-Linear Motif
SOG Suppressor of Gamma Response
TAD Transactivation Domain
TF Transcription Factor
TDP Tardigrade-Specific IDP
VP16 Viral Protein 16
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