A

B

Fig. S1. Plant sterol biosynthetic pathway. (A) Plant sterol biosynthetic pathway; (B) CPI1related intermediates and end-products. Arrows with dashed lines represent multiple steps. HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme A; HMGR, 3-hydroxy-3-methylglutaryl coenzyme A reductase; MVA, mevalonic acid; CAS, cycloartenol synthase; SMT1/CPH, C24 methyl transferase; SMO1, sterol 4α-methyl oxidase1; CSD, 4α-carboxysterol-C3-dehydrogenase/C4-decarboxylase; SKR, sterone 3-keto reductase; CPI1, cyclopropylsterol isomerase1; CYP51, sterol C-14-demethylase; FACKEL/HYD2, sterol C-14 reductase; HYD1, $\Delta^{8}-\Delta^{7}$-sterol isomerase; SMT2/CVP1, C-28 methyl transferase; SMT3, C-28 methyl transferase; SMO2, sterol 4α-methyl oxidase2; DWF7/STE1/BUL1, Δ^{7}-sterol C-5-desaturase; DWF5, Δ^{7}-sterol C-7 reductase; DWF1/DIM, C-24 reductase.

Fig. S2. DR5:GUS expression in shoot, root tips and lateral root primordia of 2-week-old WT (A and A^{\prime}) and cpi1-1 (B) seedlings. A^{\prime} are higher magnification image of the root region in A. Shown are representative images of $\mathrm{n}=3$ independent experiments, employing 6 to 10 seedlings per experiment. Bars $=2 \mathrm{~mm}(A$ and $B)$ and $8 \mathrm{~mm}\left(A^{\prime}\right)$.

Fig. S3. ProPIN1:GUS and ProPIN3:GUS expression in seedling shoots and roots. (A-H) GUS staining of ProPIN1:GUS (A-D) and ProPIN3:GUS (E-H) in 5-day-old wild type (WT) and cpi1-1 seedlings. Shown are representative images of $\mathrm{n}=3$ independent experiments, employing 7 to 31 seedlings per experiment. Bars $=400 \mu \mathrm{~m}(\mathrm{~A}, \mathrm{~B}, \mathrm{E}$ and F$)$ and $100 \mu \mathrm{~m}(\mathrm{C}, \mathrm{D}, \mathrm{G}$ and H).

Fig. S4. ProPIN4:GUS, ProPIN7:GUS and PIN7-GFP expression in WT and cpi1-1 roots and relative transcript levels of PIN genes. (A-D) GUS staining of ProPIN4:GUS (A and B) and ProPIN7:GUS (C and D) in 5-day-old WT (A and C) and cpi1-1 (B and D) seedling roots; (E-J) GFP signals of PIN7-GFP in 5-day-old WT (E-G) and cpi1-1 (H-J) seedling roots. F and G are higher magnification images of the stele and columella regions, respectively in E; I and J are higher magnification images of the stele and columella regions, respectively in H. Shown are representative images of $n=3$ independent experiments, employing 9 to 26 roots per experiment. Bars $=100 \mu \mathrm{~m}(\mathrm{~A}-\mathrm{E}$ and H$)$ and $50 \mu \mathrm{~m}(\mathrm{~F}, \mathrm{G}, \mathrm{I}$ and J); (K) Relative transcript levels of polar auxin transport genes. The TAP42 INTERACTING PROTEIN OF 41 KDA (TIP41, AT4G34270) gene was used as an internal control. The presented data are means \pm SD of $\mathrm{n}=3$ independent experiments. ${ }^{* *} P<0.01$ (Student's t-test, one-tailed, two-sample equal variance).

Fig. S5. ProTIR2:GUS and ProTIR2:TIR2-GUS expression patterns in WT and cpi1-1 shoots. (A-D) Expression patterns of ProTIR2:GUS in 5-day-old WT (A and B) and cpi1-1 (C and D) seedling shoots; (E-H) Expression patterns of ProTIR2:TIR2-GUS in 5-day-old WT (E and F) and cpi1-1 (G and H) seedling shoots. Shown are representative images of $\mathrm{n}=3$ independent experiments, employing 6 to 30 seedlings per experiment. Bars $=400 \mu \mathrm{~m}$.

Fig. S6. ProTAA1:GFP-TAA1 expression in 5-day-old WT and cpi1-1 seedling roots. (A and B) Expression patterns of ProTAA1:GFP-TAA1 in root tips (A) and quantification of GFP fluorescence (B). The presented data are means \pm SD of $n=3$ independent experiments (employing 4 to 22 roots per experiment). No significant difference by Student's t-test (one-tailed, twosample equal variance, $P<0.05)$. Bars $=100 \mu \mathrm{~m}$.

Fig. S7. ProYUC2:GUS, ProYUC3:GUS and ProYUC4:GUS expression patterns in 5-day-old seedlings. (A-D) GUS staining of ProYUC2:GUS in 5-day-old WT (A and B) and cpi1-1 (C and D) seedling cotyledon (A and C), shoot meristem and apical part of the hypocotyl (B and D); (E-F) GUS staining of ProYUC3:GUS in 5-day-old WT (E) and cpi1-1 (F) seedling roots; (G-J) GUS staining of ProYUC4:GUS in 5-day-old WT (G and I) and cpi1-1 (H and J) seedling cotyledon (G and H), shoot meristem and apical part of the hypocotyl (I and J). Shown are representative images of $n=3$ independent experiments, employing 8 to 14 seedlings per experiment. Bars $=200 \mu \mathrm{~m}$ in (A-D and G-J) and Bars $=100 \mu \mathrm{~m}$ in $(E$ and $F)$.

Fig. S8. ProYUC8:GUS and ProYUC9:GUS expression patterns in 5-day-old WT and cpi1-1 seedling shoot, root vasculature, and root tip. (A-F) Expression patterns of ProYUC8:GUS in 5-day-old WT (A-C) and cpi1-1 (D-F) seedlings; (G-L) Expression patterns of ProYUC9:GUS in 5-day-old WT (G-I) and cpi1-1 (J-L) seedlings. Shown are representative images of $\mathrm{n}=3$ independent experiments, employing 6 to 22 seedlings per experiment. Bars $=0.5 \mathrm{~mm}$ in (A, D, G, and J), $200 \mu \mathrm{~m}$ in (B, E, H, and K), and $50 \mu \mathrm{~m}$ in (C, F, I, and L).

Fig. S9. ProASA1:GUS and ProASB1:GUS expression patterns in WT and cpi1-1 seedlings and relative transcript levels of auxin biosynthesis genes. (A) Expression patterns of ProASA1:GUS and ProASB1:GUS in shoots and roots of 5-day-old WT and cpi1-1 seedlings (n $=3$ independent experiments, employing 8 to 24 seedlings per experiment). Bars $=400 \mu \mathrm{~m}$ in the shoot images and $100 \mu \mathrm{~m}$ in the root images; (B) Relative transcript levels of auxin biosynthesis genes. The TIP41 gene was used as an internal control. The presented data are means \pm SD of $\mathrm{n}=3$ independent experiments. ${ }^{* *} P<0.01$ (Student's t-test, one-tailed, twosample equal variance).

Fig. S10. Mutation of YUC2 or YUC3 does not rescue the short root and short hypocotyl phenotypes of cpi1-1. The presented data are means \pm SD of $\mathrm{n}=3$ independent experiments (employing 9 to 47 seedlings per experiment). No significant difference between cpi1-1 single and cpi1-1 yuc2 and cpi1-1 yuc3 double mutants by Student's t-test (one-tailed, two-sample equal variance, $P<0.05$).

Fig. S11. Relative transcript levels of auxin biosynthesis genes (A) and polar auxin transport genes (B) upon cycloeucalenol treatment. WT seeds were germinated on MS medium supplemented with $0.1 \%(\mathrm{v} / \mathrm{v})$ acetone (mock) or $1 \mu \mathrm{M}$ cycloeucalenol for 7 days. Then these 7 -day-old seedlings were collected for RT-qPCR analysis. The TIP41 gene was used as an internal control. The presented data are means \pm SD of $\mathrm{n}=3$ independent experiments. ${ }^{*} P<0.05$; ${ }^{* *} P<0.01$ (Student's t-test, one-tailed, two-sample equal variance).

Fig. S12. Relative transcript levels of auxin biosynthesis and polar auxin transport genes upon sitosterol treatment and ProTIR2:GUS and ProYUC9:GUS expression in seedling roots. (A and C) Relative transcript levels of auxin biosynthesis genes (A) and polar auxin transport genes (C) upon sitosterol treatment. WT seeds were germinated on MS medium supplemented with $0.1 \%(\mathrm{v} / \mathrm{v})$ chloroform (mock) or $3 \mu \mathrm{~g} \mathrm{~mL}^{-1}$ of sitosterol for 7 days. Then these 7 -dayold seedlings were collected for RT-qPCR analysis. The TIP41 gene was used as an internal control. The presented data are means \pm SD of $\mathrm{n}=3$ independent experiments. ${ }^{*} P<0.05,{ }^{* *} P<$ 0.01 (Student's t-test, one-tailed, two-sample equal variance); (B) Expression patterns of ProTIR2:GUS and ProYUC9:GUS after treatment with various concentrations of sitosterol for 5 days. The images are representative of $n=3$ independent experiments employing 7 to 17 roots per experiment.

Fig. S13. Effects of stigmasterol and cholesterol on WT and cpi1-1 root growth. (A and B) Phenotypes (A) and relative root length (B) of 7-day-old seedlings grown on MS medium supplemented with $1 \mu \mathrm{M}$ stigmasterol or $10 \mu \mathrm{M}$ cholesterol. The presented data in (B) are means \pm SD of $n=3$ independent experiments (employing 15 to 69 roots per experiment). No significant difference between mock and treatment in either WT or cpi1-1 mutant by Student's t-test (one-tailed, two-sample equal variance, $P<0.05$). Bars $=2 \mathrm{~mm}$.

Table S1. List of primers used in this study.

Purpose	Primer name	Sequence (5^{\prime} to 3^{\prime})
Genotyping	LBa1	TGGTTCACGTAGTGGGCCATC
	SAIL-LB1	TTTTCAGAAATGGATAAATAGCC
	Ds5-1	ACGGTCGGGAAACTAGCTCTAC
	cpi1-1_LP	CTCGGCTCACTCACTCACACT
	cpi1-1_RP	CTGCCGAGATAATGCTGTGCTT
	aux1-T_LP	GGTTTACTAGGAAGCTGGACTGC
	aux1-T_RP	TGGACCTGAATGTTTCACACC
	pin2-T_LP	GGTCAACGAGTGGAGCAAGT
	pin2-T_RP	GCCATTCCAAGACCAGCATCA
	wei8-1_LP	CATCAGAGAGACGGTGGTGAAC
	wei8-1_RP	GCTTTTAATGAGCTTCATGTTGG
	yuc2_1031F	GCTCAAGTGGTTTCCAGTGCA
	yuc2_1828R	GCATCCACTACTACCTTTCTAC
	yuc8_-176F	ACGCCACATGGGATCTCTTC
	yuc8_401R	GACTCACTCTTCGACACGGTC
	yuc9_LP	CTTTACTCGACCGGGCTAGG
	yuc9_RP	TTTACCGAGGGAGATTATGGG
RT-qPCR	TIP41_qF	GTATGAAGATGAACTGGCTGACAAT
	TIP41_qR	ATCAACTCTCAGCCAAAATCGCAAG
	PIN1_qF	TTGCTGAGCTCCTACTTAAG
	PIN1_qR	GGCATGGCTATGTTCAGTCT
	PIN2_qF	AAGTCACGTACATGCATGTG
	PIN2_qR	AGATGCCAACGATAATGAGTG
	PIN3_qF	GAGTTACCCGAACCTAATCA
	PIN3_qR	TTACTGCGTGTCGCTATAGT
	PIN4_qF	ACCACTTAACTAGAAACTTCA
	PIN4_qR	TCATTGCTTGTGGGAACTCT
	PIN7_qF	TCTAGTTGCGTTCCACTAATC
	PIN7_qR	CGGTAAAACATATGCCACCA
	AUX1_qF	GCCTCCGCTCGTCAGAAT
	AUX1_qR	ACGGTGGTGTAAAGCGGAGA

LAX1_qF	TACTCCGAGACCTTCCAACTACG
LAX1_qR	TCCACCGCCACCACTTCC
LAX2_qF	GGAGAACGGTGAGAAAGC
LAX2_qR	TCAGATAGCTTAGATTTGATGTC
LAX3_qF	GGTTTATTGGGCGTTTGG
LAX3_qR	TGATTGGTCCGAAAAAGG
YUC2_qF	ACTCGCCACGGGTTACAAAA
YUC2_qR	CAATGGCTGCACCAAGCAAT
YUC3_qF	GACATCGGAGCGTTACCCAA
YUC3_qR	GCCTCTCCTTTCCATCCGTT
YUC4_qF	ACCGACCTTTTAGGCCTTCG
YUC4_qR	TCACGGCTTGCGTCACTTTA
YUC5_qF	TTCAACGAGTGTGTCCAGTCTGCT
YUC5_qR	TCTCTGGAACAACTTTCTCCGCGT
YUC6_qF	TATACGCGGTCGGATTCACA
YUC6_qR	CCACCACAATCACTCTCACT
YUC7_qF	TACCTTGAGTCCTACGCTACCC
YUC7_qR	ACCACCAAAATCTTCTAAACCCT
YUC8_qF	CGTCTCAAGCTTCACCTTCC
YUC8_qR	AGCCACTGGTCTCATCGAAC
YUC9_qF	GACGGAGTTTGACGGAGAAG
YUC9_qR	CCCTCGGTAAAACATGAACC
ASA1_qF	GTAGAGAAGCTTATGAACATCGA
ASA1_qR	GGTGCACCACTAACTGTTCCCAC
ASB1_qF	GGGGAAGAGTCGTAGAGATGTCT
ASB1-qR	CTGGCAGAGATTGTATGTGAAGC
TAA1_qF	GATGAAGAATCGGTGGGAGA
TAA1_qR	CGGACATGCTTCTTGTCAGA

