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Abstract: Light is a crucial environmental signal that affects elements of human health, including the
entrainment of circadian rhythms. A suboptimal environment during pregnancy can increase the risk
of offspring developing a wide range of chronic diseases in later life. Circadian rhythm disruption
in pregnant women may have deleterious consequences for their progeny. In the modern world,
maternal chronodisruption can be caused by shift work, jet travel across time zones, mistimed eating,
and excessive artificial light exposure at night. However, the impact of maternal chronodisruption on
the developmental programming of various chronic diseases remains largely unknown. In this review,
we outline the impact of light, the circadian clock, and circadian signaling pathways in pregnancy
and fetal development. Additionally, we show how to induce maternal chronodisruption in animal
models, examine emerging research demonstrating long-term negative implications for offspring
health following maternal chronodisruption, and summarize current evidence related to light and
circadian signaling pathway targeted therapies in pregnancy to prevent the development of chronic
diseases in offspring.

Keywords: circadian rhythm; developmental origins of health and disease (DOHaD);
developmental programming; glucocorticoid; hypertension; light; melatonin; pregnancy

1. Introduction

Light provides much of the information that enables organisms to adapt to their environment.
When sunlight is unavailable at night and/or indoors, artificial light enables humans to see and permits
productivity [1]. However, exposure to excessive and obtrusive light produced by humans at night
results in light pollution [1]. Global light pollution has been increasing exponentially during the
past century [1]. Light pollution can cause unintended physiological consequences. In mammals,
the production of melatonin—a key player in circadian regulation—can be suppressed by light [2].
Light also activates the adrenal glands and induces a surge in glucocorticoid (GC) levels via the
suprachiasmatic nucleus (SCN), part of the sympathetic nervous system [3]. Light pollution disrupts
circadian rhythms by altering downstream signaling pathways and can lead to the development of
a variety of chronic diseases, such as cancer, cardiovascular disease, diabetes, metabolic syndrome,
and obesity [4–7]. Conversely, the use of light therapy has been evaluated in jet lag, shift work,
and circadian rhythm disorders [8,9]. Further, melatonin treatment confers a number of beneficial
effects to human health, including those related to cardiovascular function, blood pressure, the nervous
system, and lipid and glucose metabolism [10–12].
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Most chronic diseases originate from early life. The developing fetus, if exposed to a suboptimal
environment during pregnancy, experiences alterations to normal patterns of growth and development
that increase its vulnerability to a wide range of chronic diseases in later life [13]. This concept is
called the developmental origins of health and disease, or DOHaD [14]. The developing fetal circadian
system can be programmed by the external environment. However, the impact of light-related
chronodisruption during pregnancy on offspring health remains poorly understood.

This review included publications on the relationship between the light and circadian
signaling pathway and pregnancy and the effects on the developmental programming of chronic
diseases in offspring. We searched the PubMed/MEDLINE databases for studies published in
English between January 1990 and January 2020, using the following search terms: “light”,
“circadian rhythm”, “chronodisruption”, “clock gene”, “melatonin”, “pineal”, “glucocorticoid”,
“developmental programming”, “DOHaD”, “offspring”, “progeny”, “cardiovascular diseases”,
“obesity”, “hypertension”, “neurological diseases”, “pregnancy”, “mother”, “maternal”, “gestation”,
“neonatal”, “perinatal”, “light therapy”, “photobiomodulation”, and “reprogramming.”. Relevant
studies were assessed for inclusion by title and abstract, followed by full-text review.

In this review, we particularly focused on the following areas: the impacts of light and circadian
signals in pregnancy and fetal development; human studies for the programming of adult diseases
related to maternal chronodisruption; animal models of maternal chronodisruption; mechanisms
underlying maternal chronodisruption-induced programmed diseases; and targeting of the light and
circadian signaling pathway as a reprogramming therapy to prevent DOHaD-related diseases.

2. The Impacts of Light and Circadian Signals in Pregnancy and Fetal Development

2.1. The Retinohypothalamic Pathway

Light often serves as a stimulus to induce circadian clock responses. Circadian systems detect light
and transform it into a timed signal that synchronizes all physiological processes to the same zeitgeber.
This system is driven by the circadian clock, which is composed of an intrinsic pacemaker, the light
input by photoreceptors, and output signals [15]. Circadian clocks consist of a central clock within the
SCN and peripheral clocks within peripheral organs. As shown in Figure 1, there is a connection called
the retinohypothalamic tract (RHT) that extends from the retina of the eye to the SCN [16]. In the
presence of light, neurons of the SCN directly inhibit the neurons in the paraventricular hypothalamic
nucleus (PVN) that are responsible for stimulating the pineal gland to secrete melatonin. That is,
light inhibits melatonin secretion, whereas darkness allows the pineal gland to secrete melatonin [17].
Melatonin is synthesized during the dark period of the daily light:dark cycle, independent of whether
the animal is diurnally or nocturnally active. The melatonin secreted by the pineal gland provides
inhibitory feedback information to SCN neurons. Peripheral clocks are present in nearly every tissue
and organ system (i.e., liver, heart, and kidney), which are regulated by the SCN through the autonomic
nervous system (ANS) and rhythmic entraining signals (Figure 1).

There is a strong interaction between the circadian clock system and the
hypothalamic–pituitary–adrenal (HPA) axis [18]. The light-activated central clock controls
the HPA axis through synapses between the SCN and the PVN, thereby inducing the release of adrenal
GCs. Circulating GCs act as a strong entrainment signal for peripheral circadian oscillators. GCs play
a dual role as a circadian and stress signal. In the absence of stress, GC secretion displays a circadian
rhythm, with rise prior to wake up. The coupling of GC secretion with activity phase onset allows
GC to mediate similar physiological functions regardless of whether in diurnal species is primarily
active during the day (e.g., humans) or the night in nocturnal species (e.g., rodents) [18]. On the other
hand, a stressful event results in secretion of GCs. SCN uses both humoral and neuronal pathways to
transmit time-related information to peripheral clocks. The rhythms of melatonin and GCs provide
synchronization signals for clocks in peripheral organs.
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Figure 1. Schema outlining the light and circadian signaling pathway in pregnancy. The 
retinohypothalamic tract transmits light from the eyes to the suprachiasmatic nucleus (SCN). In the 
pineal gland, melatonin synthesis follows a rhythm driven by the SCN. Melatonin has pleiotropic 
biological function whereby it regulates pregnancy and fetal development. The SCN also stimulates 
the release of glucocorticoids (GCs) in the adrenal gland in a light-dependent manner. GC signaling 
is crucial for fetal development. The circadian clock system consists of central and peripheral clocks, 
which are coordinated to produce daily rhythms. The molecular mechanisms responsible for the 
generation of the rhythmicity within the SCN and peripheral clocks are regulated by interactive 
transcriptional–translational feedback loops between the clock genes, including Per1, Per1, Cry1, Cry2, 
CLOCK, BMAL1, Rev-erbα, and CK1ε, and their protein products. The cellular circadian clock consists 
of positive and negative interlinked regulatory limbs. CLOCK and BMAL1 form a heterodimer that 
positively activates the rhythmic expression of Per, Cry, and Rev-erbα genes. The negative limb 
includes the PER and CRY proteins. After nuclear translocation of both proteins, the PER:CRY 
complex interacts with the CLOCK:BMAL1 heterodimer and inhibits CLOCK:BMAL1-mediated 
transcription. The regulation of Bmal1 transcription is mediated mostly by REV-ERBα. The SCN and 
peripheral clocks operate with similar components and share a similar molecular core clock 
mechanism. Circadian signals can transfer from mother to fetus. The rhythms of melatonin and GCs 
provide synchronization signals for peripheral clocks. The interactions between light, the circadian 
clock, and the circadian signals melatonin and GCs in pregnancy ultimately impact the health of the 
mother and offspring. 

2.5. Melatonin in Pregnancy and the Fetus 

Melatonin is primarily secreted by the pineal gland at night. Tryptophan is a precursor for 
melatonin biosynthesis. As well as the pineal gland, melatonin can be produced in many other 
organs, such as the retina, skin, and bone marrow [2]. Melatonin regulates variable physiological 
functions through the activation of two G protein-coupled receptors, melatonin receptor-1 (MT1) and 
-2 (MT2) [28]. Additionally, melatonin can interact with the nuclear hormone receptor family retinoid 
Z receptor (RZR)/retinoid acid receptor (ROR) for signal transduction [28]. Melatonin has pleiotropic 

Figure 1. Schema outlining the light and circadian signaling pathway in pregnancy.
The retinohypothalamic tract transmits light from the eyes to the suprachiasmatic nucleus (SCN). In the
pineal gland, melatonin synthesis follows a rhythm driven by the SCN. Melatonin has pleiotropic
biological function whereby it regulates pregnancy and fetal development. The SCN also stimulates
the release of glucocorticoids (GCs) in the adrenal gland in a light-dependent manner. GC signaling
is crucial for fetal development. The circadian clock system consists of central and peripheral clocks,
which are coordinated to produce daily rhythms. The molecular mechanisms responsible for the
generation of the rhythmicity within the SCN and peripheral clocks are regulated by interactive
transcriptional–translational feedback loops between the clock genes, including Per1, Per1, Cry1, Cry2,
CLOCK, BMAL1, Rev-erbα, and CK1ε, and their protein products. The cellular circadian clock consists
of positive and negative interlinked regulatory limbs. CLOCK and BMAL1 form a heterodimer
that positively activates the rhythmic expression of Per, Cry, and Rev-erbα genes. The negative limb
includes the PER and CRY proteins. After nuclear translocation of both proteins, the PER:CRY complex
interacts with the CLOCK:BMAL1 heterodimer and inhibits CLOCK:BMAL1-mediated transcription.
The regulation of Bmal1 transcription is mediated mostly by REV-ERBα. The SCN and peripheral clocks
operate with similar components and share a similar molecular core clock mechanism. Circadian signals
can transfer from mother to fetus. The rhythms of melatonin and GCs provide synchronization signals
for peripheral clocks. The interactions between light, the circadian clock, and the circadian signals
melatonin and GCs in pregnancy ultimately impact the health of the mother and offspring.

2.2. Maternal and Fetal Circadian Rhythms

The basic molecular core clock mechanism in cells responsible for the generation of rhythmicity
within the SCN and peripheral clocks is formed by interactive transcriptional–translational feedback
loops between the clock genes, namely two Per (encoding the period, Per1,2), two Cry (encoding
the cryptochrome, Cry1,2), circadian l ocomotor output cycles kaput (CLOCK), brain and muscle
aryl-hydrocarbon receptor nuclear translocator-like 1 (BMAL1), Rev-erbα and casein kinase 1 epsilon
(CK1ε), and their protein products [19,20]. The cellular circadian clock consists of positive and negative
interlinked regulatory limbs [19,20]. CLOCK and BMAL1 form a heterodimer and positively activate
the rhythmic expression of Per, Cry, and Rev-erbα genes. The negative limb includes the PER and CRY
proteins. After nuclear translocation of both proteins, the PER:CRY complex directly interacts with the
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CLOCK:BMAL1 heterodimer and inhibits CLOCK:BMAL1-mediated transcription. The regulation
of Bmal1 transcription is mediated mostly by REV-ERB. The SCN and peripheral clocks operate with
similar components and share a similar molecular core clock mechanism. Clock genes are expressed in
the oocytes and in fetal organs during organogenesis, while they are not involved in circadian clock
regulation in oocytes [21].

2.3. Ontogenesis of the Circadian Clock

In mammals, the maternal circadian clock within the SCN is entrained by photic as well as
non-photic cues with the time of the day [22]. The Per1 mRNA is upregulated by photic and
downregulated by non-photic entraining stimuli. The fetal SCN and peripheral clocks are entrained
via, as yet only partially recognized, rhythmically delivered maternal stimuli. Ontogenesis of the
mammalian fetal SCN clock is a gradual process that occurs from the fetal to postnatal periods [23]. First,
SCN neurogenesis occurs from 31 weeks of gestation in primates [24]. Second, the SCN is innervated
by the RHT and is responsive to light at birth in mammals [25]. Finally, a mature mammalian circadian
system displaying overt physiological rhythms slowly develops throughout the late prenatal and
early postnatal period. Although the mammalian fetal clock begins to exhibit intrinsic rhythmicity in
terms of molecular clockwork only around birth and early postnatally, the phase of the new formation
and appearance of rhythms in the fetal SCN is set by the maternal SCN early in the prenatal period.
In mammals, the development of peripheral clocks depends on the maturation of the organ housing
the clock as well as the maturation of the molecular clockwork. Thus, the first appearance of molecular
oscillations is highly organ-specific [23].

2.4. Maternal Circadian Signals: Melatonin and Glucocorticoid

Among the maternal circadian signals likely to impact fetal rhythmicity, melatonin and GCs
appear to play key roles. Maternal melatonin and GCs can transverse the placenta and so they can
provide temporal signals to the fetus. Maternal melatonin signals play key roles in establishing and
entraining fetal circadian clocks [24]. CLOCK/BMAL1 heterodimers interact physically and acetylate
glucocorticoid receptors (GRs), thereby reducing their affinity to glucocorticoid responsive elements
(GREs) and their translocation into the nucleus. CRY1 and CRY2 can interact with the C-terminal
domain of GR in a ligand-dependent fashion, repressing the GR-mediated transactivation of certain
target genes [26]. Rhythmic GC and melatonin secretion in human infants appear at three and nine
weeks of age, respectively [24,27].

2.5. Melatonin in Pregnancy and the Fetus

Melatonin is primarily secreted by the pineal gland at night. Tryptophan is a precursor for
melatonin biosynthesis. As well as the pineal gland, melatonin can be produced in many other
organs, such as the retina, skin, and bone marrow [2]. Melatonin regulates variable physiological
functions through the activation of two G protein-coupled receptors, melatonin receptor-1 (MT1)
and -2 (MT2) [28]. Additionally, melatonin can interact with the nuclear hormone receptor family
retinoid Z receptor (RZR)/retinoid acid receptor (ROR) for signal transduction [28]. Melatonin has
pleiotropic biological functions that control circadian rhythms, redox homeostasis, inflammation,
epigenetic regulation, and fetal development [4,29–31].

2.6. Placental Melatonin

During human pregnancy, the placenta secretes a plethora of hormones into the maternal
circulation, which modulate the mother’s physiology and transfer the nutrients available to the fetus
for growth [32]. Among these placental hormones, melatonin plays critical roles in driving maternal
physiological adaptations and providing beneficial effects for both the mother and the fetus [33].
Placenta-derived melatonin acts as an autocrine, paracrine, and endocrine hormone in a non-circadian
fashion [34]. In addition to the source of melatonin, the placental villous trophoblasts express
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melatonin receptors [33]. Placenta-derived melatonin not only acts with the MT1 and MT2 receptors
but also directly scavenges free radicals, which reduce oxidative damage to placental tissues [33,34].
Maternal pineal melatonin can pass the placenta and transfer light signals to the fetus [35,36]. Thus,
photoperiodic information perceived by the mother can be transferred to the fetus to synchronize fetal
circadian rhythms via maternal melatonin rhythms [36]. Melatonin receptors are present in many areas
of the human fetal brain [37]. Therefore, maternal and placental melatonin presumably play roles in
the early stage of fetal development. During the neonatal period, the production of melatonin by the
pineal gland is activated after birth, although it lacks the rhythmic secretion of melatonin until nine
weeks of age in humans [28].

2.7. Glucocorticoids in Pregnancy and the Fetus

The SCN stimulates the release of GCs in a light-dependent manner, leading to a rhythmicity
that peaks in the early morning just prior to lights-on and decreases throughout the day in
humans [18]. The circadian GC rhythm is implicated in the coordination of clock function in
central and peripheral tissues [38]. At the molecular level, the circadian clock and GCs relay on
two parallel transcriptional–translational feedback loops that modulate each other [25]. The GC–GR
complex binds glucocorticoid responsive elements (GREs) in the promoter region of several clock
genes and various clock-controlled genes. Conversely, CLOCK/BMAL1 heterodimers that are active
during the night interact physically and acetylate GR, thereby reducing its affinity to GREs and its
translocation into the nucleus. Additionally, CRY1 and CRY2 can interact with the C-terminal domain
of GR in a ligand-dependent fashion, repressing the GR-mediated transactivation of certain target genes.
Furthermore, REV-ERBα, which is active during the day, acts as an inhibitor of BMAL1 expression,
thus stabilizing the nuclear localization of GR, reinforcing its transcriptional activity. Through this
complex network of interactions, GCs and the clock machinery can mutually regulate each other.
Additionally, GCs have been reported to influence melatonin production through the regulation of the
nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) transcriptional program [39].

Excess or deficient GC signaling during developmental windows may disrupt the developmental
trajectory of the fetus, leading to permanent negative consequences [40]. Glucocorticoid receptors (GRs)
are expressed in most fetal tissues and the placenta and are crucial for survival [41]. Although gestational
GC levels show a strong circadian variation, it is not translated to the embryo. Fetal GC concentrations
can be maintained at a stable level due to GC being inactivated by the placental GC barrier [42].
However, in stressful situations, an excessive level of GCs can saturate this barrier and reach fetal
tissues, interfering with the developmental programming of the circadian clock and stress system [43].
As a result, increased DNA methylation in the GR promoter and reduced expression of GR have been
shown in the hippocampus [44]. Such epigenetic modifications have been proposed as a possible
underlying mechanism for altered regulation of the HPA axis.

3. Maternal Chronodisruption and Offspring Health

3.1. Human Studies for Programming of Adult Diseases Related to Maternal Chronodisruption

Epidemiologic studies have revealed an association between gestational chronodisruption and
adverse pregnancy outcomes [45–53]. The disruption of circadian rhythms in pregnant women can
occur through shift work [45–47], jet travel across time zones [51,52], or exposure to light at night [48].
Several observational studies suggest that pregnant night workers might have an increased risk of
miscarriage [48], hypertensive disorders of pregnancy [49], and preterm delivery [50]. Pregnant flight
attendants were shown to have a higher risk of spontaneous abortion and miscarriage when compared
to flight attendants who did not work during their pregnancy [51,52]. A meta-analysis of 62 studies
with 196,989 women showed that working rotating shifts is associated with preterm delivery, an infant
small for gestational age, preeclampsia, and gestational hypertension [53]. Additionally, an association
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between pregnant women working fixed night shifts and increased odds of preterm delivery and
miscarriage was shown [53].

Nevertheless, little is known about whether maternal circadian rhythm disruption impairs
offspring health in adulthood in human studies. A recent study showed that male offspring aged 9 to
16 years born to shift working mothers had higher awakening cortisol (natural GC) levels, followed by a
steeper early decline and a flatter late decline (between 4 and 16 h after awakening) compared with those
born to mothers who did not work night shifts [47]. These findings suggest that maternal rotating night
shift work influences the circadian rhythm of GC secretion in young adult offspring. A case series study
reported that newborns born to night workers had lower Apgar scores and breastfeeding difficulty,
indicating worse outcomes [54]. Another report demonstrated that there is no association between
nightshift work before or during pregnancy and mental health disorders in young adult offspring [55].
Given that only a few human studies are available on this issue and that these observational studies
cannot directly establish a causal relationship between maternal chronodisruption and lifelong health
in the offspring, animal models are of great importance to identify which mechanisms underlying
maternal circadian disruption may influence the programming of offspring phenotypes and lead to the
development of specific preventive interventions.

3.2. Animal Models of Maternal Chronodisruption

Table 1 summarizes various animal models utilized to investigate the relationship between
maternal circadian rhythm disruption and offspring health [56–74]. Of note is that not only constant
light, but also diurnal light deficiency and/or continuous darkness, are disruptive for the circadian
system. Several conditions related to diurnal light deficiency, such as living at high latitudes [75] and
vitamin D deficiency [76], have been linked to chronodisruption. Additionally, serotonin, the precursor
of melatonin, was reported to adjust circadian rhythms through serotonergic afferents [77]. In the
current review, we mainly focused on the commonly used animal models for studying maternal
chronodisruption, and, for the sake of brevity, we have restricted the presented data to constant light,
chronic photoperiod shift, pinealectomy, and glucocorticoid exposure.

The most commonly used animal species include rodents, sheep, and pigs. Light is known
to promote sleep in nocturnal species and alertness in day-active animals. Thus, nocturnal (e.g.,
rodents) and diurnal (e.g., sheep and pigs) animals might differ in their temporal activity patterns
and their circadian systems in response to constant light (or constant dark) exposure. As light
is the principal environmental signal for the circadian system, exposing an animal to continuous
constant light can disrupt the SCN-based clock and produce arrhythmic patterns of running-wheel
activity. Adult offspring exposed to constant light prenatally have been reported to have an increased
risk for developing hypertension [56], altered behaviors [57], and impaired cognition function [58].
These adverse outcomes are related to dysregulated melatonin signaling [57] and hippocampal clock
gene expression [58]. Another approach is chronic photoperiod shift (CPH). Chronic phase shifts
of the photoperiod throughout pregnancy programs adult offspring to display impaired endocrine,
cardiovascular, and metabolic function [59,60]. Additionally, CPH during pregnancy has been
reported to induce behavior changes characterized as hyperactivity and social avoidance in young
adult rats [61]. Furthermore, gestational CPH has been reported to disrupt the peripheral liver
clock [62]. Maternal pinealectomy results in melatonin deficiency in pregnant mothers. This model
can cause negative outcomes in reproductive [63], neuropsychiatric [64], and metabolic function in
adult offspring [65]. Finally, in utero exposure to the synthetic GC analogs dexamethasone (DEX)
or betamethasone has been shown to induce chronodisruption as well as a wide range of adult
diseases. Prenatal DEX exposure was reported to induce arrhythmic glucocorticoid secretion and
an absence of circadian oscillations in hippocampal clock gene expression in adult offspring [66].
Moreover, antenatal GC exposure is related to hypertension [67,73], liver steatosis [69,72], hippocampal
lesions [70], kidney disease [71,73], obesity [72], and an impaired HPA axis [74]. Although SCN
ablation [78], timed food access [79], and genetic manipulation (e.g., CLOCK mutant mice) [80] have
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been employed to disrupt circadian rhythms in pregnant animals, their long-term effects on offspring
have not been studied yet. To sum up, programming effects of maternal chronodisruption have been
reported in rodents ranging from 1 week to 12 months of age, which is roughly equivalent to human
ages from infancy to middle adulthood. However, future studies into the long-term offspring outcomes
of maternal circadian disruption are still urgently warranted. The associations between maternal
chronodisruption and the risks for many adult diseases are illustrated in Figure 2.

Table 1. Commonly used animal models for studying the impacts of maternal chronodisruption on
offspring health.

Model Technique Impacts on Offspring Health

Constant light 24-h constant light exposure
during pregnancy

Induced hypertension in 12-week-old rat offspring [56]
Induced behavior changes and melatonin signaling dysregulation in 90-day-old rat
offspring [57]
Impaired cognition function and altered hippocampal clock gene expression in
90-day-old rat offspring [58]

Chronic photoperiod shift Repeated photoperiod shifts
during pregnancy

Induced hyperinsulinemia and insulin intolerance in 12-month-old female rat
offspring [59]
Altered endocrine, cardiovascular, and metabolic function in 90-day-old rat offspring [60]
Induced behavior changes with hyperactivity and social avoidance in 60-day-old rat
offspring [61]
Disrupted daily rhythms in hepatic clock genes in 3-month-old rat offspring [62]

Pinealectomy Surgical removal of pineal gland
Altered seasonal variations of reproductive hormones in 60-day-old rat offspring [63]
Increased depressive-like responses in adult swine offspring [64]
Induced glucose intolerance in 18-week-old rat offspring [65]

Glucocorticoid exposure Prenatal dexamethasone treatment

Induced depression-like behavior, arrhythmic glucocorticoid secretion, and absent
circadian oscillations in hippocampal clock gene expression in 12-month-old mice
offspring [66]
Altered clock genes in adipose tissue and enhanced obesity, insulin dysregulation, and
hypertension in 6-month-old rat offspring [67]
Induced hypertension in 16-week-old rat offspring [68]
Induced liver steatosis in 7-day-old offspring [69]
Altered hippocampal morphology in 16-week-old rat offspring [70]
Altered transcriptome in 16-week-old offspring kidney [71]

Prenatal betamethasone treatment
Induced obesity and liver steatosis in 10-year-old baboons [72]
Induced hypertension and renal dysfunction in 1.5-year-old sheep [73]
Altered hippocampal expression of HPA-related genes in 3.5-year-old sheep [74]

Studies tabulated according to animal models and techniques. HPA: hypothalamic–pituitary–adrenal.
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3.3. Mechanisms Underlying Maternal Chronodisruption-Induced Programmed Diseases

So far, the common mechanisms involved in the developmental programming of adult chronic
diseases remain undetermined. However, emerging evidence has provided crucial insight into the
pathways involved, including oxidative stress [81,82], inappropriate activation of the renin–angiotensin
system (RAS) [83], epigenetic regulation [84], and glucocorticoid programming [40,85] (Figure 2).
Notably, extensive experimental animal studies have demonstrated interplay between circadian rhythm
disruption and the above-mentioned mechanisms [86–89].

First, the fetus is not sufficient to overcome reactive oxygen species (ROS) overproduction, due to its
low-antioxidant capacity. In response to adverse in utero environments, the development of the fetus is
thus vulnerable to oxidative stress damage [82,90]. Melatonin is not only a hallmark of circadian rhythm
functionality but is also a natural antioxidant [91]. Thus, there is a close inter-relationship between
oxidative stress and chronodisruption via melatonin signaling in a variety of diseases. As we previously
reviewed [81], various early-life insults enable the induction of developmental programming linked to
oxidative stress, such as maternal undernutrition [92], maternal diabetes [93,94], maternal exposure
to ethanol [95], maternal inflammation [96], glucocorticoid exposure [68,97], preeclampsia [98],
prenatal hypoxia [99], and a maternal high methyl-donor diet [100]. Conversely, maternal melatonin
therapy showed a protective role that reverses the programming processes in models of maternal caloric
restriction [92], NG-nitro-L-arginine-methyl ester (L-NAME) induced preeclampsia [98], a maternal
high-fructose diet [101], a maternal high methyl-donor diet [100], and prenatal DEX exposure [70].
Considering the interplay between melatonin and oxidative stress, targeting circadian melatonin
signals to counteract oxidative stress and protect against adult diseases of developmental origin,
deserves further elucidation.

Secondly, RAS is a well-known hormonal cascade that controls kidney development and blood
pressure [102]. In humans, circulating renin, angiotensin (Ang) II, and aldosterone rhythms have an
acrophase in early morning [87]. In nocturnal rat species, the activity of the RAS also has a circadian
rhythm, with a diurnal acrophase [103]. In melatonin-deficient hypertension [104], the classical
angiotensin-converting enzyme (ACE)–Ang II–angiotensin type 1 receptor (AT1R) axis is activated.
In the constant light exposure model, the development of hypertension in adult rat offspring is related
to activation of the RAS [56]. Various adverse conditions in utero have been reported to activate the
classical RAS axis, resulting in renal programming and consequent hypertension in later life [105,106].
Apart from the classical RAS axis, the ACE2–angiotensin (1–7)–Mas receptor axis is also involved
in developmental programming [107], by opposing many actions of Ang II on AT1R. Gestational
melatonin use has been reported to block the activation of the classical RAS cascade and prevent
the development of hypertension in adult offspring in several animal models, including maternal
constant light exposure [56,108] and the prenatal GC exposure model [68]. On the other hand,
maternal melatonin therapy can activate the ACE2–angiotensin (1–7)–MAS axis by the induction of
renal Agtr1b and Mas1 expression to prevent hypertension in adult male offspring programmed by
prenatal GC exposure plus post-weaning from a high-fat diet [109]. Therefore, the results from these
studies suggest that RAS may be an underlying mechanism involved in hypertension programmed by
maternal circadian rhythm disruption.

Third are studies of crosstalk between circadian rhythms and epigenetic regulation [88].
Epigenetic mechanisms such as post-translational modification of histones, DNA methylation,
and RNA interference play key roles in gene regulation [30]. Histone modifications,
including acetylation–deacetylation and methylation–demethylation, are involved in regulating
the expression of transcription factors of Clock genes [88,110]. Interestingly, CLOCK possesses
histone acetyltransferase activity [111]. On the other hand, many epigenetic modification enzymes
are rhythmically expressed [88]. Thus, these observations support the view that the circadian clock
can directly regulate epigenetic modification enzymes and that these enzymes, in turn, contribute
feedback to the circadian clock, contributing to the mutual regulation of oscillators. On the other
hand, the circadian signal melatonin is also involved in epigenetic regulation. In a prenatal GC
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model [70], maternal melatonin therapy restored reelin mRNA expression levels by reducing DNA
methyltransferase 1 (DNMT1) expression. Additionally, melatonin and trichostatin A (a histone
deacetylase [HDAC] inhibitor) have similar beneficial effects on hypertension programmed by GC
exposure [112], suggesting that melatonin acts as a HDAC inhibitor. These observations support the
view that epigenetic regulation may contribute to the development of hypertension programmed by
maternal circadian rhythm disruption.

Last, emerging evidence supports the interplay between glucocorticoid programming and
chronodisruption on developmental programming [85,89]. A developing fetus is prone to exposure
to excessive glucocorticoids through exogenous administration (e.g., preterm birth) or through
excess maternal corticosteroids (e.g., stressed pregnancies). The HPA axis is particularly susceptible
to developmental programming by GCs, impairing a variety of organ systems, such as the
kidneys [68,71,72], liver [69,72], central nervous system [70], and endocrine system [72,74]. As rhythmic
GCs coordinate central and peripheral clocks, prenatal GC exposure-induced obesity and hypertension
are relevant to altered clock genes in peripheral tissues [67]. Conversely, melatonin use in pregnancy
has been reported to protect prenatal GC-induced programming of hypertension [113] and cognition
deficit [70].

4. Targeting on Light and Circadian Signaling Pathway as a Reprogramming Therapy

4.1. Light and Circadian Signaling-Related Therapy in Human Diseases

Light therapy has been evaluated in healthy individuals undergoing shift work, jet travel,
and space flights [8,9]. Although lighting based on light-emitting diodes has the potential to
improve human health [114], its clinical application for specific human diseases still has a long
way to go. Photobiomodulation (PBM) uses low levels of visible or near-infrared light to heal and
stimulate tissue [115]. So far, PBM has been applied to treat several human diseases such as stroke,
Parkinson’s disease, Alzheimer’s disease, traumatic brain injury, and psychiatric disorders [115].
Although there have been some studies relevant to light therapy [116,117] in pregnancy, none of them
have focused on offspring outcomes in adulthood. In the area of complementary and alternative
medicine, several suggested therapies for insomnia might be applied for treating chronodisruption,
despite not yet being recommended as standard therapies [118]. These therapies include herbal
medicine, acupuncture, acupressure, aromatherapy, foot reflexology, music therapy, and yoga.
Four herbal medicines—valerian, chamomile, kava, and wuling—have been examined regarding their
clinical efficiency for insomnia in a meta-analysis study, while there is insufficient evidence to support
the use of herbal medicine for insomnia [119]. So far, whether complementary and alternative medicines
can be applied in maternal chronodisruption to improve offspring outcomes remains largely unknown.

Furthermore, circadian melatonin signaling has been used to treat a variety of human
diseases [11,120–122]. Oral melatonin dosages ranging from 0.3 to 1600 mg daily have been reported to
be relatively safe for humans. [123]. Although emerging evidence from animal models of developmental
programming suggests that melatonin use in pregnancy and lactation has reprogramming effects that
prevent DOHaD-related disorders [31,124], no clinical trials of melatonin in pregnant women have
been conducted to assess its use and safety. Another circadian signal, GC, has been well used in human
diseases. Antenatal GC intake is recommended to accelerate fetal lung maturation. Nevertheless,
prenatal GC intake induces many long-term negative outcomes that greatly influence its therapeutic
potential in DOHaD-related disorders.

4.2. Melatonin as a Reprogramming Therapy in Animal Models

While current medical treatment focuses on high-risk individuals in adulthood, DOHaD concepts
offer a “reprogramming”’ strategy to prevent the development of adult diseases during early life [125].
So far, melatonin seems to be the only reprogramming therapy that is likely to catch the attention
of researchers. The overview of experimental studies in Table 2 illustrates data documenting the
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reprogramming effects of melatonin treatment in the pregnancy and/or lactation period in animal
studies. We only considered studies reporting offspring outcomes starting from childhood in the
present review.

As shown in Table 2, rodents have been the dominant animal species used. Various developmental
programming models have been examined, including maternal caloric restriction [92], L-NAME induced
preeclampsia [98], a maternal high-fructose diet [101], maternal hyperhomocysteinemia [126],
maternal phenytoin exposure [127], a maternal high-fructose diet plus a post-weaning high-salt
diet [128], maternal constant light exposure [56,108], a maternal high methyl-donor diet [100],
prenatal GC exposure [69,112,129,130], and maternal hypermethioninemia [131]. These environmental
insults lead to adverse offspring outcomes including cognition deficits [126], neurobehavioral
dysfunction [106,127], hypertension [56,92,98,100,101,113], and liver steatosis [129,130]. All of these
adverse offspring phenotypes can be prevented, or at least moderated, by maternal melatonin
treatment. It is notable that melatonin has pleiotropic biological functions in pregnancy; these beneficial
reprogramming effects might not be directly attributed to its regulation of the circadian rhythm [35].
Therefore, additional studies are warranted to elucidate the underlying mechanisms of melatonin and
determine appropriate therapeutic windows and ideal doses of melatonin before clinical translation.

Table 2. Reprogramming effects prevented by melatonin.

Animal Models Route of Administration Reprogramming Effects

Maternal caloric restriction Drinking water Prevented hypertension in 12-week-old rat offspring [92]

Maternal L-NAME exposure Drinking water Prevented hypertension in 12-week-old rat offspring [98]

Maternal high-fructose diet Drinking water Prevented hypertension in 12-week-old rat offspring [101]

Maternal hyperhomocysteinemia Subcutaneous injection Prevented cognition deficit in 75-day-old rat offspring [126]

Maternal phenytoin exposure Drinking water Protected neurobehavioral dysfunctions in 12-week-old rat offspring [127]

Maternal constant light exposure Drinking water Prevented hypertension in 12-week-old rat offspring [56]

Drinking water Protected anxiety-like and sexual behaviors in 16-week-old rat offspring [106]

Maternal high methyl-donor diet Drinking water Attenuated hypertension and altered renal transcriptome in 12-week-old rat
offspring [100]

Maternal high-fructose diet plus
post-weaning high-salt diet Drinking water Attenuated hypertension in 12-week-old rat offspring [128]

Prenatal GC exposure
Drinking water Protected hippocampal morphology in 16-week-old rat offspring [70]

Drinking water Prevented hypertension and increased nephron number in 16-week-old rat
offspring [113]

Drinking water Protected liver steatosis in 16-week-old rat offspring [129]

Prenatal GC exposure plus
post-weaning high-fat diet Drinking waterDrinking water Prevented hypertension in 16-week-old rat offspring [109]

Protected liver steatosis in 6-month-old rat offspring [130]

Maternal hypermethioninemia Subcutaneous injection Protected impaired recognition and neurons in 30-day-old rat offspring [131]

L-NAM E = NG-nitro-L-arginine methyl ester. GC = glucocorticoid.

5. Conclusions

This review highlights the importance of considering environmental light and maternal circadian
rhythms during pregnancy. Given the increasing incidence of shift work, jet travel across time zones,
and mistimed eating in our modern society, large numbers of pregnant women are exposed to adverse
environmental conditions. These suboptimal maternal conditions have implications for the developing
fetus. Maternal chronodisruption affects not only central and peripheral circadian clocks but also a range
of endogenous circadian signals including melatonin and GC secretion. Despite most programming
effects and reprogramming approaches being examined in animal models, these observations have
important translational applications, as they open a new avenue for testing the prevention of adult
disease by targeting light and circadian signaling pathways in pregnant women with disrupted
circadian rhythms.
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