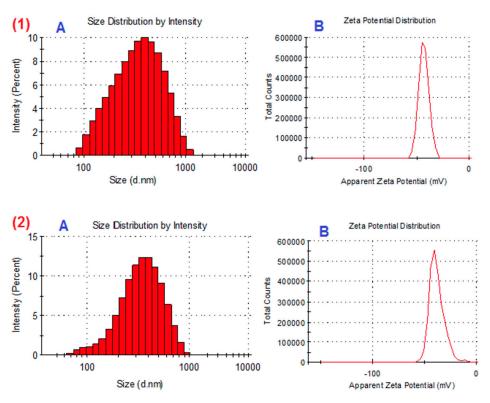
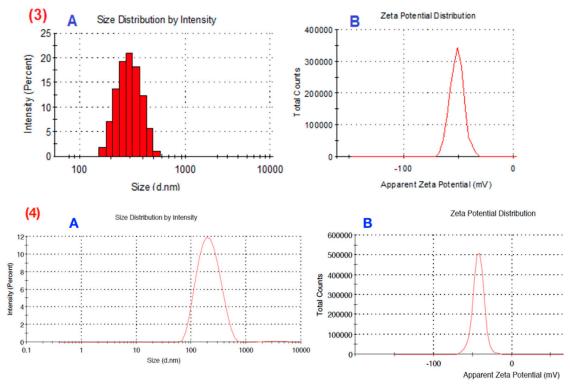
Supplementary material

Effective elimination and biodegradation of polycyclic aromatic hydrocarbons from seawater through the formation of magnetic microfibers.


M. Susana Gutiérrez,¹ Alberto J. León,¹ Paulino Duel,¹ Rafael Bosch,^{2,3*} M. Nieves Piña^{1,*} and Jeroni Morey¹

- ¹ Department of Chemistry, University of the Balearic Islands, Crta. de Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Balearic Islands, Spain.
- ² Department of Biology, University of the Balearic Islands, Crta. de Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Balearic Islands, Spain.
- ³ Environmental Microbiology, IMEDEA (CSIC-UIB), Miquel Marquès, 21, 07190 Esporles, Balearic Islands, Spain.
- * Correspondence: neus.pinya@uib.es; Tel.: +34-971-172847


1. Dynamic Light Scattering (DLS). Zeta potential Values and Thermogravimetric (TGA) of Fe₃O₄ nanoparticles diimides-dopamine functionalized.

Hybrid nanomaterial	DLS (nm)	Zeta Potential (mV)	Weight loss (TGA, %)
	205.0		
FeNP-BDI-DA	295.0	-43.3	45.15
FeNP-NDI-DA	300.6	-38.3	44.07
FeNP-PDI-DA	335.2	-51.3	79.90
FeNP-BrPDI-DA	225.9	-42.6	61.44

Table S1. Dynamic Light Scattering (DLS), Zeta potential Values and Thermogravimetric (TGA) of Fe₃O₄ nanoparticles diimides-dopamine functionalized.

Figure S1. DLS size distribution (A) and Zeta potential (B) of (1) FeNP-BDI-DA, and (2) FeNP-NDI-DA in H₂O (pH=7.0) at 25°C.

Figure S2. DLS size distribution (A) and Zeta potential (B) of (3) FeNP-PDI-DA, and (4) FeNP-BrPI-DA in H₂O (pH=7.0) at 25 °C.

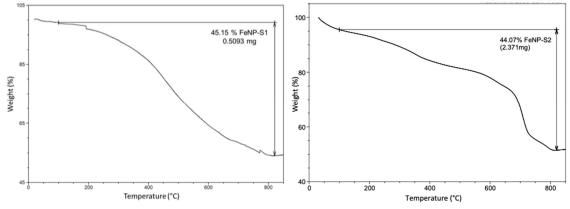
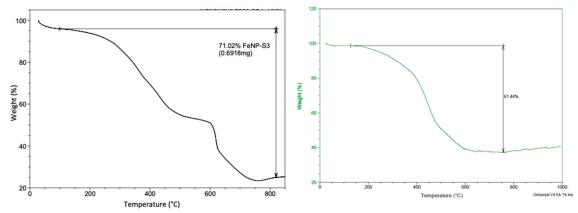
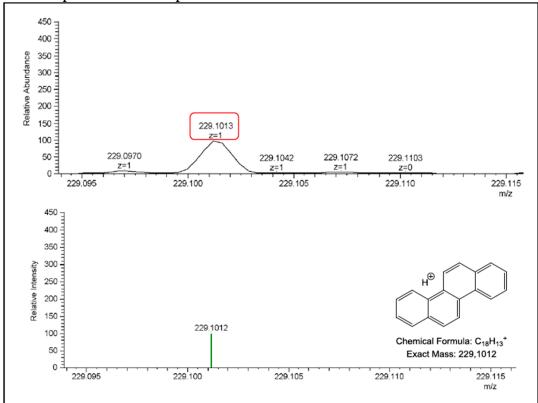


Figure S3. Thermogravimetric analysis (TGA) for FeNP-BDI-DA and FeNP-NDI-DA.




Figure S4. Thermogravimetric analysis (TGA) for FeNP-PDI-DA and FeNP-BrPDI-DA.

2. Determination of Langmuir Constant

Four solutions of known concentration of PAHs ($4 \ge 10^{-7}$ M, $6 \ge 10^{-7}$ M, $8 \ge 10^{-7}$ M and $1 \ge 10^{-6}$ M) in 1: $1 \le 7 \le 10^{-7}$ M and $1 \ge 10^{-6}$ M) in 1: $1 \le 7 \le 10^{-7}$ M and $1 \ge 10^{-6}$ M) in 1: $1 \le 7 \le 10^{-7}$ M and $1 \ge 10^{-6}$ M) in 1: $1 \le 7 \le 10^{-7}$ M and $1 \ge 10^{-6}$ M) in 1: $1 \le 7 \le 10^{-7}$ M and $1 \ge 10^{-6}$ M) in 1: $1 \le 7 \le 10^{-7}$ M and $1 \ge 10^{-7}$ M and $1 \ge 10^{-6}$ M) in 1: $1 \le 7 \le 10^{-7}$ M and $1 \ge 10^{-7}$ M

Hybrid Nanomaterial + PAHs	Langmuir Constant (K), M ⁻¹
FeNP-BDI-DA + Naphthalene	$(3.9 \pm 0.2) \ge 10^5$
FeNP-NDI-DA + Naphthalene	$(4.8 \pm 0.3) \ge 10^6$
FeNP-BrPDI-DA + Naphthalene	$(1.9 \pm 0.1) \ge 10^{6}$
FeNP-PDI-DA + Naphthalene	$(4.5 \pm 0.5) \ge 10^6$
FeNP-BDI-DA + Pyrene	$(6.0 \pm 1.1) \ge 10^5$
FeNP-NDI-DA + Pyrene	$(2.4 \pm 0.4) \ge 10^6$
FeNP-BrPDI-DA + Pyrene	$(1.0 \pm 0.2) \ge 10^{6}$
FeNP-PDI-DA + Pyrene	$(2.0 \pm 0.3) \ge 10^5$
FeNP-BDI-DA + DB[ah]A	$(6.6 \pm 0.9) \ge 10^5$
FeNP-NDI-DA + DB[ah]A	(7.6 ± 1.1) x 10 ⁶
FeNP-BrPDI-DA + DB[ah]A	$(1.3 \pm 0.1) \ge 10^6$
FeNP-PDI-DA + DB[ah]A	$(4.8 \pm 0.5) \ge 10^5$
FeNP-BrPDI-DA + BKF	$(1.1 \pm 0.2) \ge 10^6$
FeNP-PDI-DA + BKF	$(4.4 \pm 0.3) \ge 10^5$
FeNP-BrPDI-DA + Chrysene	$(2.3 \pm 0.2) \ge 10^{6}$
FeNP-PDI-DA + Chrysene	$(3.5 \pm 0.3) \ge 10^5$

Table S2. Langmuir constants calculated for the different hybrid nanomaterial and PAHs tested.

3. HRMS Supramolecular Complexes

Figure S5. HRMS analysis of the microfiber digestion of FeNP-NDI-DA with Chrysene.

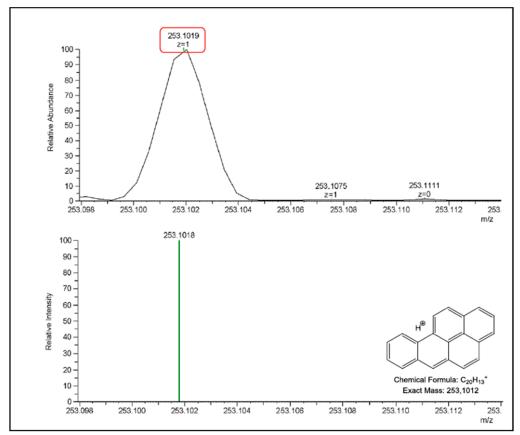


Figure S6. HRMS analysis of the microfiber digestion of FeNP-NDI-DA with BAP.

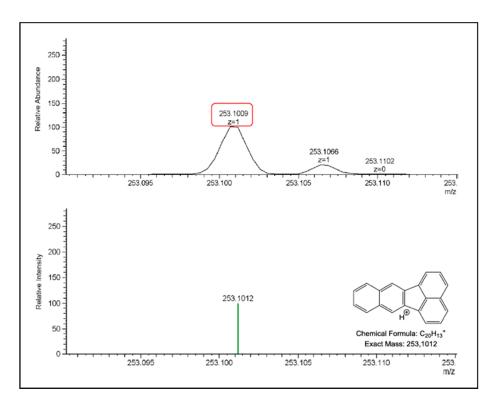


Figure S7. HRMS analysis of the microfiber digestion of FeNP-PDI-DA with BKF.

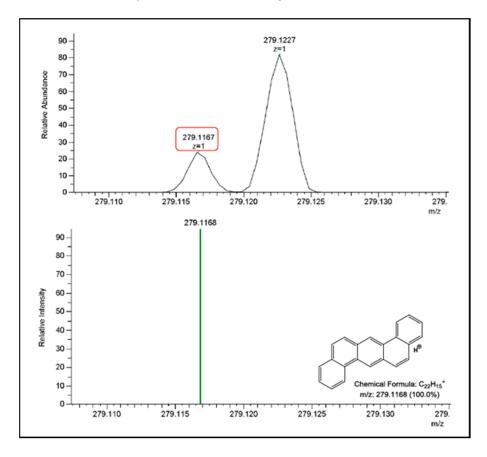
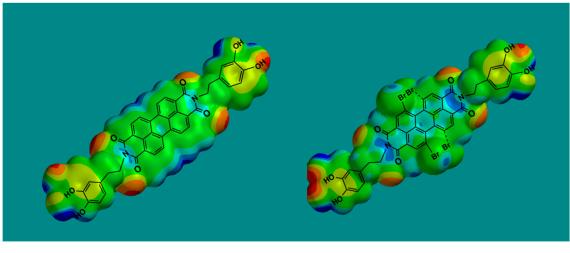


Figure S8. HRMS analysis of FeNP-PDI-DA microfiber digestion with DB[ah]A.


4. Biodegradability and Biocompatibility Experiments

The composition similar seawater consists of the following salts:

Na2HPO4 (1.785 g/l). KH2PO4 (0.750 g/l). NH4Cl (0.500 g/l) MgSO4.7H2O (0.100 g/l). Citrate Ferric Ammonium (0.250 mg/l). CaCl2 (0.375 mg/l). ZnSO4.7H2O (0.050 mg/l). MnCl2.4H2O (0.015 mg/l). H3BO3 (0.150 mg/l)

CoCl₂.6H2O (0.100 mg/l). CuCl₂.2H₂O (0.005 mg/l). NiCl₂.6H₂O (0.010 mg/l). Na₂MoO₄.2H₂O (0.015 mg/l).

5. Electrostatic Potential Surfaces

Perylene-Dopamine

4-Bromo-Perylene-Dopamine

Figure S9. The electrostatic potential surfaces for the two ligands, were plotted from DFT calculations (B3LYP using 6-31G*) with Spartan, (Wavefunction, Inc.).