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Abstract: Bone tissue renewal can be outlined as a complicated mechanism centered on the interaction
between osteogenic and angiogenic events capable of leading to bone formation and tissue renovation.
The achievement or debacle of bone regeneration is focused on the primary role of vascularization
occurrence; in particular, the turning point is the opportunity to vascularize the bulk scaffolds,
in order to deliver enough nutrients, growth factors, minerals and oxygen for tissue restoration.
The optimal scaffolds should ensure the development of vascular networks to warrant a positive
suitable microenvironment for tissue engineering and renewal. Vascular Endothelial Growth Factor
(VEGF), a main player in angiogenesis, is capable of provoking the migration and proliferation of
endothelial cells and indirectly stimulating osteogenesis, through the regulation of the osteogenic
growth factors released and through paracrine signaling. For this reason, we concentrated our
attention on two principal groups involved in the renewal of bone tissue defects: the cells and the
scaffold that should guarantee an effective vascularization process. The application of Mesenchymal
Stem Cells (MSCs), an excellent cell source for tissue restoration, evidences a crucial role in tissue
engineering and bone development strategies. This review aims to provide an overview of the
intimate connection between blood vessels and bone formation that appear during bone regeneration
when MSCs, their secretome—Extracellular Vesicles (EVs) and microRNAs (miRNAs) —and bone
substitutes are used in combination.

Keywords: bone regeneration; angiogenesis; osteogenesis; scaffold; mesenchymal stem cells;
wound healing

1. Introduction

Bone tissue regeneration can be defined as a complex mechanism based on the interaction between
osteogenic and angiogenic processes able to drive bone growth and tissue restoration. Blood vessel
formation is a necessary part of bone formation, skeletal development and the osseointegration process,
playing a key role in growth factor transport to permit cell viability and interaction.

In the past two decades, several scaffolds were developed and tested as biomaterials to repair
bone defects. Although autologous grafts remain the gold standard for bone regeneration, different
artificial scaffolds were fabricated to repair critical-sized bone defects.

The success or failure of bone regeneration is based on the central role of the vascularization
process, in particular the critical point is the possibility to vascularize the bulk scaffolds, in order to
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provide adequate nutrients, growth factors, minerals and oxygen for tissue regeneration and to transfer
waste products from the healing area.

The ideal scaffolds should be designed to be porous, with a large degree of pore interconnectivity
to permit the formation of a vascular network that provides a positive microenvironment for tissue
engineering and regeneration.

Blood vessels exert their function of maintaining cell viability through the perfusion of healing
zone during physiological development or bone regeneration. Vascular Endothelial Growth Factor-A
(VEGF-A), member of the VEGF family, possesses a main role in angiogenesis. VEGF-A is able to
induce the migration and proliferation of endothelial cells and to indirectly stimulate osteogenesis
and angiogenesis, regulating the secretion of osteogenic growth factors through paracrine signaling
(Figure 1).

Angiogenesis

Osteogenesis ‘J

Figure 1. Relevant events regulated by VEGF signal.

Thus, to repair bone tissue defects, we focused our attention on two main categories: the cells and
the scaffold that should permit an efficient vascularization process.

Oral tissue can be considered a valid and alternative source of MSCs that possesses the similar
features of MSCs derived from bone marrow. For the first time, Dominici et al., in 2006, identified the
main features to define a cell population such as MSCs. They wanted to show their capability to adhere
to a plastic substrate, possess a fibroblast-like morphology and the capacity to differentiate in vitro
into different stromal cell lineages; moreover, they wished to show lack of expression of hematopoietic
markers [1]. Using the abovementioned criteria, Gronthos et al. have isolated MSCs from oral tissue
derived from adult patients [2,3]. Orally derived MSCs are easy to obtain, isolate and manipulate.
They exhibited the capability to adhere to a plastic substrate, a fibroblast-like phenotype, and the ability
to differentiate into osteogenic, adipogenic and chondrogenic lineages; furthermore, they displayed
positivity for stemness surface markers and negativity for hematopoietic surface molecules [4,5].

Orally derived MSCs have been widely studied for use with different biocompatible 3D
scaffolds and demonstrated the ability to enhance in vitro and vivo bone formation; in particular,
they demonstrated the capacity to induce an endothelial commitment and the promotion of
angiogenesis [6].

Scaffold material must provide a three-dimensional structure for cells, mechanical stability,
and induce some cellular activity and protein synthesis. In addition, the spatial geometric design
should allow endothelial cell migration and the growth of new vessels [7,8].
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Although many studies are focused on the effect of scaffolds on bone regeneration, few studies have
discussed the capacity of the scaffold to provide efficient vascularization and the molecular mechanisms
that affect the angiogenesis process, which are necessary to start the bone tissue regeneration.

miRNAs were associated with an active role in osteogenic-angiogenic coupling, these molecular
mechanisms that regulate bone angiogenesis are key factors to evaluate and improve the therapeutic
strategies in bone regeneration, tissue engineering, and the treatment of bone-related diseases [9].

This review aims to summarize the deep link between blood vessels and bone formation that
occurs during bone regeneration when MSCs, their derivatives—extracellular vesicles (EVs) and
miRNAs—and bone substitutes are used in combination.

2. Bone Regeneration and Stem Cells

At the end of the eighteenth century, it was discovered that cells were organized in specific and
distinct layers during a specific stage of embryo development. Based on this observation, during
subsequent centuries, many researchers have focused their attention on cell organization at the embryo
stage of gastrulation.

Several scientists have focused their research on the tissues derived from the three different
germinative layers [10]. Many patterning signals can influence the differentiation process into various
organs and tissues. During early embryonic stages, cells are pluripotent and can generate typical cells
of the whole organism; however, in the last stages of embryo development, the pluripotency of these
cells decrease gradually. These findings suggest that pluripotent factors play a pivotal role in embryo
development [11]. As is widely reported in the literature, the development of skeleton and bone tissue
is strictly dependent on various morphogenetic growth factors, hormones and other transcriptional
regulators able to promote the osteogenic phenotype [12,13]. The high regenerative potential and
self-renewing properties of bones underline the main role played by the progenitor cells in bone
formation and repair [14]. Osteoblast, osteoclast and osteocyte progenitors are necessary to maintain
mineral homeostasis, promote renovation, repair and new bone development. Moreover, bone tissue
represents a reservoir of mineral ions and calcium. Angiogenesis, the formation of new blood vessels,
plays a pivotal role in bone development and represents a key contributor to the osteogenesis process.

Bone vasculature plays a crucial role in bone construction, remodeling and homeostasis. New blood
vessel growth is essential during both primary bone development as well as fracture repair in adults.
Both bone repair and bone remodeling implicate the activation and difficult interaction between
angiogenic and osteogenic pathways [15].

Inadequate or inappropriate bone vascularity is related to a decreased bone formation.
This evidence could be explained by angiogenesis events exhibited in healing processes after injuries [16].
In response to injury, pro angiogenic factors such as thrombin, fibrinogen fragments, thymosin-34
and growth factors are released in the wound area to promote angiogenesis. In contrast, after injury,
angiogenesis inhibitors suppress blood vessel growth and increase the formation of fibrous tissue [17].
One of the most important angiogenic growth factor associated to the healing process is the VEGF,
already known as an endothelial cell mitogen, chemotactic agent and inducer of vascular permeability.
In addition, VEGF is involved in epithelization and collagen deposition processes as well [18]. Moreover,
VEGEF plays a decisive role in skeletal development. It has already been reported that VEGF is implicated
in many stages of post-natal bone repair and regeneration, such as intramembranous and endochondral
ossification. Hence, VEGF regulates the number of inflammatory cells and MSCs involved in repair
processes. Therefore, the absence of proper vascularization during bone formation can compromise
bone repair processes. Additionally, tissue repair can be altered by poor blood supply but also by the
improper juxtaposition of fractured bone ends, the presence of soft tissues or necrotic bone between
bone fragments, infections, drugs and systemic disorders. The negative effects of the vascular system
delay bone healing [19]. In recent years, in tissue engineering and regenerative medicine have been
studied as new approaches to skeletal tissue formation. Despite the high regenerative potentiality and
self-renewing ability of bones, complex clinical conditions such as injuries and bone damage require
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the continuous and huge production of new bone. Unfortunately, many mechanical and functional
aspects of bone can decrease during life in relation with age. Recently, in tissue engineering, MSCs have
emerged as an auspicious source of cells able to improve osteo-regeneration and avoid conventional
surgical techniques [20].

3. Stem Cells

Stem cells are unspecialized cells recognized for two characteristics: the ability to differentiate
into various cells lineages like skin cells, bone cells, and blood cells, and self-renewal potentiality.
Stem cells can be characterized for their origin or their differentiation ability. Based on their origin,
stem cells can be divided into embryonic stem cells (ESCs) and non-ESCs. However, based on their
capability to differentiate into distinct cell types, these cells can be defined as totipotent, pluripotent,
multipotent, oligopotent or unipotent [21]. Totipotent stem cells are typically in the first development
stages of zygotes and are the only cells able to divide and differentiate into the cell lineages of the whole
organism [22]. Indeed, embryonic stem cells are originated from the Inner Cell Mass (ICM) of embryo
blastocysts. This pluripotent group generates ordinary cells in germ layers, but not the extra embryonic
structures that exhibit unlimited proliferation capability and pluripotency to differentiate into various
cell types originating from the three germ layers; in order to maintain pluripotency, embryonic stem cells
can proliferate during the self-renewal process, but they necessarily need to remain undifferentiated [23].
MSCs or multipotent stromal cells exhibited extraordinary potential in animal and human models for
the development of novel therapies in regenerative medicine [24,25]. In 2006, the International Society
for Cellular Therapy defined parameters to identify MSCs. These cells must adhere under standard
culture conditions, must express CD105, CD73, and CD90 and lack the expression of CD45, CD34,
CD14 or CD11b. Furthermore, MSCs are characterized by their elevated differentiative capability
into osteogenic, chondrogenic, adipogenic, myogenic and neurogenic-like lineages [26,27]. Lastly,
MSCs possess multiple paracrine functions that regulate consequences in inflammatory or autoimmune
disorders such as muscle-skeletal defects, acute lung injury and osteoarthritis. At the same time,
MSCs are acknowledged as primary growth factor secretors and immunomodulatory promoters [28].
Hence, these cells play a crucial part in tissue renewal, repair and healing; moreover, they represent a
multi-talent cell source for regenerative therapies [29].

4. Oral Mesenchymal Stem Cells

The oral cavity is one of the principal sources of MSCs. These cells are derived from neural crests
and are a transitory group of embryonic pluripotent stem cells that migrate from the lateral margins
of the neural plate toward different tissues. The significance of this reservoir is associated to its easy
obtainability and to the considerable numbers of oral tissues from which stem cells can be isolated
and characterized [30]. Up to the present time, diverse human oral stem cells have been reported in
the literature: human Dental Pulp Stem Cells (hDPSCs), human Exfoliated Deciduous Teeth Stem
Cells (SHED), human Periodontal Ligament Stem Cells (hPDLSCs), human Apical Papilla Stem Cells
(hAPSCs), human Dental Follicle Stem Cells (hDFSCs) and human Gingival Mesenchymal Stem Cells
(hGMSCs) (Figure 2) [31,32]. The last group is characterized by 90% neural crest-derived cells and
10% mesoderm-derived cells [33]. Evaluations among hDPSCs, SHEDs, hPDLSCs and BM-MSCs have
established that hDPSCs, SHEDs and hPDLSCs preserve a greater growth potential with respect to
BM-MSCs [34].
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Figure 2. Schematic view of the orally derived MSCs.

As demonstrated in the literature, hDPSCs, hPDLSCs and BM-MSCs report analogous expression
profiles in common cell surface antigens. Human DPSCs, hPDLSCs and human BM-MSCs lack
the expression of hematopoietic markers such as CD14, CD18, CD24, CD34 and CD45 and they
expressed CD29/integrin beta-1 cell surface receptor, CD44, CD90, CD73, CD105 and CD150 cell surface
glycoproteins, CD59 glycoprotein and CD166 transmembrane glycoprotein [35].

Furthermore, in our previous work, we reported that the degree of cell proliferation at the passage
2 (P2) and P15 persist unchanged among hPDLSCs, hDPSCs, and hGMSCs. These data indicate that
dental MSCs are very proliferative even at P15. In more detail, hPDLSCs, hDPSCs, and hGMSCs did
not evidence any difference in the cell proliferation rate at both P2 and P15 passage [36,37].

5. Bone Regeneration

After bone injuries or fractures, different types of cells and molecules cooperate in order to
generate new bone. These events are usually regulated by systemic and local factors that stimulate
bone repair. Hence, bone is a tissue with the ability to heal and regenerate itself [38]. Consequently,
after a bone fracture, a great number of vessels arrive into the specific damaged site to generate
hematomata surrounding the bone defect and allow the secretion of different cytokines involved in the
inflammation event. In the neighboring area of the hematoma, VEGF is highly present; this protein
promotes the formation of new vessels from surrounding vessels and it also induces the development
of an external and internal callus constituted by intermedia cartilage. Soft callus generated in this phase
is rapidly replaced by hard callus. This transition starts when intermedia cartilage mineralizes and is
progressively replaced by lamellar bone. In the last phase of bone regeneration, the primary lamellar
bone is remodeled into secondary bone and restores the regular number of vessels [39]. The great
regenerative potential and self-renewing capability of bones is often altered, due to pathologies or the
age of patients. For this reason, new bone regenerative treatments are widely required. The purpose of
tissue engineering is to overcome these limits and accelerate bone regeneration events. As described,
the use of autogenous bone in tissues repair is constantly recommended. Autografts, tissue transplanted
from one part of the body to another in the same individual, exhibit osteogenic, osteoconductive and
osteoinductive properties and guarantee the absence of transmission diseases. However autologous
bones display restricted accessibility, an uncertain quality that can lead to infections and may require
additional costs. Inevitably, bone tissue engineering has become one of the most promising branches
in regenerative medicine with the aim of overcoming the limits defined by autologous bones. Tissue
engineering in bone regeneration often takes advantage of scaffolds and MSCs. Several researchers
have developed scaffolds able to reproduce the physical and mechanical nature of autologous tissue
and to promote osteoconduction in bone regeneration. Different materials have been already proposed
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in scaffolds [40]. The principal goal is to reduce cost and hospitalization time in patients that require
bone regeneration treatments [41].

6. Angiogenesis in Wound Healing

Wound healing is characterized by four phases: hemostasis, inflammatory, proliferative and
maturation. In the hemostasis phase, platelets and coagulation factors induce clot and decrease blood
loss; in the inflammation event, many inflammatory cells eliminate pathogens and secrete cytokines
in the wound area; in the proliferation process, in which the extracellular matrix is reconstructed,
the granulation tissues are generated and collagen fiber deposition begins; in the last so-called
maturation phase, type III collagen is replaced with type I collagen and the maturation of scar
tissue is completed [42]. In fact, after injuries, vasodilation begins with the development of edema
and hematoma.

In spite of the prompt augmentation of blood flow to the injured extremity, a phase of necrosis
and hypoxia follows, which is a normal part of healing. The necrosis results from mechanical damage
to tissue in the peri-fracture region, as well as the loss of nutritional support from the injury to the
neighboring blood vessels [43].

Therefore, endothelial cells, angiogenic cytokines, such as Fibroblast Growth Factor (FGF),
VEGE, Transforming Growth Factor-Beta (TGF-3) and mast cell tryptase cooperate in a dynamic
communication in order to promote new blood vessel formation and injury repair [44]. VEGF-A is
the pro-angiogenic factor mostly involved in the healing process. It is remarkable that VEGF-A can
increase vascular permeability and contribute to edema formation. In FGF-2, a growth factor member
of the FGF family, cardiac ankyrin repeats protein and other factors collaborate with VEGF to promote
angiogenesis [45]. The novel production of capillary vessels during repair events is also related to
the organization of the extracellular matrix in granulation tissue and in the endothelial basement
membrane [46].

As mentioned previously, angiogenesis is recognized as a primary practice in the regeneration
and restoration of distinct tissues. The growth of novel blood vessels appears to be fundamental to
produce an efficacious cell transplantation amount loaded on numerous scaffolds. Scaffolds are natural
or artificial substances that are deliberated as one of the resources for delivering, aligning and keeping
cell correlation in support of angiogenesis. Furthermore, the possible function of different scaffold
types in vascularization, the application of some approaches such as genetic manipulation, and the
conjugation of pro-angiogenic elements could increase angiogenesis prospectively [47].

Recently, bone tissue engineering studies have suggested the using of three-dimensional models
in order to promote good and fast healing. Biocompatible materials that support bone growth and
development promote the formation of a new vascular network and recruit cells without starting
inflammatory events to compose these structures. Different materials with osteoinductive properties
are commonly used in the scaffolds, such as calcium phosphates, 3-Tricalcium Phosphate (3-TCP),
Hydroxyapatite (HA), Polycaprolactone (PCL), Polyglycolic Acid (PGA), Poly-Lactide Acid (PLA),
Polylactic Co-Glycolic Acid (PLGA), and bioglass. In addition, biocompatible scaffolds need an
appropriate fiber size, porosity and matrix stiffness [48,49]. Scaffolds are often used in combination
with stem cells. As mentioned earlier, MSCs represent a virtuous cell source for tissue engineering
due to their self-renewal capacity and multi-differentiation potential. Some advantages of their
use are: good regeneration ability of damaged tissues, no formation of fibrous structures and low
risk of autoimmune rejection due to MSCs immunoregulatory capacity [50]. Dental pulp cells
isolated from different oral tissue, such as exfoliated temporal teeth, apical papilla and periodontal
ligaments, are frequently employed due to their simple isolation and their capacity to differentiate into
cementoblasts and osteoblasts [51]. Human PDLSCs, for example, can differentiate into osteogenic,
adipogenic, chondrogenic, and neurogenic cell lineages in vitro. At the same time hPDLSCs can
improve bone repair when used in combination with scaffolds, thanks to their high-expansion capability.
The immunomodulatory activity of hPDLSCs can be mediated by EVs, paracrine signals containing
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cytokines, proteins, lipids, and nucleic acids, such as mRNA and microRNAs; furthermore, EVs can
regulate osteoblastic differentiation [52]. Human GMSCs are able to differentiate into osteogenic cells.
Moreover, this group (hGMSCs) is often associated with biocompatible biomaterials. Furthermore,
hGMSCs can release cytokines and growth factors involved in immunomodulatory processes [53].

7. Angiogenesis in Bone Regeneration

During the bone regeneration process, different cell lineages interact with each other in order
to promote tissue healing. In novel bone development, osteogenic and angiogenic processes are
closely connected. The blood vessels of bone tissue can transport minerals and growth factors and,
at the same time, represent the physical structures around which bone deposition start. It is largely
reported that vascularization plays a crucial part in bone defect repair. Blood vessels, as well as
representing indispensable supplement sources, also release paracrine signals that modulate the growth,
differentiation and regeneration of different cell types, such as bone cells. The capability of blood vessels
to induce VEGF expression, which promotes migration and proliferation of endothelial cells [54] is also
notable. As largely reported in the literature, in many animal models, VEGF protein enhanced bone
regeneration such as femoral fractures in mice, radius segmental defects in rabbits, and bone-drilling
defects in rats [55]. VEGF-A (VEGF), VEGF-B, VEGF-C, VEGF-D, VEGF-E and Placental Growth
Factor (PIGF) are included in a big family of homodimeric proteins. The plentiful form in the
organism is VEGF-A. Its role is to promote proliferation, migration and activation of endothelial cells,
stimulate osteogenesis by osteogenic growth factors and, at the same time, improve vessel permeability.
Contrarily, VEGF-B is involved in embryonic angiogenesis, VEGF-C and -D in lymphangiogenesis and
PIGF is widely produced during pathological angiogenesis [19]. Osteogenesis is strictly connected to
angiogenesis and together contributes to physiological bone function. The physiological impairment
of bone healing can be caused by alterations in vascular growth. Moreover, VEGF overexpression may
cause bone resorption due to excessive osteoclast presence [56].

8. MiRNAs Involved in the Angiogenesis and Osteogenesis

MiRNAs exemplify a group of small, 18- to 28-nucleotide-long, noncoding RNA molecules.
To date, 940 members of the family have been recognized in humans. Their main function is in
the posttranscriptional regulation of protein expression, and their participation was established in
normal and in pathological cellular events. MiRNAs can be defined as “multivalent,” with one miRNA
capable of targeting multiple genes, consequently regulating the expression of numerous proteins.
Earlier works have recommended that miRNAs may conduct essential roles in cardiovascular and
neural formation, stem cell differentiation, apoptosis, and tumor miRNA, presenting entirely novel
opportunities for increasing stem cell treatment [57].

Stem cells exert definite miRNA expression profiles, which regulate stem cell destiny [58].
The regeneration of osteogenic cells evidences huge medical research importance. Considerable
advancements have been made in generating osteogenic cells from adult stem cells. MiRNAs
control osteogenic differentiation through targeting significant transcriptional factors and relative
pathways during skeletal formation. The ERK-dependent pathway exhibits a crucial part in osteoblast
differentiation. It might stimulate the phosphorylation of Runt-Related Transcription Factor 2 (RUNX2),
promote Osterix expression, and increase the action of alkaline phosphatase (ALP) [59,60]. The Focal
Adhesion Kinase (FAK) is connected with the stimulation of ERK1/2 through extracellular matrix
proteins. MiR-138 represses the differentiation of human MSCs into osteoblasts by directly targeting
FAK and downstream signaling [61]. MiR-23b promotes the chondrogenic differentiation of hMSCs by
putting down Protein Kinase A (PKA) signaling [62].

The latest works have established that several miRNAs exploit principal regulators of bone forming
genes, incorporating transcription factors and signaling pathway molecules that are necessary during the
osteoblastogenesis. In particular, Bone Morphogenic Protein 2 (BMP2) and RUNX2 exert a chief role in
bone development and, moreover, they are indispensable for osteoblast differentiation. Current studies
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stated the significance of the role played by miRNAs in osteoblast differentiation as regulatory factors,
and how miRNAs show a fundamental role in bone gene expression during osteoblastogenesis. As
reported in the literature, miR-2861 evidences a positive regulatory role in osteoblast differentiation
by blocking Homeobox A2 (Hoxa2) and Histone Deacetylase 5 (HDAC), preserving high levels of
RUNX2 mRNA and protein. Furthermore, based on the literature, some miRNAs have been established
to act as negative regulators of osteoblast differentiation, such as miR-26a and miR-125b [63,64].
Conversely, miR-29b induces osteogenesis through downregulating numerous inhibitors of osteoblast
differentiation [65]; additionally, miR-210 encouragingly controls osteogenesis by inhibiting the
TGF-fB/activin signaling pathway. Lately, the miRNAs (miR-3960 and miR-2861) that represents
an autoregulatory loop in osteoblast differentiation have been described [66]. As reported in the
literature, several studies indicated that miR-3960 and miR-2861 target Hoxa2 and HDAC:s, respectively,
indirectly increasing the expression of RUNX2 and promoting osteoblast differentiation. RUNX2
binds to the promoter and activates the transcription of the miR-3960/miR-2861 cluster. Moreover, the
silencing of miR-2861 expression resulted in a loss of bone density in mice, supporting the positive
regulatory role of miR-2861 in bone formation. MiR-2861 exhibits an optimistic role in regulating
osteoblast differentiation and indirectly augments the expression of RUNX2 [67]. In addition, as largely
described in the literature, miRNAs are also implicated in stem-cell functions, such as differentiation,
by controlling the post-transcriptional process and exhibiting a central role in transduction angiogenic
signals. Actually, vascularization is an essential event during osteogenesis and bone regeneration,
emphasizing the important role of VEGF during bone repair (Table 1).

Hence, synchronized coupling between osteogenesis and angiogenesis is important and prolonged.
The precise interplay of these two primary events is vital during times of rapid bone growth or fracture
restoration in adults. Further to VEGF, the new outcomes of the significant regulatory and transforming
functions of microRNAs also encourage this crucial mechanism [9].

New studies reveal that miR-210 plays a critical role in cell survival and angiogenesis [68].
Our earlier in vitro studies established the upregulation of miR-2861 and miR-210 in hGMSCs/EVs and
a further increase in both miRNA was found in 3D-PLA/hGMSCs/EVs (Figure 3).

Table 1. MicroRNAs role in the osteogenesis and angiogenesis.

MiRNAs Role Reference

Induction of osteoblast differentiation by blocking Hoxa2 and

miR-2861 HDACS preserving high levels of RUNX2 mRNA and protein. [67]
miR-23b Promotion of chondrogenic dlffergntlat}on of hMSCs by putting [62]
down PKA signaling.
miR-138 Repression the differentiation of hMSCs into osteoblasts by [61]
directly targeting FAK and downstream signaling.
miR-3960 Autoregulatory loop in osteoblast differentiation. [66]
miR-29b Induction of osteogenesis through down Fegulatmg inhibitors of [65]
osteoblast differentiation.
mir-210 Role in cell survival and angiogenesis. [69]
miR-260 Negative regulators of osteoblast differentiation. [63]

miR-125b
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Figure 3. RUNX2 and VEGF expression. RT-PCR showed the different mRNA expression in
hGMSCs/3D-PLA, hGMSCs/EVs and hGMSCs/3D-PLA/EVs. Western blot analysis of protein expression:
RUNX2, VEGFA, OPN and COL1A1. * p < 0.05. Original figure published in: Pizzicannella J. et al [53].

It is already recognized that EVs derived from MSCs contain miR-210 and that this evidences a
pro-angiogenic outcome. In the same study, the upregulation of miR-2861 and miR-210 was related to
augmented VEGF and RUNX2 expression and osteogenic differentiation. These results previously
showed that EVs, due to their miRNA content, evidence a chief role in the osteoangiogenic event.
Likewise, during bone formation, miR-2861 evidence a positive regulatory role, targeting Hoxa2 and
HDAC:sS, respectively, and indirectly favoring an increase in RUNX2 [53,69].

9. Extracellular Vesicles (EVs)

EVs have been recognized as one of the intercellular communication mechanisms. EVs are lipid
membrane vesicles released by cells with a strategic role that includes paracrine or autocrine biological
effects in tissue metabolism [70]. They are present in biological fluids and contain several different
active biomolecules, such as proteins, nucleic acids and metabolites. They could represent an important
tool for cell-free therapy in regenerative medicine, promoting different cell and tissue activities, such as
cell proliferation and viability, angiogenesis and immune responses [71]. EVs derived from MSCs
showed paracrine effects without the direct use of living cells in order to avoid ethical concerns and
the limitations in administering living cells. The main advantages in the use of EVs regard their
safety and manipulation [30]. The functions of EVs in bone metabolism and bone regeneration have
been widely reported in the recent literature [72]. Recently, several biomaterials used in the repair
of bone defects were loaded with EVs to ameliorate the reparative process, giving promising results.
Our previous studies suggested that biomaterials enriched with human oral mesenchymal stem cells
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(hOMSCs) and EVs are capable of inducing bone regeneration. In particular, EVs functionalized with
polyethylenimine, to ameliorate their interaction with cells, improved the mineralization process and
induced an extensive vascular network, which is necessary to start an osseointegration event [48,73].

10. Conclusions

In the present review, we take into consideration recent studies exploring the key role of
angiogenesis and its regulation during the early steps of the osteogenic process. Although many
studies indicated that EVs are capable of inducing osteogenesis and angiogenesis, the specific molecular
mechanism remains elusive. Finally, a better understanding of the EVs role is necessary to define the
real regulation of angiogenesis before starting osteogenic induction.
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Abbreviations

VEGF Vascular Endothelial Growth Factor
MSCs Mesenchymal Stem Cells

OMSCs Oral Mesenchymal Stem Cells

EVs Extracellular Vesicles

ICM Inner Cell Mass

BM-MSCs Bone Marrow Mesenchymal Stem Cells
AD-MSCs Adipose Tissue Mesenchymal Stem Cells
UCB-MSCs Umbilical Cord Blood Mesenchymal Stem Cells
PMSCs Placenta Mesenchymal Stem Cells
hDPSCs human Dental Pulp Stem Cells

SHED human Exfoliated Deciduous Teeth Stem Cells
hPDLSCs human Periodontal Ligament Stem Cells
hAPSCs human Apical Papilla Stem Cells
hDFSCs human Dental Follicle Stem Cells
hGMSCs human Gingival Mesenchymal Stem Cells
P2/P15 passage2/passagel5

FGF Fibroblast Growth Factor

TGEF-p Transforming Growth Factor Beta

B-TCP B-Tricalcium Phosphate

HA Hydroxyapatite

PCL Polycaprolactone

PGA Polyglycolic Acid

PLA Poly-(Lactide)

PLGA Polylactic Co-Glycolic Acid

PIGF Placental Growth Factor

MiRNA Micro RNA

RUNX2 Runt-Related Transcription Factor 2
PKA Protein Kinase A

FAK Focal Adhesion Kinase

BMP2 Bone Morphogenic Protein 2

HDAC Histone Deacetylase

Hoxa2 Homeobox A2
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