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Abstract: Placental homeostasis is directly linked to fetal well-being and normal fetal growth.
Placentas are sensitive to various environmental stressors, including hypoxia, endoplasmic reticulum
stress, and oxidative stress. Once placental homeostasis is disrupted, the placenta may rebel against
the mother and fetus. Autophagy is an evolutionally conservative mechanism for the maintenance of
cellular and organic homeostasis. Evidence suggests that autophagy plays a crucial role throughout
pregnancy, including fertilization, placentation, and delivery in human and mouse models. This study
reviews the available literature discussing the role of autophagy in preeclampsia.
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1. Introduction

Preeclampsia, a major cause of maternal and perinatal morbidity and mortality, is diagnosed in
women with hypertension. It occurs after 20 weeks of gestation and is accompanied by the failure of
organs such as kidney, liver, or placenta [1]. Failure in the placental functions results in fetal growth
restrictions which is included in the definition of preeclampsia. Thus, placenta, one of the major
organs that develops after conception, is of equal importance to maternal and fetal health during
gestation and is considered one of the maternal organs for this period. Preeclampsia is known as “the
disease of theories”, and it can be induced by a number of conditions including hypoxia, systematic
inflammation, immunological dysregulation, placental dysfunction, or increasing antiangiogenic
factors in the maternal circulation, especially soluble fms-like tyrosine kinase-1 and soluble endoglin,
which are mainly produced by the placenta in both rodents and humans [2,3]. Neutralization of
these factors could relieve symptoms of preeclampsia in women [4], and aspirin has been shown to
reduce the incidence rate of preterm preeclampsia, but not term preeclampsia [5]. The differences in
response to aspirin treatment suggest that the etiology of preeclampsia could differ depending on the
stage of the pregnancy when it is induced. The most recognized hypothesis regarding the etiology of
preeclampsia is the “two stage model” which comprises poor placentation in stage one followed by
systemic endothelial dysfunction in stage two. This model explains the differences in pathophysiology
for preterm and full-term preeclampsia [6,7]. In addition, growing evidence suggests that it may be
possible to predict preeclampsia before 16 weeks of gestation using maternal characteristics including
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nulliparity, high maternal age, past history of preeclampsia, antiphospholipid antibody syndrome,
chronic hypertension, pre-gestational diabetes, the use of assisted reproductive technology, high body
mass index or prior placental disruption [8]. There are also various biophysical and biochemical
markers including the pulsatility index of the uterine artery, mean arterial pressure, and placental
growth factor expression (PlGF) amongst others [9].

We have focused on autophagy as a new cellular mechanism to maintain placental homeostasis [7,10,11].
Cellular homeostasis is maintained by balancing protein synthesis and degradation. Synthesized
proteins must be eventually degraded in cells, otherwise excessive aggregated proteins lead to cellular
malfunction, a process that can be prevented by autophagy via promoting protein degradation. Protein
degradation is facilitated by two pathways: the autophagy-lysosomal system, which mainly targets
long-lived proteins, and the ubiquitin-proteasome system, which targets short-lived proteins [12–14].
Failures in the autophagy pathways contribute to the development of several human diseases,
including neurodegenerative disorders. In this case, misfolded proteins that are not degraded by
autophagy accumulate in the central nervous system, inducing neurodegenerative diseases [15].
On the other hand, this process is a vital component in energy production under starvation conditions.
Macroautophagy, a non-selective degradation process, is the main physiological process by which
autophagosomes, a unique structure of autophagy, deliver their internal contents to the lysosomes
to facilitate degradation [16]. By contrast, selective autophagy, including mitophagy (targeting the
mitochondria), ER-phagy (endoplasmic reticulum), aggrephagy (protein aggregates), and xenophagy
(pathogens), is vital to fundamental cellular regulation. Changes in these pathways may result in
cellular stress, immunological response, or tumorigenesis [17]. This review summarizes the role of
autophagy in placental homeostasis in the prevention of preeclampsia, a multifactorial disease, from
multiple viewpoints. The term “autophagy” refers to “macroautophagy” throughout this manuscript
unless otherwise stipulated.

2. Autophagy in Preeclampsia

Autophagy is activated by various stimuli, including starvation, hypoxia, infection, and endoplasmic
reticulum (ER) or oxidative stress. An isolation membrane generated from the ER-mitochondrial
contact site engulfs some organelles, forming a double membrane structure called an autophagosome,
and degrades the inner membrane of this construct using autolysosomes, which are a complex
of autophagosomes fused with lysosomes [18]. Autophagy is activated during early pregnancy
placentation. This was confirmed by studies that demonstrated an increase in microtubule-associated
protein 1 light chain 3 beta (MAP1LC3B) dots in the cytoplasm of human extravillous trophoblasts
(EVTs), which invade the decidua basalis [19]. Hypoxia, which is a known physiological stress during
early pregnancy, induces autophagy activation in primary trophoblast cells in vitro [19,20]. Autophagy
was more active in term placentas obtained from cesarean section than in those collected following
vaginal delivery [21], irrespective of the mode of labor induction [22]. However, placental autophagy
in preeclampsia and gestational diabetes mellitus remains controversial [19,23–26].

Invasion and vascular remodeling of EVTs is necessary for normal placentation. Impairment of
these functions leads to poor placentation during stage one of the “two stage preeclampsia model” [7].
Autophagy is required to reduce galectin-4 expression for normal placental development and the
differentiation of invasive trophoblasts in a normal pregnant rat [27,28]. In humans, the activation
of autophagy was observed in EVTs, which invaded deeply into decidua [19]. To estimate the
correlation between autophagy and EVT functions in humans, autophagy-deficient human EVT cell
lines—HTR8-autophagy-related (Atg)4BC74A and HchEpC1b-Atg4BC74A cells, generated by stably
expressing Atg4BC74A—were constructed. An inactive mutant of Atg4B inhibits autophagic degradation
by blocking the lipidation of MAP1LC3B paralogs [29]. Using these cell lines, autophagy deficiency
was shown to contribute to the inhibition of invasion and impairment of vascular remodeling under
hypoxic conditions in vitro [19], indicating that autophagy sustains EVT functions under hypoxia.
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Hypoxia inducible factor1α (HIF1α) is known to be essential for EVT invasion [30]. It is stabilized
during hypoxia by inhibiting proteasome-mediated degradation. On the other hand, chaperone-mediated
autophagy is also involved in HIF1α degradation in the liver during nutrient deprivation [31,32].
Regarding the role of autophagy in trophoblasts under hypoxia, the invasiveness of autophagy-deficient
cells was significantly lower when hyper-expressing HIF1α, as demonstrated by the reduction in adenosine
triphosphate (ATP) production in these cells [33]. ATP levels were also significantly decreased in severe
preeclamptic placentas when compared to normal placentas [34]. Autophagy suppression was observed
in the syncytiotrophoblast layer, which contributes to nutritional and oxygenic exchange between
mothers and fetuses in preeclamptic placentas [35]. These results suggested that the impairment of
autophagy, including mitophagy, contribute to ATP reduction in placentas under hypoxic stress. As for
HIF1α as the treatment target of preeclampsia, hyper-expression of HIF1α by hypoxia/reoxygenation
was shown to be reduced by melatonin, which protected the syncytiotrophoblasts by restoring
autophagy [36]. Excessive autophagy activation by oxidative stress inhibited EVT invasion in HTR8
cells [37], but apoptosis induced by oxidative stress was rescued following treatment with resveratrol,
an activator of autophagy in HTR8 cells [38]. Taken together, the adequate regulation of autophagy via
HIF1α modulation might be able to restore trophoblasts’ functions during placentation.

That being said, there is some conflicting data on this subject. Autophagy activation was confirmed
by Western blot when researchers observed increases in MAP1LC3-II and decreases in sequestosome
1/p62 (p62) expression in placentas from patients with hypertensive disorder [23], and the presence of
autophagic vacuoles in the syncytial layer of preeclamptic placentas [26]. In the case of autophagy
activation, ceramide overload, which induces excessive autophagy, might be involved in placental
dysfunction in preeclampsia in concert with oxidative stress [39]. In addition, Atg4B overexpression
may activate autophagy via the downregulation of microRNA let-7i in preeclamptic placentas [40].
To evaluate the role of autophagy in the pathophysiology of preeclampsia, it would be useful to identify
ways to quantify autophagy or to validate the use of specific biological markers that represent specific
autophagy responses.

Further analysis was performed using two independent placenta-specific autophagy inhibition
mouse models. One was a syncytiotrophoblasts layer-specific Atg7-deficient mouse model, and the
other Atg7- was deleted in all the layers of the placenta using a lentivirus system [41,42]. Atg7 mediates
autophagy activation via two conjugations of Atg12 to Atg5, and Atg8 to phosphatidylethanolamine
like E1-like protein in the ubiquitin-proteasome system [43]. MAP1LC3 proteins, a major marker
of autophagy, were repressed in the labyrinth layer when compared to the decidua basalis [22], but
no difference was observed in the Atg7 expression levels among the layers in the normal murine
placentas [41]. In the Atg7 knockout placenta, the area of the spongiotrophoblast layer, but not
the labyrinth layer, was smaller than that of the control placenta, indicating that differentiation
and growth of the spongiotrophoblast layer is more sensitive to autophagy deficiency. In the case
of the placenta-specific autophagy deficiency models, the syncytiotrophoblasts layer-specific Atg7
deficient mouse showed “fetal” growth restriction. This suggests that autophagy suppression in the
syncytiotrophoblasts, which mediate nutritional exchange, affects fetal growth. The mouse with Atg7
deficiency in all layers showed “placental” growth restriction, accompanied with impaired invasion
and vascular remodeling of invasive trophoblasts. Autophagy suppression in spongiotrophoblasts
or parietal trophoblast giant cells, in which apoptotic cells were increased following Atg7 deletion,
might affect placental growth. The depletion of Atg7 elicits p53-dependent apoptosis as a result of
the DNA damage caused by nutritional restriction [44]. Thus, autophagy-related cell death may be
involved in the fetal and/or placental growth restrictions exhibited by patients with preeclampsia.
Kojima et al. estimated that Atg9a, which is involved in autophagosome formation in multiple
human organs, in the heterozygous p57Kip2 mice (preeclampsia model mice) developed hypertension
and proteinuria in dams [45]. The hetero- or homozygous deletion of Atg9a in pups increased the
incidence of fetal death, compared to that of the wild type [46]. In addition, the body weights of Atg9a
homozygous-deleted pups were significantly lower than those of Atg9a heterozygous-deleted or wild
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type pups. Taken together, these data suggest that autophagy plays a protective role in preventing the
development of preeclampsia. There are many preeclampsia-like mouse models associated with the
renin-angiotensin system, ephrin B2, or storkhead box 1 [47–51], but the role of autophagy in these
models is entirely unknown. For instance, the overexpression of storkhead box 1, a preeclampsia-related
gene, was associated with the hyperactivation of mitochondria, resulting in increased free radicals
in the placenta [47]. In response to this change, mitophagy, a selective autophagy of mitochondria
to maintain mitochondrial homeostasis, may reduce the production of free radicals in trophoblasts.
Using these models, novel functions of autophagy might be discovered in preeclamptic placentas.

Recently, Yin Yang 1, a transcription factor for the cytoskeleton-related proteins whose mRNA
level was shown to be lower in recurrent spontaneous abortion patients, has been identified as a
regulator of autophagy in trophoblasts [52,53]. In addition, Fetuin-A, an endogenous inhibitor of the
insulin receptor, which increases in women with gestational diabetes mellitus, inhibits autophagy via
repression of beclin1 (BECN1) [54]. Peptidome analysis revealed that BECN1 is decreased in amniotic
fluid from women with preeclampsia [55]. These pregnancy-associated autophagy regulators could
explain autophagy inhibition of preeclampsia.

3. Lysosomal Dysregulation in Preeclampsia

Several neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease (AD), and
Huntington’s disease, are caused by the deposition of aggregated proteins in the central nervous system.
Some of these aggregates are mediated by autophagy inhibition [15,56]. As a result, some work has been
conducted to evaluate the possibility that preeclampsia may result from protein aggregation [57–59].
There is a report that women with hypertension in pregnancy are at higher risk of mortality as a result
of AD [60]. Accumulation of amyloid-β, which causes AD, is prevented by LC3-associated endocytosis
mediated by the RUN and cysteine-rich domains of BECN1 interacting protein (Rubicon) and Atg5
in the microglia [61]. In pregnancy, aggregated proteins, including amyloid-β or transthyretin, are
detected in the serum and urine samples of preeclampsia patients [57,59], and are deposited with higher
frequency in the autophagy-deficient cells [35]. This accumulation also induced preeclampsia-like
features in pregnant mice [62]. Thus, the molecular mechanism by which autophagy inhibition leads
to the accumulation of aggregated proteins in the placenta must be elucidated so that we can better
understand the pathophysiology of preeclampsia. In that regard, we reported that downregulation
of transcriptional factor EB (TFEB) with lysosomal dysfunction was a hallmark of preeclamptic
placentas [35]. TFEB, a member of the basic Helix-Loop-Helix-Zipper family of transcription factors, is
called a master regulator of autophagy and lysosomal biogenesis [63]. During placental development,
loss of TFEB leads to severe defects in vascularization due to the loss of vascular endothelial growth
factor (VEGF) in the labyrinth layer of these placentas [64]. TFEB is downregulated by hypoxia in
primary trophoblasts, and the inhibition of nuclear translocation, a marker of TFEB activation, was
mediated by the hyperactivation of the mammalian target of rapamycin (mTOR). Similar associations
between hyperactivated mTOR and lysosomal dysfunction disrupted proper function in chondrocytes
from the lysosomal storage diseases-mouse model [65]. Interestingly, TFEB downregulation was
confirmed in two independent placenta-specific autophagy deficient murine models [42]. This finding
suggests that there is an important correlation between TFEB downregulation and autophagy inhibition
in preeclamptic placentas. In addition, sera from preeclampsia patients, which inhibited autophagy
(unpublished data) via activated mTOR in trophoblast cell lines, partially inhibited the nuclear
translocation of TEFB, as shown in Figure 1 [35].
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Figure 1. TFEB-mediated autophagy inhibition. Sera from preeclampsia induce hyper-activation of 
mTOR, which blocks nuclear translocation of TFEB. TFEB inactivation results in the inhibition of 
autophagy and lysosomal biogenesis in trophoblasts. N: nucleus. 

The sera from preeclampsia also induce reactive oxygen species production accompanied by 
mitochondrial swelling [66]. In addition, irrespective of TFEB, rupture of the lysosomes themselves 
may pose a threat to trophoblast health by releasing hydrolases into the cytoplasm [67], because a 
lack of lysosomes impairs the step of autophagosome-lysosome fusion. Though autophagy protects 
cells from the cytotoxicity of microparticles by sequestering these particles in the trophoblasts [68], 
exposure of mineral crystals, including monosodium urate and silica, or silica nanoparticles, may 
increase the risk of preeclampsia because they impair lysosomes [69]. The degradation of damaged 
lysosomes detected by galectin-3 conjugation using autophagy machinery demonstrated that 
lysophagy retains cellular homeostasis by restoring low pH. Otherwise, continuous lysosomal 
damage could disrupt lysosomal biogenesis. Placenta produces specific galectins—galectin-13, 
galectin-14, and galectin-16—encoded in a gene cluster on chromosome 19 that is suspected to 
evolutionally regulate homeostasis in placentas [70]. The expression of galectin-13 and galectin-14 
has been shown to decrease in preterm preeclampsia accompanied by fetal growth restriction [71]. 
The correlation between placenta-specific galectins and autophagy has not been elucidated yet, which 
would be worth investigating from the viewpoint of placental homeostasis. 

Hyperactivation of AMP-activated protein kinase (AMPK), which induces autophagy, was 
reported in preeclampsia [72], and AMPK-mediated acetyl-CoA synthetase 2. This is activated by 
AMPK and binds to TFEB, resulting in autophagy activation and lysosomal biogenesis [73]. 
Paradoxically, these changes may be derived from TFEB downregulation in preeclamptic placentas. 
In addition to the dysregulation of TFEB, decreases in p97/Valosin-containing protein, which is a 
member of the ATPase associated protein family, might mediate autophagy inhibition in 
preeclamptic placentas [74]. Mutations in the p97/Valosin-containing protein, which is involved in a 
variety of cellular functions including autophagy, ER stress response, endosomal trafficking, cell 
cycle, and DNA repair, have also been shown to be related to the development of several 
degenerative diseases, including frontotemporal dementia and amyotrophic lateral sclerosis [75]. 
Therefore, the dysfunction of p97/Valosin-containing protein might be worthy of remark on 
preeclampsia. 

4. Endoplasmic Reticulum Stress and Autophagy in Preeclampsia 

ER stress is believed to contribute to the pathophysiology of preeclampsia [76]. To show the 
correlation between ER stress and poor placentation in a mouse model, prolonged exposure of 
tunicamycin, which increases the expression of glucose-regulated protein 78 and C/EBP-homologous 
protein in the placenta, inhibited the growth of placentas and fetuses [77]. However, moderate ER 

Figure 1. TFEB-mediated autophagy inhibition. Sera from preeclampsia induce hyper-activation of
mTOR, which blocks nuclear translocation of TFEB. TFEB inactivation results in the inhibition of
autophagy and lysosomal biogenesis in trophoblasts. N: nucleus.

The sera from preeclampsia also induce reactive oxygen species production accompanied by
mitochondrial swelling [66]. In addition, irrespective of TFEB, rupture of the lysosomes themselves
may pose a threat to trophoblast health by releasing hydrolases into the cytoplasm [67], because a
lack of lysosomes impairs the step of autophagosome-lysosome fusion. Though autophagy protects
cells from the cytotoxicity of microparticles by sequestering these particles in the trophoblasts [68],
exposure of mineral crystals, including monosodium urate and silica, or silica nanoparticles, may
increase the risk of preeclampsia because they impair lysosomes [69]. The degradation of damaged
lysosomes detected by galectin-3 conjugation using autophagy machinery demonstrated that lysophagy
retains cellular homeostasis by restoring low pH. Otherwise, continuous lysosomal damage could
disrupt lysosomal biogenesis. Placenta produces specific galectins—galectin-13, galectin-14, and
galectin-16—encoded in a gene cluster on chromosome 19 that is suspected to evolutionally regulate
homeostasis in placentas [70]. The expression of galectin-13 and galectin-14 has been shown to
decrease in preterm preeclampsia accompanied by fetal growth restriction [71]. The correlation
between placenta-specific galectins and autophagy has not been elucidated yet, which would be worth
investigating from the viewpoint of placental homeostasis.

Hyperactivation of AMP-activated protein kinase (AMPK), which induces autophagy, was reported
in preeclampsia [72], and AMPK-mediated acetyl-CoA synthetase 2. This is activated by AMPK
and binds to TFEB, resulting in autophagy activation and lysosomal biogenesis [73]. Paradoxically,
these changes may be derived from TFEB downregulation in preeclamptic placentas. In addition to
the dysregulation of TFEB, decreases in p97/Valosin-containing protein, which is a member of the
ATPase associated protein family, might mediate autophagy inhibition in preeclamptic placentas [74].
Mutations in the p97/Valosin-containing protein, which is involved in a variety of cellular functions
including autophagy, ER stress response, endosomal trafficking, cell cycle, and DNA repair, have also
been shown to be related to the development of several degenerative diseases, including frontotemporal
dementia and amyotrophic lateral sclerosis [75]. Therefore, the dysfunction of p97/Valosin-containing
protein might be worthy of remark on preeclampsia.

4. Endoplasmic Reticulum Stress and Autophagy in Preeclampsia

ER stress is believed to contribute to the pathophysiology of preeclampsia [76]. To show the
correlation between ER stress and poor placentation in a mouse model, prolonged exposure of
tunicamycin, which increases the expression of glucose-regulated protein 78 and C/EBP-homologous
protein in the placenta, inhibited the growth of placentas and fetuses [77]. However, moderate ER
stress is fundamental to the adaptation of the placenta in early development. This is because inositol
requiring enzyme-1 (IRE1), a protein on the ER membrane, is constitutively activated in the placenta,
but not in the fetus, and the loss of IRE1α elicited embryonal absorption after 12.5 days of gestation in
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the IRE1-knockout mice. These placentas also exhibited morphological disruption in the labyrinth
layer following a reduction in VEGF-A [78]. Thus, disproportional regulation of ER stress, to a greater
or lesser extent, might be related to the development of preeclampsia.

Excessive expression of ER resident proteins binding immunoglobulin protein—PKR-like ER
kinase (PERK) and IRE1α, activating transcriptional factor 4 (ATF4) and ATF6—has been described in
several reports, and has been linked to early onset preeclampsia [79,80]. ATF4 and ATF6β negatively
regulate PlGF secretion in the trophoblasts in response to ER stress via the reduction of PlGF mRNA
expression [80]. Decreases in PlGF mRNA were also observed in placenta-specific Atg7 knockout
mice [41], suggesting a correlation between autophagy, ER stress, and placental growth via PlGF
expression. The morphology of the ER is also affected by preeclampsia with the cisternae of the
ER appearing more dilated and the amorphous proteinaceous precipitates fuller in the preeclamptic
placenta [76]. Similar dilated ER morphologies were observed in chondrocyte-specific Atg7 deficient
mice [81]. Mice without Atg16l1, which is essential for forming autophagosomes via the Atg5-Atg12
complex, exhibited severe colitis like Chron’s disease, accompanied with IRE1α aggregates in the
ER, which drive excessive ER stress [82]. In the trophoblast cells, autophagy inhibition by chemical
inhibitors increased ER stress, which was confirmed by the increase in immunoglobulin protein
expression shown in supplemental Figure 6 of reference 83 [83]. Thus, autophagy could cooperate with
ER to maintain cellular homeostasis. In contrast, excessive ER stress decreases lysosomal numbers,
which results in the blocking of autophagy flux at the autophagy-lysosomal fusion in trophoblast cells,
shown in Figure 2 [83].
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phagophore [84,85]. ER-phagy might be important for dealing with aggregated proteins in the 
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Figure 2. Excessive ER stress-mediated autophagy inhibition. Excessive ER stress, which is enhanced
with autophagy inhibition, decreases the number of lysosomes in trophoblasts. The decrease of
lysosomes results in the blocking or diminishing of autophagy flux. Meanwhile, ER-phagy might be
involved in decreasing ER stress. N: nucleus.

The decreased number of lysosomes reflected the decrease in lysosomal-associated membrane
protein 1 and beta-galactosidase, a hydrolase in lysosomes, both of which were secreted into the
cultured medium. The decreased level of beta-galactosidase was also observed in the sera of
women with preeclampsia, suggesting its utility as a marker for detecting ER stress-mediated
autophagy inhibition in placentas [83]. IRE1, but not ATF4 or PERK, negatively regulates autophagy
by impairing autophagosome assembly, suggesting that IRE1 maintains ER as a scaffold to form
the phagophore [84,85]. ER-phagy might be important for dealing with aggregated proteins in the
placenta, because ER-phagy prevents the accumulation of aggregation-prone proteins, which link
to neurodegenerative diseases using the COPII adaptor complex [86]. Thus, macroautophagy and
ER-phagy could be used as measures of protein quality control in human placentas.



Int. J. Mol. Sci. 2020, 21, 3298 7 of 13

5. The role of Autophagy for Inflammation in Preeclampsia

Preeclamptic placentas often involve sterile inflammation. Autophagy has an anti-inflammatory
effect, where ubiquitinated inflammasomes marked with p62 are delivered to the autophagosome [87].
Autophagy may also act as an unconventional secretion pathway for the extracellular delivery of
inflammasome substrates—interleukin (IL)-1β and IL-18—with lysosomal hydrolase, which is involved
in the degradation of autolysosomes [88]. Several types of non-apoptotic cell death, which are related
to the inflammation, have recently been proposed, including pyroptosis, ferroptosis, or necroptosis.
Though it is not easy to distinguish the non-apoptotic cell death pathways morphologically, the detection
of specific molecules in each pathway could allow us to do so. As shown in Figure 3, pyroptosis
is confirmed to be associated with elevated levels of active Caspase-1 and its substrate or cleaved
products, Gasdermin D, IL-1β, and IL-18. This is not the case for necroptosis, which is characterized by
the activation of mixed lineage kinase domain-like proteins with serine358 phosphorylation. Pyroptosis
occurs in the placenta during early onset preeclampsia [79].
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which is accompanied by the induction of NOD-like receptor pyrin-containing receptor 3 (NLRP3), 
and ferroptosis were induced by hypoxia in trophoblast cells. Especially during pyroptosis, 
autophagy inhibition of the trophoblast enhanced Gasdermin D expression and the activation of 
Caspase-1, an inflammasome complex, following their exposure to serum from preeclampsia patients 
[79]. Similar results were observed in macrophages; the inhibition of autophagy promoted the 
production and secretion of pro-IL-1β in an NLRP3-dependent manner [90]. Collectively, autophagy 
activation seems to protect trophoblasts from pyroptosis following exposure to severe hypoxia. In an 
effort to understand the underlying mechanism of autophagy-mediated protection from pyroptosis, 
immunity-related GTPase M induces selective degradation of the inflammasome by binding with p62, 

Figure 3. Excessive ER stress-mediated pyroptosis cascade. ER stress activates inflammasomes
via Thioredoxin-interacting protein (TXNIP). Activated inflammasome increases the production of
active caspase-1, which produces matured form of pro-inflammatory cytokines, IL-18 and IL-1β, and
Gasdermin D. Finally, Gasdermin D leads to pyroptosis by forming pores in plasma membranes.
Autophagy degrades inflammasome, resulting in preventing inflammation. On the contrary, impaired
autophagy may trigger pyroptosis. N: nucleus.

For ferroptosis, preeclamptic placenta tissues showed lower levels of glutathione (an anti-oxidative
enzyme which acts to prevent the generation of lipid hydroperoxides caused by reactive oxygen
species), glutathione peroxidase activity, and glutathione peroxidase 4 activity than normal placental
tissues. This was mediated via miR-30b-5p expression [89]. Interestingly, both pyroptosis, which
is accompanied by the induction of NOD-like receptor pyrin-containing receptor 3 (NLRP3), and
ferroptosis were induced by hypoxia in trophoblast cells. Especially during pyroptosis, autophagy
inhibition of the trophoblast enhanced Gasdermin D expression and the activation of Caspase-1, an
inflammasome complex, following their exposure to serum from preeclampsia patients [79]. Similar
results were observed in macrophages; the inhibition of autophagy promoted the production and
secretion of pro-IL-1β in an NLRP3-dependent manner [90]. Collectively, autophagy activation seems
to protect trophoblasts from pyroptosis following exposure to severe hypoxia. In an effort to understand
the underlying mechanism of autophagy-mediated protection from pyroptosis, immunity-related
GTPase M induces selective degradation of the inflammasome by binding with p62, an autophagy
receptor [91]. Treatment with a nonsteroidal hormone, melatonin, may help to protect preeclamptic
placentas during hypoxia by activating autophagy and BECN1 protein production.
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6. Conclusions and Future Directions

Organic homeostasis is maintained by the harmonization of cellular autophagy. Recent studies
have shown that autophagy decreases with age, which may explain the increased incidence of
neurodegenerative diseases in the elderly, with other studies demonstrating that autophagy dysfunction
enhances protein aggregation in the central nervous system. With this in mind, we can assume that
aging is also a risk factor in preeclampsia. In addition, evidence suggests that mutations in the Atg
genes can result in the development of several human diseases, including Crohn’s disease, Parkinson’s
disease, or breast cancer [92]. Though the pathophysiology of preeclampsia is intricately regulated
with multiple factors, pathological mutations in Atg genes could be used as a predictive marker for
preeclampsia in the near future. The molecular machinery used by the cells to promote autophagy
mediates both autophagy-dependent and -independent functions. The non-autophagic functions
mediated by the autophagy proteins could be important to maintain proper placental function [93].
Autophagy studies in preeclampsia are underway, and we have a growing understanding of its
influence in this pathophysiology. Further studies are needed to clarify the correlation between
autophagy and preeclampsia to allow for more robust clinical intervention.
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