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Abstract: We previously reported that site-selective claudin-5 (CLDN5) breakdown and protein
kinase A (PKA) activation are observed in brain microvessels of schizophrenia, but the underlying
molecular basis remains unknown. The 5-HT1 receptors decline the intracellular cAMP levels
and inactivate the major downstream PKA, and the 5-HT1A receptor is a promising target for
schizophrenia. Therefore, we elucidated the involvement of serotonin/5-HT1A signaling in the
endothelial CLDN5 expression. We demonstrate, by immunohistochemistry using post-mortem
human brain tissue, that the 5-HT1A receptor is expressed in brain microvascular endothelial cells
(BMVECs) and mural cells of the normal prefrontal cortex (PFC) gray matter. We also show that
PKA is aberrantly activated not only in BMVECs but also in mural cells of the schizophrenic PFC.
We subsequently revealed that the endothelial cell–pericyte tube-like structure was formed in a
novel two-dimensional co-culture of human primary BMVECs and a human brain-derived pericyte
cell line, in both of which the 5-HT1A receptor was expressed. Furthermore, we disclose that
the serotonin/5-HT1A signaling enhances endothelial CLDN5 expression in BMVECs under two-
dimensional co-culture conditions. Our findings provide novel insights into the physiological and
pathological significance of serotonin/5-HT1A signaling in the region-specific regulation of the
blood-brain barrier.

Keywords: blood-brain barrier; claudin; tight junction; pericyte; endothelial cell; 5-HT1 receptor;
PKA; schizophrenia; psychiatric disorder; co-culture

1. Introduction

The neurovascular unit (NVU) consists of microvascular cells (endothelial cells, per-
icytes, and smooth muscle cells), glial cells (astrocytes, oligodendroglia, and microglia),
neurons, and the extracellular matrix, and contributes to a variety of physiological and
pathological processes in the central nervous system (CNS) [1–4]. Within the NVU, the
microvascular endothelial cells and pericytes are primarily involved in maintaining the
integrity of the blood-brain barrier (BBB) that separates the CNS from peripheral blood
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circulation [2,3,5–7]. It is noteworthy that the CNS contains the greatest amount of pericytes
in the body, with an endothelial cell–pericyte ratio of 1:1 [8,9].

Claudins (CLDNs) are the structural and functional backbone of tight junctions in
vertebrate epithelial and endothelial cell sheets [10–13]. The CLDN family is composed of
more than 20 members in mammals and exhibits distinct expression profiles in tissue- and
cell-type-specific manners. Among the CLDN family, CLDN5 is by far the most abundantly
expressed in brain microvascular endothelial cells (BMVECs), and absolutely required for
the development and maintenance of the BBB [14], representing the tightness of the BBB.

We previously found that the brain region-selective breakdown of the CLDN5 protein
appears in patients with schizophrenia [15]. In more detail, CLDN5 expression and disap-
pearance in the prefrontal cortex (PFC) of schizophrenic subjects significantly decreased
and increased, respectively, compared with those of the normal controls. In addition, such
changes were observed in neither the PFC white matter nor the visual cortex (VC) white or
gray matter of schizophrenic patients. Almost coincidently, Greene et al. reported discon-
tinuous expression of CLDN5 in the parietal lobe of schizophrenic patients compared with
age-matched normal brains [16]. They also demonstrated that the site-specific suppression
of CLDN5 resulted in localized BBB disruption and the onset of schizophrenia-like phe-
notypes in mice. Furthermore, they revealed that anti-psychotic drugs dose-dependently
induced CLDN5 expression. A decreased expression of CLDN5 protein was also detected
in the hippocampus gray matter of schizophrenic subjects, but in neither the hippocampus
white matter nor the orbitofrontal gray or white matter [17]. Taken collectively, these re-
sults highlight the pathobiological relevance of the region-selective CLDN5 breakdown in
schizophrenia. However, it remains poorly defined how the expression of CLDN5 protein
is diminished in a brain site-specific manner.

We formerly identified that cAMP phosphorylates CLDN5 at Thr207 in a protein
kinase A (PKA)-dependent fashion, leading to size-selective loosening of the endothelial
barrier against small molecules, despite cAMP inducing the CLDN5 expression in a PKA-
independent manner [18,19]. Interestingly, we subsequently reported that microvascular
and perivascular PKA activation appeared to be observed in the schizophrenic PFC but
in neither the schizophrenic VC nor the control PFC or VC [15]. More importantly, the
phosphorylated PKA (pPKA)-positive BMVECs in the schizophrenic PFC occasionally
exhibited focal loss of CLDN5. Taken together with reports showing that cAMP signaling
is aberrantly activated in the schizophrenic PFC [20,21], we assumed that the regional
cAMP/PKA-related signaling in brain microvessels could participate in the regulation of
endothelial CLDN5 expression in normal and schizophrenic brains.

Serotonin (5-hydroxytriptamine; 5-HT)-actuated nerve endings are prominently close
to microvessels in PFC, suggesting that the microvascular endothelial cells and mural cells
(microvascular pericytes and smooth muscle cells) receive this chemical transmitter from
activated neurons [22,23]. Among members of the 5-HT receptors, the 5-HT1 receptor
is liganded by serotonin with high affinity and is known to decrease intracellular cAMP
levels [24,25]. Moreover, serotonergic signaling is altered in several psychiatric disorders,
including schizophrenia, and the 5-HT1A receptor is a promising target for schizophre-
nia [22,26]. Along this line, in the present study, we focused on the 5-HT1A expression in
brain microvascular cells and its functional significance in endothelial CLDN5 expression.

Here, we report that the 5-HT1A receptor is strongly expressed in the microvascular
endothelial and mural cells of normal PFC gray matter. We also show that PKA is aber-
rantly activated not only in microvascular endothelial cells but also in mural cells of the
schizophrenic PFC. Moreover, we demonstrate that serotonin/5-HT1 signaling promotes
endothelial CLDN5 expression in microvascular endothelial cell–pericyte tubes under
two-dimensional co-culture conditions.
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2. Results
2.1. 5-HT1A is Expressed in Microvascular Endothelial Cells and Mural Cells of Normal
Human PFC

We first determined, by immunofluorescent staining using post-mortem normal hu-
man brain tissue of the PFC gray matter, whether microvascular endothelial and mural cells
expressed the 5-HT1A receptor. To this end, we utilized the vascular endothelial marker
CD31, the mural cell markers platelet-derived growth factor receptor β (PDGFRβ) and α

smooth muscle actin (αSMA), and the neuronal markers class III β-tubulin or microtubule-
associated protein 2 (MAP2). As shown in Figure 1 and Supplementary Figure S1, 5-HT1A
was partially colocalized with CD31 and was also observed in the surrounding perivascular
cells. Unexpectedly, the signal intensity of 5-HT1A in the brain microvascular cells was higher
than that in the brain parenchyma. In addition, 5-HT1A was observed in microvascular
smooth muscle cells (PDGFRβ+/αSMA+) and pericytes (PDGFRβ+/αSMA-) (Figure 2). Thus,
5-HT1A appeared to be expressed in brain microvascular endothelial cells and mural cells.
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Figure 1. Expression of the 5-HT1A receptor in the microvascular endothelial and perivascular cells
of the normal human prefrontal cortex (PFC). Confocal images of the normal PFC gray matter stained
for 5-HT1A and CD31 together with either class III β-tubulin or microtubule-associated protein 2
(MAP2). Scale bars, 50 µm.

2.2. PKA is Activated in Microvascular Endothelial Cells and Mural Cells of the
Schizophrenic PFC

We subsequently verified which types of microvascular cells in the schizophrenic PFC
showed aberrant PKA activation. A strong pPKA signal was detected in the PDGFRβ-
expressing mural cells (Figure 3A,B). In addition, pPKA was also colocalized with the
endothelial marker CD34. Moreover, a weak pPKA signal was at least partially colocalized
with glial fibrillary acidic protein (GFAP)-expressing glia.
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Figure 2. Expression of the 5-HT1A receptor in microvascular pericytes and smooth muscle cells
of the normal human PFC. Confocal images of the normal PFC gray matter stained for 5-HT1A,
platelet-derived growth factor receptor β (PDGFRβ) and α smooth muscle actin (αSMA). Scale bars,
100 µm.
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the schizophrenic PFC. (A) Confocal images of the schizophrenic PFC gray matter stained for 
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µm (upper); 10 µm (lower). 

2.3. 5-HT1A is Expressed in Human Brain Microvascular Endothelial Cell–Pericyte Tubes In 
Vitro 

To gain some mechanistic insights, we then performed a two-dimensional co-culture 
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Figure 3. Protein kinase A (PKA) activation in the microvascular endothelial cells and pericytes
of the schizophrenic PFC. (A) Confocal images of the schizophrenic PFC gray matter stained for
phospho-PKA (pPKA) and either PDGFRβ or glial fibrillary acidic protein (GFAP). (B) Confocal
images of the schizophrenic PFC gray matter stained for pPKA, PDGFRβ, and CD34. Scale bars,
50 µm (upper); 10 µm (lower).
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2.3. 5-HT1A is Expressed in Human Brain Microvascular Endothelial Cell–Pericyte Tubes In Vitro

To gain some mechanistic insights, we then performed a two-dimensional co-culture
of human primary BMVECs and the human brain-derived pericyte cell line (HBPCT) [27]
(Figure 4A). Surprisingly, the tube-like formation was started and completed one and two
days after co-culture, respectively, and maintained at least for an additional two to four
days in this two-dimensional co-culture model (Figure 4B). CLDN5 and PDGFRβ were
observed along the cultured tubes (Figures 4C and 5). Moreover, the 5-HT1A receptor was
detected in the endothelial cell–pericyte tube-like structure in vitro (Figure 5).
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Figure 4. Formation of brain microvascular endothelial cell–pericyte tubes in two-dimensional co-
culture. (A) Schematic method for two-dimensional co-culture system. HBPCT: human brain-derived
pericyte cell line; BMVECs: human primary brain microvascular endothelial cells. (B) Phase-contrast
micrograph showing tube-like structure. (C) Confocal images of two-dimensional co-culture stained
for CLDN5. Scale bars, 100 µm.

2.4. Serotonin/5-HT1A Signaling Enhances CLDN5-Immunoreactive Area in Microvascular
Endothelial Tube Under Two-Dimensional Co-Culture Conditions

Using the novel two-dimensional co-culture system, we subsequently validated
whether serotonin regulated endothelial CLDN5 expression. In the vehicle-treated co-
culture, the CLDN5-positive signal was focally diminished, whereas another tight-junction
marker ZO-1 displayed a linear expression pattern (Figure 6A). Focal loss of CLDN5 was
prevented by the treatment of co-culture with serotonin. The 5-HT1A antagonist WAY
reversed the effect of serotonin on endothelial CLDN5 expression. The significant changes
in the CLDN5-covered area were shown by quantitative analysis (Figure 6B). Hence, the
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serotonin/5-HT1A signal in brain microvascular endothelial cells and pericytes appeared
to induce endothelial CLDN5 expression.
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Figure 6. Up-regulation of the CLDN5-immunoreactive area in the microvascular endothelial tube-like structure via
the serotonin/5-HT1A receptor signaling. (A) Confocal images of two-dimensional co-culture stained for CLDN5 and
ZO-1. The HBPCT and the human primary BMVECs were grown under two-dimensional co-culture conditions for 4 days.
Brackets indicate the breakdown of CLDN5. WAY: WAY-100635. Scale bars, 50 µm. (B) The CLDN5-length is divided by
the ZO-1-length, and the relative CLDN5-covered area is shown in histograms (mean ± SD; n = 3). Similar results were
obtained from three independent experiments.
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3. Discussion

The receptors 5-HT1A and 5-HT1B are expressed in postsynaptic and presynaptic
neurons of the PFC, respectively [28–30]. In the present study, we showed, by immunoflu-
orescent staining using post-mortem human brain tissue, that the 5-HT1A receptor was
also expressed in microvascular endothelial and mural cells of the normal PFC gray matter.
Unpredictably, the immunoreactive signal intensity of 5-HT1A in the brain microvascular
cells was stronger rather than that in the brain parenchyma. Analysis of a larger number of
cases would be required to draw more solid conclusions about an abundance of 5-HT1A
in normal brain microvascular cells. Concerning the expression of 5-HT1 members in
pericytes, it should be noted that the expression of 5-HT1B receptors is induced in rat
pericytes after a spinal cord injury [31].

We previously found that PKA was activated in microvascular endothelial cells and
perivascular cells of schizophrenic PFC, compared with the control PFC [15]. Aberrant PKA
activation was not observed in those of the schizophrenic VC, indicating the region-specific
alteration in cAMP/PKA signaling in brain microvessels. In the present work, we indeed
demonstrated that PKA was abnormally activated not only in brain microvascular endothe-
lial cells but also in mural cells of the schizophrenic PFC. Taken collectively with our previ-
ous results showing that cAMP/PKA-dependent phosphorylation of CLDN5 at Thr207
causes size-selective loosening of the endothelial barrier against small molecules [18,19],
the site-specific PKA activation in BMVECs and mural cells is most probably responsible
for the localized breakdown of CLDN5 and the BBB.

It has long been considered that vessel tubes are not formed under a two-dimensional
co-culture [32]. We developed a novel co-culture model of human primary BMVECs and
the human brain-derived pericyte cell line (HBPCT). Unexpectedly, however, in this two-
dimensional co-culture model, the endothelial cell–pericyte tube-like structures were able
to be formed and maintained at least for four days without using special gels or devices.
We also confirmed the expression of the 5-HT1A receptor in both brain microvascular
endothelial cells and pericytes under the two-dimensional co-culture model.

Another conclusion of our study is that exposure of the endothelial cell–pericyte
culture to serotonin induces endothelial CLDN5 expression via the 5-HT1A receptor. This
conclusion was drawn from the treatment of the above-mentioned two-dimensional co-
culture system with serotonin and the 5-HT1A antagonist WAY. Although WAY also acts
as a dopamine D4 receptor (DRD4) agonist [33], DRD4 is expressed in neither human
primary BMVECs nor HBPCT (our unpublished results), indicating that the effects of WAY
in these cells are mediated through the 5-HT1A. We speculate that serotonin/5-HT1A
signaling inhibits the cAMP/PKA pathway in microvascular endothelial cells and mural
cells, preventing CLDN5 phosphorylation and subsequent breakdown, from the following
findings: (1) the serotonin/5-HT1A decreases intracellular cAMP levels [24,25]; (2) the
5-HT1A receptor is strongly expressed in brain microvascular endothelial and mural cells
both in vitro and in vivo (the current study); and (3) the PKA activity and the amount of
endothelial CLDN5 are conversely regulated in microvessels [15,18,19]. We also assume
that control and serotonin-exposed microvascular cells in vitro (Figure 6A) correspond to
schizophrenic and healthy BMVECs in vivo. Because apically-applied serotonin increases
the permeability of endothelial monolayers [34], the highest coverage of pericytes in
brain microvessels should be essential for the positive regulation of BBB by serotonin/5-
HT1A signaling. Furthermore, since gap junctions between endothelial cells promote the
barrier function of tight junctions [35], gap-junction channels and/or hemichannels between
endothelial cells and mural cells [36–39] may also contribute to the maintenance of endothelial
CLDN5 expression. In fact, cAMP can pass through gap-junction channels and hemichannels.
It should also be noted that activated PKA phosphorylates several connexins such as connexin
43, enhancing gap-junction assembly and intercellular communication [40–42].

In summary, we have demonstrated that the 5-HT1A receptor is highly expressed in
normal human BMVECs and pericytes. We also uncovered that the serotonin/5-HT1A
signaling up-regulates endothelial CLDN5 expression in the novel co-culture system. Since
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5-HT1A functions as a target for schizophrenia [22,26,43], further studies are required
to determine whether 5-HT1A-targeting drugs improve the localized PKA activation
and endothelial CLDN5 loss in schizophrenia in future experiments. It would be also
interesting to clarify the involvement of serotonin/5-HT1A/cAMP/PKA signaling and
gap-junction channels and/or hemichannels not only in schizophrenia but also in other
psychiatric disorders.

4. Materials and Methods
4.1. Antibodies

The antibodies used in the current study are listed in Supplementary Table S1. The
specificity of the 5-HT1A antibody (N3C1, GeneTex, CA, USA) [44,45] was verified by
Western blotting using multiple positive control samples (unpublished data).

4.2. Cases and Brain Tissues

Post-mortem human brain tissues were obtained from the Fukushima Postmortem
Brain and DNA Bank for Psychiatric Research (Fukushima PMB/DNA Bank). The
schizophrenic donors were a 59-year-old female, a 57-year-old male, and a 74-year-old
female, and control donors were a 57-year-old female, a 70-year-old male, and an 81-year-
old female. They had no history of alcoholism or drug abuse. The brains were collected
and cut coronally in 10-mm slabs, from which the PFC (Brodmann area 10) was dissected.
The samples were frozen in optimal cutting temperature (OCT) compound (45833, Sakura,
Tokyo, Japan) in liquid nitrogen, and stored at −80 ◦C until use.

4.3. Cell Culture

Human primary BMVECs were obtained from Cell Systems and cultured in a Com-
plete Serum-Free Medium Kit With RocketFuel™ (SF-4Z0-500, Cell Systems, WA, USA).
The HBPCT was established as described previously [27] and maintained in Dulbecco’s
Modified Eagle Medium (DMEM) high glucose with 10% fetal bovine serum at 33 ◦C
These cell lines were passaged every 7 days at 1 to 5 dilution using 0.25% trypsin-EDTA
(209-16941, Wako, Tokyo, Japan). For tube formation, 1 × 104 HBPCTs were passaged on a
type I collagen (637-00653, Nitta gelatin, Osaka, Japan)-coated glass base dish (3910-035,
Iwaki, Tokyo, Japan) and incubated at 37 ◦C. After 3 d, 5 × 103 BMVECs were added to it
and grown in a Complete Serum-Free Medium Kit With RocketFuel™ (SF-4Z0-500, Cell Sys-
tems, WA, USA) with vehicle, 50 µM serotonin hydrochloride (H9523, Sigma-Aldrich, MO,
USA) and 10 µM 5-HT1A antagonist WAY-100635 maleate (ab120550, abcam, Cambridge,
UK), for an additional 4 days, being subjected to immunostaining.

4.4. Immunostaining and Imaging

The human brain tissues were sectioned with a 20-µm thickness from snap-frozen
tissues and fixed in 100% methanol for 10 min at −20 ◦C. After blocking with 5% skimmed
milk in phosphate buffered saline (PBS) for 20 min, they were incubated overnight at 4 ◦C
with primary antibodies in 2% bovine serum albumin and PBS. They were subsequently
reacted with fluorescently-conjugated secondary antibodies after being rinsed three times.

Cultured cells were fixed with 4% paraformaldehyde for 10 min followed by perme-
abilization with 0.1% Triton-X in PBS. After blocking with 5% skimmed milk in PBS for
30 min, they were stained in the same manner as above.

All samples were examined and photographed using a scanning confocal laser mi-
croscopy (FV1000, Olympus, Tokyo, Japan) and processed by ImageJ software (version
1.49, NIH, MD, USA). In immunohistological analyses, similar results were obtained from
three control subjects and three schizophrenic ones, and representative images are shown
in Figures 1–3.
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4.5. Quantitative Morphometric Analysis and Statistics

For quantification of the CLDN5-covered area in Figure 6, the length of the linearly
distributed CLDN5 signal was manually measured using the straight-line tool in ImageJ
software (version 1.49, NIH, MD, USA) and subsequently divided by the corresponding
length of the ZO-1 signal. A total of six fields from three different wells in each group, of
which the file names were blind to the examiner, were measured. The statistical significance
of differences was evaluated by the Mann–Whitney U test using SPSS Statistics (version
26, IBM, NY, USA). p-values less than 0.05 were considered to indicate a statistically
significant result.
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