
Figure S1. MCL sensitizes H1299 and Calu-1 cells to IR. (**A**) The relative cell viabilities of H1299 and Calu-1 cells were evaluated at 72 h after IR with or without MCL (5 or 10 μ M) pretreatment under normoxia. *, *p*<0.05, **, *p*<0.01, compared with control (without radiation); *, *p*<0.05, **, *p*<0.01, compared with control (without radiation); *, *p*<0.05, **, *p*<0.01, compared with control (without radiation); *, *p*<0.05, **, *p*<0.01, compared with control (without radiation); *, *p*<0.05, **, *p*<0.01, compared with control (without radiation); *, *p*<0.05, **, *p*<0.01, coll cells after IR with or without MCL (5 or 10 μ M) pretreatment under normoxia. (**C**) The relative cell viabilities of H1299 and Calu-1 cells were evaluated at 72 h after IR with or without MCL (5 or 10 μ M) pretreatment under normoxia. **, *p*<0.01, compared with control (without radiation); **, *p*<0.01, compared with compared with contrel (without (Cl (S or 1

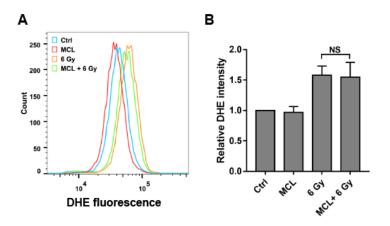

Figure S2. MCL treatment does not affect the IR-activated NF- κ B signaling pathway in H1299 cells. (A) Western blot analysis of phosphorylation and degradation of I κ B α at 2 h after IR in H1299 cells pretreated with or without MCL (20 μ M). (B) Representative immunofluorescence images of intracellular localization of NF- κ B p65 (red) in H1299 cells pretreated with or without MCL (20 μ M) at 2 h after IR. Nucleus (blue) was stained with DAPI. Scale bar, 10 μ m.

Figure S3. MCL does not affect the production and repair of DSBs after IR in H1299 cells. (A) Representative immunofluorescence images of γ -H2AX foci (red) in nucleus (blue) of H1299 cells at 0.5 and 24 h after IR (2 Gy) with or without MCL (20 μ M) pretreatment. Scale bar, 10 μ m. (B) Quantification of (A). (C) Expression of γ -H2AX protein at the indicated time points after IR (4 Gy) with or without MCL (20 μ M) pretreatment in H1299 cells.

Figure S4. MCL does not affect the cell cycle redistribution of H1299 cells. (**A**) Cell cycle analysis of H1299 cells at 6 h following MCL (20 μM) treatment. (**B**) Quantification of (**A**).

Figure S5. MCL does not affect the ROS production after IR in H1299 cells. (**A**) Determination of ROS with its specific fluorescent probe dihydroethidium (DHE) at 12 h after IR in H1299 cells pretreated with or without MCL ($20 \mu M$). (**B**) Quantification of (**A**).

Table S1. The survival curve parameters of H1299 and Calu-1 cells after IR with pretreatment of MCL (5 or 10 μ M) under normoxia.

	H1299			Calu-1			
	SF2	Dq	SERDq	SF2	Dq	SERDq	
Ctrl	0.67 ± 0.06	1.75	-	0.58 ± 0.05	1.13	-	
5 µM MCL	0.63 ± 0.07	1.47	1.18	0.55 ± 0.04	1.03	1.10	
10 µM MCL	0.58±0.04	1.26	1.39	0.49±0.02	0.76	1.48	

¹ SF2, survival fraction at 2 Gy. ² Dq, quasithreshould dose. ³ SERDq, sensitization enhancement ratio for Dq.

Table S2. The survival curve parameters of H1299 and Calu-1 cells after IR with pretreatment of MCL (5 or 10 μ M) under hypoxia.

	H1299			Calu-1		
	SF2	Dq	SERDq	SF2	Dq	SERDq
Ctrl	0.76±0.03	2.37	-	0.63±0.03	1.42	-
5 µM MCL	0.68±0.04	1.75	1.36	0.59±0.05	1.17	1.21
10 µM MCL	0.59 ± 0.06	1.39	1.71	0.51±0.04	0.90	1.59

¹ SF2, survival fraction at 2 Gy. ² Dq, quasithreshould dose. ³ SERDq, sensitization enhancement ratio for Dq.

Materials and Methods

1. Immunofluorescence

Cells were fixed with 4% paraformaldehyde and permeabilised with TNBS solution (PBS supplemented with 0.5% Triton X-100 and 1% FBS) for 1 h. The cells were then incubated with specific primary antibodies for different proteins as follows: anti- γ -H2AX (phospho S139) antibody (1:200, Abcam) or anti-NF- κ B p65 antibody (1:200, Cell Signaling Technology) at 37 °C for 2 h. After rinsing with TNBS, the cells were incubated with Goat Anti-Rabbit IgG H&L (TRITC) (1:1000, Abcam) at 37 °C for 1 h. DAPI (5 mg/mL; Sigma-Aldrich) was used to stain the nuclei. The cells were visualized with a fluorescence microscope (Leica DMI 4000B).

2. ROS measurement

ROS measurement was performed by flow cytometry in cells incubated with Dihydroethidium (DHE) (Molecular Probes) at a final concentration of 10 μ M for 30 min at 37 °C.

3. Cell cycle analysis

Cells were harvested, fixed with 70% ethanol and stored at -20 °C for 24 h. Samples were then harvested by centrifugation at 1000 rpm for 5 min, washed twice with PBS and incubated with RNase A (0.25 mg/ml) and propidium iodide (20 μ g/ml, BD Biosciences) for 30 min at 37 °C. Propidium iodide staining analysis was performed using a BD Accuri C6 analyzer (BD Biosciences). Cell cycle analysis was performed using Modfit LT 3.1 software.