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Abstract: The endometrium is an important tissue for pregnancy and plays an important role
in reproduction. In this study, high-throughput transcriptome sequencing was performed in
endometrium samples of Meishan and Yorkshire pigs on days 18 and 32 of pregnancy. Aldo-keto
reductase family 1 member C1 (AKR1C1) was found to be a differentially expressed gene, and
was identified by quantitative real-time PCR (qRT-PCR) and Western blot. Immunohistochemistry
results revealed the cellular localization of the AKR1C1 protein in the endometrium. Luciferase
activity assay demonstrated that the AKR1C1 core promoter region was located in the region
from −706 to −564, containing two nuclear factor erythroid 2-related factor 2 (NRF2) binding sites
(antioxidant response elements, AREs). XLOC-2222497 was identified as a nuclear long non-coding
RNA (lncRNA) highly expressed in the endometrium. XLOC-2222497 overexpression and knockdown
have an effect on the expression of AKR1C1. Endocrinologic measurement showed the difference
in progesterone levels between Meishan and Yorkshire pigs. Progesterone treatment upregulated
AKR1C1 and XLOC-2222497 expression in porcine endometrial epithelial cells. In conclusion,
transcriptome analysis revealed differentially expressed transcripts during the early pregnancy
process. Further experiments demonstrated the interaction of XLOC-2222497/AKR1C1/progesterone
in the endometrium and provided new potential targets for pregnancy maintenance and its control.
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1. Introduction

Pregnancy is a key physiological process affecting reproduction [1]. Successful pregnancy requires
intricate bidirectional regulation between embryo and the matrix [2]. The pig (Sus scrofa) is one of
the most important domesticated animals and is also well-suited as a biomedical model because
of similarities in anatomy and physiology between pigs and humans [3,4]. Days 18 and 32 of pig
pregnancy are the two peaks of embryonic loss [5,6]. Although the two breeds have a similar number of
ovulations, Meishan pigs (MS) have a higher litter size than Yorkshire pigs (YK) due to the high embryo
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survival rate of Meishan pigs [7,8]. Therefore, it is essential to explore the regulation mechanism of
endometrium changes and the genetic difference between the two breeds during the two periods.

Long non-coding RNAs (lncRNAs) are non-protein-coding RNA species longer than 200
nucleotides [9,10]. Many lncRNAs were reported to regulate many biological processes via regulating
the expression of target genes at transcriptional and post-transcriptional levels [11]. Some lncRNAs
can function as signals, decoys, guides, and scaffolding in regulating nuclear activities [12]. Some
lncRNAs have participated in the regulation of the cell cycle [13,14], cell differentiation [15,16], and cell
apoptosis [17–19]. Some lncRNAs have key roles in cancer progression [20,21], and can also serve as
diagnostic or prognostic markers [22,23].

Recent studies have also revealed that several lncRNAs play important roles in reproduction.
The studies found that the meiotic recombination hot spot locus (Mrhl, a type of single-axon lncRNA)
regulated spermatogenesis through two molecular mechanisms [24]. Yerushalmi et al. found 89
lncRNAs, 12 of which are encoded within introns of genes involved in granulosa cell processes [25].
Nakagawa et al. found that NEAT1-knocked-out mice with normal ovulation were stochastically
infertile and NEAT1 is essential for corpus luteum formation and the pregnancy under suboptimal
conditions [26]. Rosalia et al. found that 41 lncRNAs could interact with oocyte microRNAs (miRNAs)
and may regulate folliculogenesis [27]. lncRNA-TCL6 promotes early abortion and inhibits placenta
implantation via the epidermal growth factor receptor (EGFR) pathway [28]. Downregulation of
lncRNA-H19 could inhibit ectopic endometrial cell proliferation and invasion by modulating miR-124-3p
and ITGB3, offering a novel target for treatment of endometriosis [29]. lncRNA AK124742 may be a
biomarker to predict pregnancy [30]. These findings are important in both basic reproductive research
and clinical application.

Several hormones such as estrogen [31], progesterone [32,33], prostaglandin E, and prostaglandin
F [34,35] are involved in the regulation of the pregnancy process. Aldo-keto reductases (AKRs) are part
of the oxidoreductase super family and play an important role in the cellular response to electrophilic,
osmotic, and oxidative stress, depending on the presence of the coenzyme nicotinamide adenine
dinucleotide phosphate (NADPH) [36,37]. The proteins encoded by Akr genes catalyze a variety
of metabolic oxidation–reduction reactions, ranging from the reduction of glucose, glucocorticoids,
and small carbonyl metabolites to glutathione conjugates and phospholipid aldehydes. Substrates
of the family include glucose, steroids, glycosylation end products, lipid peroxidation products,
and environmental pollutants [38]. The aldo-keto reductase type 1C (AKR1C), part of the AKR
superfamily, comprises the isoforms AKR1C1-AKR1C4 that catalyze NADPH-dependent reductions
and have been implicated in biosynthesis, intermediary metabolism, and detoxification [39]. They
serve important roles in the metabolism of steroid hormones, conjugated steroids, neurosteroids, and
bile acids [40,41]. AKR1C genotypes were associated with nipple number as well as possible effects on
age at puberty and ovulation rate in pigs [42]. Aldo-keto reductase family 1 member C1 (AKR1C1),
which possesses 20α-Hydroxysteroid dehydrogenase (20α-HSD) activity, is associated with numerous
important biological processes [38,43], and has crucial roles in the biosynthesis and inactivation of
all classes of steroid hormones, and also in the biosynthesis of neurosteroids and prostaglandins [44].
Knockout of the gene encoding AKR1C1 in the mice resulted in decreasing the number of pups and
prolonging the durations of the estrous cycle, pseudopregnancy, and pregnancy [45].

In this study, high-throughput transcriptome sequencing was performed in endometrium
samples of Meishan and Yorkshire pigs on days 18 and 32 of pregnancy. Differentially expressed
transcripts (including mRNAs and lncRNAs) were identified. Further experiments demonstrated that
XLOC-2222497 regulated AKR1C1 in porcine endometrial epithelial cells, and may play an important
role in the pregnancy process.
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2. Results

2.1. Analysis of lncRNAs and mRNAs in the Endometrium

To identify the long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs), eight cDNA
libraries were constructed for RNA-seq from endometrium samples of Meishan and Yorkshire pigs on
days 18 and 32 of pregnancy. Coding potential calculator (CPC) analysis, coding-non-coding index
(CNCI) analysis, protein families (Pfam) protein domain analysis, and phylogenetic codon substitution
frequency (PhyloCSF) analysis were performed to identify lncRNAs. As shown in Figure 1A, 3071
lncRNAs were identified in the intersection of the data from four analysis methods. Expression levels
of all transcripts were calculated by the HTseq software, and the expression abundance was described
by the reads per kilobase per million reads (RPKM). Several highly expressed lncRNAs with RPKM
>100 were found in the eight libraries; most of these identified lncRNAs were shared among different
libraries (Supplementary Table S1).
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Figure 1. Long non-coding RNA (lncRNA) identification and comparative analysis. (A) Identification of
lncRNAs by coding potential calculator (CPC), protein families (Pfam), phylogenetic codon substitution
frequency (PhyloCSF), and coding-non-coding index (CNCI) softwares. (B) Conservation analysis of
lncRNAs and mRNAs. (C) Distribution of transcript length. Red for lncRNAs and cyan for mRNAs.
(D) Distribution of exon number per transcript. Otherwise, as in C. (E) Fragments per kilobase per
million (FPKM) distribution of lncRNAs and mRNAs. (F) FPKM density distribution of lncRNAs
and mRNAs.
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Conservation analysis between lncRNAs and mRNAs showed the conservation of mRNAs,
especially in exon regions, was higher than that of lncRNAs (Figure 1B). Comparison analysis of
structure indicated that the transcript length and exon number of lncRNA were less than those of
mRNAs (Figure 1C,D). Fragments per kilobase per million reads (FPKM) were calculated to perform
expression compare analysis between lncRNAs and mRNAs. As shown in Figure 1E,F, mRNAs had
higher expression levels than lncRNAs. At the same time, 1535 differentially expressed mRNAs and
278 differentially expressed lncRNAs were identified in the comparison of Yorkshire pigs on days 32 of
pregnancy (YK32) vs. Yorkshire pigs on days 18 of pregnancy (YK18) (Supplementary Table S2 and
Table S3).

2.2. Feature Identification of AKR1C1

AKR1C1 was found to be a differentially expressed gene in the comparisons of YK32 vs. YK18
and Meishan pigs on days 32 of pregnancy (MS32) vs. Meishan pigs on days 18 of pregnancy (MS18).
qRT-PCR and Western blot were used to confirm the expression profile of AKR1C1 (Figure 2A,B).
The results revealed that AKR1C1 had high expression levels in 32–day pregnant endometrium,
especially in YK32 samples. The tissue expression profile of AKR1C1 was also analyzed by qRT-PCR.
As shown in Figure 2C, AKR1C1 had high expression levels in heart, lungs, endometrium, and ovary.
Simultaneously, immunohistochemistry results revealed that AKR1C1 protein was located in the
endometrium epithelium, including lumen epithelium and glandular epithelium (Figure 2D).
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Figure 2. Feature identification of AKR1C1. (A) RNA expression profile of AKR1C1 in the endometrium
from Meishan and Yorkshire pigs on days 18 and 32 of pregnancy by qRT-PCR. ** represents p < 0.01.
(B) Protein expression profile of AKR1C1 in the endometrium from Meishan and Yorkshire pigs
on days 18 and 32 of pregnancy by Western blot. Down diagram: quantification of Western blot
results, ** represents p < 0.01. (C) Expression profile of AKR1C1 by qRT-PCR in different tissues.
(D) Immunohistochemistry result of AKR1C1 in the endometrium.
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2.3. Identification of AKR1C1 Gene Promoter Region

To identify the possible promoter region of AKR1C1 gene, the 1660bp 5’ flanking sequence
fragment of AKR1C1 gene was amplified. Then, a series of deletion reporter plasmids (Q1–Q6) were
constructed (Figure 3A) and transfected into pig kidney (PK) cells and swine testis cells (ST cells) for
24–48 h to analyze the promoter activity (where + 1 was the transcription start site). As shown in
Figure 3A, the luciferase activities of Q5 (−564~ + 100) and basic were extremely significantly lower
than that of Q4 in both PK and ST cells (−706~ + 100) (p < 0.01). This result implied that the AKR1C1
core promoter region was in the fragment from −706 to −564. The luciferase activity of Q3 (−1022~ +

100) was extremely significantly lower than that of Q4 (−706~+100) (p < 0.01), which implied that there
were negative regulatory elements (NRE) in the region from −1022 to −706.
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Figure 3. Identification of AKR1C1 gene promoter region. (A) Luciferase activity assay of AKR1C1
gene promoter. Left: schematic diagram of recombinant plasmids. Right: luciferase activity assay of
recombinant plasmids in pig kidney cells (PK cells) and swine testis cells (ST cells). pGL3-basic plasmid
was used as negative control. pGL3-control plasmid was used as positive control. ** represents p < 0.01.
(B) Transcription factor prediction of AKR1C1 core promoter region. Red means potential binding sites
of transcription factor. (C) Luciferase activity assay of site mutant plasmid. pGL3-basic plasmid was
used as negative control. Q4 plasmid was used as positive control. ** represents p < 0.01.

The transcription factor binding to the AKR1C1 core promoter region was predicted by JASPAR
(http://jaspar.genereg.net/). There were one CCCTC-binding factor (CTCF) binding site and two
antioxidant response elements (AREs) in this region (Figure 3B). Nuclear factor erythroid 2-related
factor 2 (NRF2, which is also known as NFE2) was predicted to bind to the two AREs. In this study,
there were two NRF2 binding sites in the AKR1C1 core promoter region. When ARE 1 and 2 were
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mutated (ARE 1-mut, ARE 2-mut), the luciferase activity decreased extremely significantly in ST cells
(p < 0.01)(Figure 3C). In PK cells, the luciferase activity of ARE 1-mut was also extremely significantly
lower than that of Q4 (p < 0.01). These results demonstrated NRF2 may play an important role in the
transcriptional regulation of AKR1C1.

2.4. Feature Identification of XLOC-2222497

XLOC-2222497 was a differentially expressed lncRNA in our RNA-seq data. qRT-PCR results
confirmed its expression profile (Figure 4A). XLOC-2222497 had high expression levels in 32-day
pregnant endometrium. The expression level of XLOC-2222497 in Meishan pigs was higher than that in
Yorkshire on day 18 of pregnancy. The tissue expression profile revealed that XLOC-2222497 was highly
expressed in the endometrium (Figure 4B). To investigate the subcellular localization of XLOC-2222497,
the fluorescent probes of XLOC-2219602 were transfected into porcine endometrial epithelial cells for
RNA fluorescence in situ hybridization (FISH). As shown in Figure 4D, XLOC-2222497 was mainly
located in the nucleus. Cell-fractionation assay obtained the same result (Figure 4C). To predict
the coding potential of XLOC-2222497, online software CPC (http://cpc.cbi.pku.edu.cn) was used.
As shown in Table 1, XLOC-2222497 had no coding potential.
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Figure 4. Feature identification of XLOC-2222497. (A) RNA expression profile of XLOC-2222497 in
the endometrium from Meishan and Yorkshire pigs on days 18 and 32 of pregnancy by qRT-PCR.
** represents p < 0.01. (B) Expression profile of XLOC-2222497 in different tissues. (C) qRT-PCR results
of XLOC-2222497 cell-fractionation assay. (D) RNA fluorescence in situ hybridization (FISH) results of
XLOC-2222497 for subcellular localization. Red fluorescent probe: XLOC-2222497; blue fluorescent
probe: 4’, 6-diamidino-2-phenylindole (DAPI).

Table 1. The predicted coding potential of XLOC-2222497.

Gene Coding/Non-Coding Coding Score

XLOC-2222497 Non-coding −0.589266
AKR1C1 Coding 6.60874
NEAT1 Non-coding −1.21743

(Coding score <0 means no coding potential; coding score >0 means certain coding potential).
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2.5. The Regulation of XLOC-2222497 on AKR1C1

To identify the function of XLOC-2222497, antisense oligonucleotide (ASO) was used to decline
the expression of XLOC-2222497. As shown in Figure 5A, XLOC-2222497 expression levels were
extremely significantly inhibited after the transfection of ASO1 + 2. ASO1 + 2 combined treatment
was used in a further experiment and inhibited AKR1C1 mRNA (Figure 5B) and protein (Figure 5C)
expression. To further investigate the effect of XLOC-2222497 on AKR1C1, an overexpression plasmid of
XLOC-2222497 was constructed (pcDNA3.1–XLOC-2222497) and transfected into porcine endometrial
epithelial cells. As shown in Figure 5D, the overexpression of XLOC-2222497 significantly promoted
the expression of AKR1C1 at the mRNA level (Figure 5E) and protein level (Figure 5F). These results
demonstrated the positive regulation of XLOC-2222497 on AKR1C1.
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Figure 5. The regulation of XLOC-2222497 on AKR1C1. (A) qRT-PCR results of antisense oligonucleotide
(ASO) knockdown efficiency detection. * represents p < 0.05. ** represents p < 0.01. (B) qRT-PCR results
of AKR1C1 after the transfection of ASOs. ** represents p < 0.01. (C) Western blot results of AKR1C1
after the transfection of ASOs. Down diagram: quantification of Western blot results, ** represents
p < 0.01. (D) qRT-PCR results of AKR1C1 overexpression efficiency detection. ** represents p < 0.01.
(E) qRT-PCR results of AKR1C1 after the transfection of pcDNA3.1–XLOC-2222497. * represents p < 0.05.
(F) Western blot results of AKR1C1 after the transfection of pcDNA3.1–XLOC-2222497. Down diagram:
quantification of Western blot results, ** represents p < 0.01.

2.6. Progesterone Measurement and Regulation on XLOC-2222497 and AKR1C1

AKR1C1 plays a key role in the progesterone metabolism process [40]. Therefore, progesterone
levels were measured in the serum of Meishan and Yorkshire pigs in different early pregnancy stages
(Figure 6A). On days 9, 12, 15, 18 of pregnancy, the level of progesterone in Meishan sows was
significantly higher than that in Yorkshire sows (p < 0.05). After day 18 of gestation, the level of
progesterone in the two breeds tended to be identical. In Meishan pigs, progesterone levels on day
32 of pregnancy were significantly lower than that on day 18 of pregnancy and had an opposite
difference with XLOC-2222497 and AKR1C1. Meanwhile, the porcine endometrial epithelial cells
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were treated with different concentrations of progesterone (P4) for 48 h. As shown in Figure 6B,
100 nmol/L P4 treatment significantly promoted the expression levels of XLOC-2222497. P4 treatment in
porcine endometrial epithelial cells also promoted the expression of AKR1C1 (Figure 6C). The Western
blot results were consistent with qRT-PCR results (Figure 6D). The above results demonstrated the
regulation of progesterone on XLOC-2222497 and AKR1C1.
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3. Discussion

Progesterone, a natural female hormone, is an essential hormone for pregnancy [46,47]. AKR1C1
belongs to the aldo-keto reductase (AKR) superfamily of nicotinamide adenine dinucleotide phosphate
(NADPH)-dependent oxidoreductases [48,49] and has a major role in progesterone metabolism [40,47,50].
Moreover, AKR1C1 can bind to the promoter region of the progesterone receptor and hereby decreases
receptor activity [51]. AKR1C1 is expressed ubiquitously [52,53]. Our qRT-PCR result also confirmed
the ubiquitous expression of AKR1C1. In steroidogenic tissues, AKR1C1 catalyzes the final steps in
progesterone biosynthesis. In peripheral tissues, including steroid hormone target tissues, AKR1C1
converts progesterone to its inactive form of 20-alpha-hydroxy-progesterone and regulates the amount
of hormone that can bind to members of the nuclear receptor superfamily, ultimately regulating gene
expression [50]. Recent studies showed that AKR1C1 could induce signal transducer and activator
of transcription (STAT) activation [54,55], which was involved in pregnancy [56]. In this study, the
expression level of progesterone in the serum of pregnant sows decreased from days 18 to 32 of pregnancy,
and AKR1C1 was highly expressed on day 32 of pregnancy. These results were consistent with previous
studies that AKR1C1 played a critical role in controlling the progesterone concentration [47,57–59].
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To explore the transcriptional regulation of AKR1C1, luciferase activity assay was performed
and demonstrated that the AKR1C1 core promoter region was located in the region from −706 to
−564. In this region, there was one CTCF binding site and two AREs. The site-mutation experiment
showed that ARE was important for the promoter activity of AKR1C1. NRF2 is a redox-regulated
transcription factor that coordinates the basal and inducible expression of a vast array of cytoprotective
and antioxidant genes through binding to ARE [60–62]. Previous studies also confirmed that NRF2
was a regulator of the AKR1C family via direct binding to the ARE located in the promoter regions
of the AKR1Cs [49,63,64]. Wentilactone A (WA) inhibited the expression of AKR1C1 via the insulin
like growth factor 1 receptor (IGF-1R)/ insulin receptor substrate 1 (IRS-1)/ phosphatidylinositol
3-kinase (PI3K)/ protein kinase B (AKT)/NRF2 signaling pathway [43]. Accumulation of p62 inhibits
Keap1-mediated NRF2 protein degradation by competing with NRF2 for the binding site on Kelch-like
enyol-CoA hydratase (ECH)-associated protein 1 (Keap1), a cytosolic repressor protein of NRF2,
resulting in transcriptional upregulation of NRF2 downstream genes [65,66]. NRF2 also contains a
phosphodegron, phosphorylation of which promotes nuclear export and a return to basal antioxidant
signaling. A central regulator of NRF2 in this manner is glycogen synthase kinase 3β (GSK3β) [67].
GSK3β phosphorylates Fyn at the threonine residue. Phosphorylated Fyn accumulates in the nucleus
and phosphorylates NRF2, and brings about the nuclear export of NRF2, resulting in NRF2 rebinding
Keap1 and being rapidly degraded [68,69]. Wang et al. found the expression levels of AKR1C1 and
NRF2 were elevated in progestin-resistant endometrial epithelia. The NRF2/AKR1C1 pathway may
represent a new therapeutic strategy for treatment of endometrial hyperplasia/cancer [70].

Due to the powerful and diverse functions of long non-coding RNAs, a large number of lncRNAs
have been found and identified. However, few studies focus on lncRNAs related to pig pregnancy.
In porcine endometrial tissue, Wang et al. found several differentially expressed lncRNAs that may play
a vital role in the process of implantation using RNA sequencing [71–73]. In this study, a novel lncRNA
XLOC-2222497 was screened by RNA-seq. The online software CPC was used to predict the coding
potential of XLOC-2222497 and showed no coding potential. Cell-fractionation assay and RNA FISH
results demonstrated that XLOC-2222497 was mainly located in the nucleus. Then the XLOC-2222497
overexpression and knockdown results showed the positive regulation of XLOC-2222497 on AKR1C1.
Furthermore, XLOC-2222497 and AKR1C1 were both highly expressed on day 32 of pregnancy, which
was consistent with their positive regulation. lncRNAs can regulate the expression of target genes
via a variety of mechanisms [74]. Because XLOC-2222497 was mainly located in the nucleus, there
were two possible molecular mechanisms underlying the regulation of XLOC-2222497 on AKR1C1: (1)
XLOC-2222497 increased the stability of AKR1C1 mRNA. (2) XLOC-2222497 recruited transcription
factor to the promoter region of the AKR1C1 gene to promote the transcription of AKR1C1. The specific
molecular mechanism needs further studies. In addition, one of the most notable features of lncRNAs
is their tissue specificity as compared to protein coding genes [75,76]. The tissue expression profile
revealed that XLOC-2222497 was highly expressed in the endometrium, which was consistent with
the tissue specificity of lncRNAs. To our knowledge, XLOC-2222497 is the first identified lncRNA
regulating AKR1C1.

Moreover, the expression level of AKR1C1 and XLOC-2222497 in endometrial cells increased
significantly after the treatment of progesterone. This result was consistent with the previous result [77].
The administration of progesterone might activate the NRF2/ARE signal pathway [78]. Ghadiri et al.
found that progesterone at both 16 and 32 mg/kg doses induced expression of NRF2 [79]. Byrne et al.
revealed norgestrel, an FDA-approved synthetic analog of progesterone, inhibited GSK3β and modulated
NRF2 expression at the post-translational level, bringing about its phosphorylation, and subsequent
translocation into the nucleus where it bound antioxidant response elements (AREs), bringing about the
upregulation of various antioxidants, and detoxifying and cytoprotective genes [69,80,81]. Moreover,
cytoplasmic NRF2 expression is significantly correlated with the expression of progesterone receptor
(PR), which suggested a possible functional interaction between NRF2 and PR [51]. Taken together,
it might corroborate a possible feedback regulation mechanism which merits further investigations: the
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high progesterone level leads to the increase of XLOC-2222497 and NRF2 by PR, and thus activates
AKR1C1, metabolizing progesterone to its inactive form and maintaining a mutual balance (Figure 7).
P4-mediated XLOC-2222497 and AKR1C1 expression in the endometrium was conducive to maintaining
the stability of the intrauterine environment. In addition, these effects should be also taken into account
when exogenous progesterone is administered. The above results demonstrated the important roles of
the XLOC-2222497/AKR1C1/progesterone signaling pathway in pregnancy and provided new potential
targets for pregnancy maintenance and its control.
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4. Materials and Methods

4.1. Ethics Statement

In our research, all animal procedures were approved by The Scientific Ethics Committee of
Huazhong Agricultural University, Wuhan, China (ID number: HZAUSW2015-017, permitted at
February 2015).

4.2. Animal Sources and Sample Collection

The experimental populations consisted of four Yorkshire pigs and four Meishan pigs of similar
age with genetic background from one commercial herd. All pigs were raised under the same conditions
and under a standardized feeding regimen with free access to water. Each breed was randomly assigned
to two groups: day 18 (n = 2) and day 32 (n = 2), and was artificially inseminated at the same time.
Uteri were obtained from animals slaughtered on days 18 and 32 of pregnancy. Each uterine horn was
flushed with sterile phosphate buffer saline (PBS) (pH 7.4), and subsequently opened longitudinally on
the inner side. Samples from the endometrium of Meishan pigs and Yorkshire pigs on days 18 and 32
of pregnancy were taken. Tissue samples were frozen in liquid nitrogen and stored at −80 ◦C before
RNA isolation. All animal procedures were approved by The Scientific Ethics Committee of Huazhong
Agricultural University, Wuhan, China (ID number: HZAUSW2015-017, permitted at February 2015).
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4.3. Library Construction and Sequencing

Total RNA was extracted from the endometrium using the TRIzol reagent (Invitrogen,
Life Technologies, CA, USA). The RNA samples were quantitated and subjected to quality inspection.
Total DNA was extracted using the TIANamp Genomic DNA kit (Tiangen, CA, China) according to
the manufacturer’s protocol.

4.4. Identification of Differentially Expressed Genes (DEGs)

First, the expression level of each gene was calculated using the HTseq software (0.6.1) [82], and
was normalized based on the reads per RPKM method [83]. Subsequently, DEGs were identified
using the R packages DEGseq (1.18.0) [84]. The RNA-seq data was deposited in the Gene Expression
Omnibus (accession GSE141564).

4.5. Quantitative Real-Time PCR for Gene Expression

MiRNAs and mRNAs were reverse transcribed using the RevertAid First Strand cDNA Synthesis
Kit (Thermo, Wuhan, China) in accordance with the manufacturer’s instructions. qPCR was performed
using a standard UltraSYBR Mixture (CWBIO, Beijing, China) in the Roche LightCyler 480 system
(Roche, Mannheinm, Germany) according to the manufacturer’s instructions. Porcine β-actin gene was
used as the endogenous control gene for mRNA RT-PCR. The RT-PCR data were analyzed using the
2−∆∆CT method, as previously described [85]. The relative fold changes of mRNA expression were
quantified by normalizing the cycle threshold (CT) value of the experimental gene to the mean CT
value of the control β-actin gene.

4.6. Western Blot

Cells were split by radioimmunoprecipitation assay (RIPA) buffer (Beyotime, Jiangsu, China)
and supplemented with 0.01% of phenylmethanesulfonyl fluoride (PMSF) (Beyotime, Jiangsu, China).
The protein was separated by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, and
then was transferred to a polyvinylidene fluoride (PVDF) membrane (Millipore, Boston, USA). Next, the
protein was incubated with the corresponding primary antibody and secondary antibody. Antibodies
included AKR1C1 (1:1000, ABclonal, Wuhan, China), and β-actin (1:1000, Boster, Wuhan, China).

4.7. Cell Culture and Transfection

Primary endometrial cells were isolated from the uteri of Yorkshire pigs. For in vitro culture of
endometrial cells, PBS (pH = 7.4) was used to wash the external surface of the uteri. When opened
longitudinally, the endometrium was separated from the myometrium by using a sterilized blade.
The endometrium tissues were collected and flushed with PBS (pH = 7.4). Minced tissues mixed
with Dulbecco’s modified eagle medium/Nutrient mixture F-12 (DMEM/F-12) (Hyclone, Logan, USA)
culture medium containing 0.1% collagenase I were placed in a 5% CO2 incubator at 37 ◦C for 2.5 h,
and the mixture was shaken every half hour. The DMEM/F-12 culture medium containing 10% fetal
bovine serum (FBS) (CLARK, Richmond, USA) supplemented with 1% penicillin–streptomycin was
used to terminate the digestion. Afterwards, the mixture was filtered by using the sterilized cell
screen and the solution was transferred to the tube. The precipitates were collected to release the
endometrial cells after twice centrifugation. The porcine endometrium cells were maintained at 37 ◦C
in a humidified atmosphere containing 5% CO2 in Dulbecco’s modified Eagle medium (Hyclone,
Logan, USA) supplemented with 10% fetal bovine serum (FBS) (CLARK, Richmond, USA). Epithelial
and stromal cells were isolated by the differential adhesion method. The purified epithelial cells were
plated and grown until they reached 70–80% confluent. Then, overexpression plasmid and small
interfering RNAs (siRNAs) were transfected using lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA).
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4.8. Immunohistochemistry

Partial samples of the endometrium from Meishan pigs and Yorkshire pigs were fixed in 4%
formaldehyde solution to make a paraffin section. The immunohistochemistry analysis was performed
following the procedures: xylene dewaxing, xylene replaced by gradient alcohol, treatment of
peroxide, antigen repair, serum blocking, anti-AKR1C1 incubation, secondary antibody incubation,
diaminobenzidine (DAB) coloration, hematoxylin staining, 0.5% hydrochloric acid differentiation,
wash with water, gradient alcohol dehydration, xylene transparentization, and mounting. Stained
slices were observed under a 400-fold microscope.

4.9. Endocrinologic Measurement

Progesterone levels of serum from Yorkshire pigs and Meishan pigs on days 9, 12, 15, 18, and
32 of pregnancy were measured by an enzyme linked immunosorbent assay (ELISA) kit (Fusheng,
CA, China) according to the manufacturer’s protocol. The brief steps are described as follows:
standard preparation, sample dilution and incubation, incubation of conjugate reagent, coloration, and
spectrophotometry. There were three Yorkshire pigs and two Meishan pigs in each stage.

5. Conclusions

This study investigated long non-coding RNA regulation in the endometrium of Yorkshire
and Meishan pigs at different days of pregnancy using high-throughput sequencing. We first
identified an AKR1C1-related lncRNA in porcine endometrium. Further experimental results showed
that XLOC-2222497 regulated AKR1C1 in porcine endometrial epithelial cells, thus participating in
the regulation of progesterone metabolism. This study provides valuable information for future
transcriptome studies of porcine endometrium, and the molecular regulation of pregnancy.
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