SUPPLEMENTARY MATERIALS

Urea-peptide hybrids as VEGF-A₁₆₅/NRP-1 complex inhibitors with improved receptor affinity and biological properties

Anna K. Puszko^{1,+,*}, Piotr Sosnowski^{2,+}, Rachel Rignault-Bricard^{3,4}, Olivier Hermine^{3,4}, Gérard Hopfgartner², Karolina Pułka-Ziach¹, Yves Lepelletier^{3,4} and Aleksandra Misicka^{1,5,*}

- ¹ Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; karola@chem.uw.edu.pl
- ² Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland; piotr.sosnowski@unige.ch (P.S.); gerard.hopfgartner@unige.ch (G.H.)
- ³ Université de Paris, Imagine Institute, 24 boulevard Montparnasse, 75015 Paris, France; rachel.rignault@parisdescartes.fr (R.R.B.); ohermine@gmail.com (O.H.); y.lepelletier@gmail.com (Y.L.)
- ⁴ INSERM UMR 1163, Laboratory of cellular and molecular basis of normal hematopoiesis and hematological disorders: therapeutical implications, 24 boulevard Montparnasse, 75015 Paris, France;
- ⁵ Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland;

* Corresponding authors. Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
E-mail address: apuszko@chem.uw.edu.pl (A. K. Puszko), misicka@chem.uw.edu.pl (A. Misicka)
* These authors contributed equally to this work

Table of contents

1.	General remarks	2
2.	General scheme of Boc-protected activated building block synthesis	2
3.	Building blocks synthesis and characterisation	3
4.	Analytical data of urea-peptide hybrids	1 6
5.	Dose-response curves of urea-peptide hybrids	31
6.	Inhibitory effect on VEGF-A ₁₆₅ /NRP-1 complex formation of hybrid 10	31
7.	Analytical data of serum degradation	32
8.	2D NMR characterisation of parent peptide H ₂ N-Lys(hArg)-Dab-Oic-Arg-OH	63
9.	2D NMR characterisation of hybrid 6	66
10.	Molecular dynamics	69
11.	References	83

1. General remarks. Fmoc-Arg(Pbf) Wang resin was purchased from Activotec (Cambridge, UK). Amino acids and coupling reagents were obtained from Iris Biotech (Marktredwitz, Germany). Solvents and reagents for building block synthesis were purchased from Merck (Darmstadt, Germany). Recombinant human receptors and biotinylated human VEGF-A₁₆₅ were purchased from R&D Systems (Minneapolis, MN, USA). Chemiluminescent substrate was purchased from Thermo Scientific (Waltham, MA, USA). Microwave-assisted solid phase synthesis was carried out using CEM DiscoveryBio microwave (Matthews, NC, USA). Synthesized compounds were purified on Shimadzu Prominence semi-preparative HPLC system (Duisburg, Germany) equipped with a Phenomenex Jupiter Proteo C12 90Å 4 µm 250 x 10 mm column (Torrance, CA, USA). High resolution mass spectra (HRMS) and fragmentation spectra (MS/MS) were recorded on a SCIEX 6600TOF instrument with ESI ionization source and using infusion. The resolution power was of about 30'000 at m/z 300. The mass reported is containing the most abundant isotopes with mass error < 10 ppm. Luminescence was measured using a Tecan Infinite F200Pro microplate reader (Männedorf, Switzerland). ¹H NMR spectra were recorded on Bruker AVANCE 300 MHz. Chemical shifts are reported in parts per million (ppm). ¹H NMR splitting patterns with observed first-order coupling are designated as singlet (s), doublet (d), triplet (t) or multiplets (m). Broad peaks are designated as (b). 2D NMR spectra (COSY, TOCSY, ROESY, HSQC) were recorded on Agilent DD2 600 MHz spectrometer.

2. General scheme of Boc-protected activated building block synthesis.

Scheme S1. General scheme of the synthesis of activated building blocks with Boc-protected α -amino group.

3. Building blocks synthesis and characterisation. Thin layer chromatography (TLC) was performed on silica gel 60 F254 (Merck) with detection by UV light and charring with ninhydrin in ethanol (1g in 200mL EtOH) followed by heating. Flash column chromatography was carried out on silica gel (63-200µm).

Building blocks were prepared according to the previously described procedures [1]. The starting substrates were Fmoc or Boc protected amino acids. Briefly, the first step in the synthesis was the conversion of an amino acid into an unsymmetrical anhydride and next reduction to the corresponding amino alcohol. Then the α -amino group (Fmoc-aminoalcohols) or side chain amino group (Boc-aminoalcohols) was deprotected and converted to the -N₃ group, according to the Wong method with diazotransfer reagent. The next step in the synthesis was to the conversion of the hydroxyl group to a protected amino group by the Mitsunobu reaction with phthalimide as a nitrogen source. After removal of the phthaloyl group with hydrazine hydrate, reaction with N,N'-disuccinimidyl carbonate (DSC) was performed to obtain activated carbamates.

2,5-dioxopyrrolidin-1-yl (S)-(2-azido-5-(3-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentyl)carbamate; N_3 -Arg(Pbf) BB was characterized previously [2].

(*S*)-3-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-2-((tert-butoxycarbonyl)amino)propanoic acid; Boc-Dap(Fmoc)-ol: white solid; yield: 91% (flash chromatography: DCM/MeOH 95:5 v:v); ¹H NMR (CDCl₃, 300 MHz): δ 7.78-7.74 (m, 2H), 7.59-7.54 (m, 2H), 7.43-7.28 (m, 4H), 5.12 (bs, 1H), 5.03 (bs, 1H), 4.54-4.38 (m, 2H), 4.20 (t, *J* = 6.7 Hz, 1H), 3.60 (d, *J* = 9.8 Hz), 3.53-3.47 (t, overlapped with -CH₂ signal from Et₂O, 1H), 2.04 (bs, 2H), 1.43 (s, 9H).

Tert-butyl (*S*)-(1-azido-3-hydroxypropan-2-yl)carbamate; Boc-Dap(N₃)-ol: oil, solidified to white solid; yield: 81% (flash chromatography: AcOEt:cycloheksane 9:1, 8:2, 7:3, 1:1 v:v); ¹H NMR (CDCl₃, 300 MHz): δ 4.97 (bs, 1H), 3.83-3.63 (m, 3H), 3.52 (m, 2H), 2.02 (s, 1H), 1.45 (s, 9H).

Tert-butyl (2,5-dioxopyrrolidin-1-yl) (3-azidopropane-1,2-diyl)(*R*)-dicarbamate; Boc-Dap(N₃) BB: white solid; yield: 42%; total yield: 31%; ¹H NMR (CDCl₃, 300 MHz): δ 6.00 (t, *J* = 5.5 Hz, 1H), 4.95 (d, *J* = 8.1 Hz, 1H), 3.87 (d, *J* = 5.6 Hz, 1H), 3.51 (d, *J* = 4.6 Hz, 1H), 3.44-3.38 (m, 2H), 2.82 (s, 4H)1.71 (bs, 1H), 1.46 (s, 9H). HRMS calculated for C₁₃H₂₀N₆O₆ [M+H]⁺: 357.1517 *m/z*, found:.357.1516 *m/z*, Δ : -0.3 ppm.

(*9H*-fluoren-9-yl)methyl *tert*-butyl (4-hydroxybutane-1,3-diyl)(*S*)-dicarbamate; Boc-Dab(Fmoc)ol: white solid; yield: 92% (flash chromatography: DCM/MeOH 95:5 v:v); ¹H NMR (CDCl₃, 300 MHz): δ 7.78-7.73 (m, 2H), 7.63-7.57 (m, 2H), 7.43-7.27 (m, 4H), 5.52 (bs, 1H), 4.85 (bs, 1H), 4.39 (d, *J* = 6.0 Hz, 2H), 4.22 (t, *J* = 7.0 Hz, 1H), 3.71 (d, *J* = 8.2 Hz, 2H), 3.07 (s, 1H), 1.97 (bs, 2H), 1.75-1.55 (m, 2H), 1.46 (s, 9H).

Tert-butyl (*S*)-(4-azido-1-hydroxybutan-2-yl)carbamate; Boc-Dab(N₃)-ol: oil, solidified to white solid; yield: 87% (flash chromatography: AcOEt:cycloheksane 9:1, 8:2, 7:3, 1:1 v:v); ¹H NMR (CDCl₃,

300 MHz): δ 4.80 (bs, 1H), 3.78-3.57 (m, 3H), 3.42 (t, *J* = 6.1 Hz, 2H), 2.07 (bs, 1H), 1.89-1.65 (m, 2H), 1.45 (s, 9H).

Tert-butyl (2,5-dioxopyrrolidin-1-yl) (4-azidobutane-1,2-diyl)(*S*)-dicarbamate; Boc-Dab(N₃) BB: white solid; yield: 60%; total yield: 54%; ¹H NMR (CDCl₃, 300 MHz): δ 6.06 (t, *J* = 5.4 Hz, 1H), 4.77 (bs, 1H), 3.81 (bs, 1H), 3.49-3.3.28 (m, 4H), 2.82 (s, 4H), 1.85-1.62 (m, 2H), 1.45 (s, 9H). HRMS calculated for C₁₄H₂₂N₆O₆ [M+H]⁺: 371.1673 *m/z*, found: 371.1705 *m/z*, Δ : 7.6 ppm.

(9*H*-fluoren-9-yl)methyl *tert*-butyl (5-hydroxypentane-1,4-diyl)(*S*)-dicarbamate; Boc-Orn(Fmoc)ol: white solid; yield: 85% (flash chromatography: DCM/MeOH 95:5 v:v); ¹H NMR (CDCl₃, 300 MHz): δ 7.78-7.73 (m, 2H), 7.61-7.58 (m, 2H), 7.44-7.27 (m, 4H), 4.92 (bs, 1H), 4.66 (bs, 1H), 4.41 (d, *J* = 6.6 Hz, 2H), 4.21 (t, *J* = 6.8 Hz, 1H), 3.66 (d, *J* = 9.3 Hz, 2H, overlapped with -CH₂ signal from Et₂O), 3.22 (s, 1H), 1.87 (bs, 2H), 1.67-1.48 (m, 4H), 1.45 (s, 9H).

Tert-butyl (*S*)-(5-azido-1-hydroxypentan-2-yl)carbamate; Boc-Orn(N₃)-ol: oil, solidified to white solid; yield: 82% (flash chromatography: AcOEt:cycloheksane 9:1, 8:2, 7:3 v:v); ¹H NMR (CDCl₃, 300 MHz): δ 4.64 (bs, 1H), 3.72-3.52 (m, 3H), 3.35-3.28 (t, *J* = 6.2 Hz, 2H), 1.91 (s, 1H), 1.73-1.49 (m, 4H), 1.45 (s, 9H).

Tert-butyl (2,5-dioxopyrrolidin-1-yl) (5-azidopentane-1,2-diyl)(*S*)-dicarbamate Boc-Orn(N₃) BB: white solid; yield: 42%; total yield: 29%; ¹H NMR (CDCl₃, 300 MHz): δ 6.01 (s, 1H), 4.59 (d, *J* = 8.2 Hz, 1H), 3.72 (s, 1H), 3.43-3.21 (m, 4H), 2.82 (s, 4H), 1.74-1.54 (m, 4H), 1.45 (s, 9H). HRMS calculated for C₁₅H₂₄N₆O₆ [M+H]⁺: 385.1830 *m/z*, found: .385.1850 *m/z*, Δ : 7.6 ppm.

Benzyl *tert*-butyl (6-hydroxyhexane-1,5-diyl)(S)-dicarbamate; Boc-Lys(Z)-ol was characterized previously [3].

Tert-butyl (*S*)-(6-azido-1-hydroxyhexan-2-yl)carbamate; Boc-Lys(N₃)-ol: oil, solidified to white solid; yield: 98% (flash chromatography: AcOEt:cycloheksane 9:1, 8:2, 1:1 v:v); ¹H NMR (CDCl₃, 300 MHz): δ 4.66 (bs, 1H), 3.71-3.50 (m, 3H), 3.28 (t, *J* = 6.7 Hz, 2H), 2.30 (bs, 1H), 1.73-1.45 (m, 6H), 1.45 (s, 9H).

Tert-butyl (2,5-dioxopyrrolidin-1-yl) (6-azidohexane-1,2-diyl)(*S*)-dicarbamate; Boc-Lys(N₃) BB: white solid; yield: 50%; total yield: 46%; ¹H NMR (CDCl₃, 300 MHz): δ 6.03 (s, 1H), 4.55 (d, *J* = 7.7 Hz, 1H), 3.69 (bs, 1H), 3.42-3.32 (m, 1H), 3.28 (t, *J* = 6.6 Hz, 3H), 2.82 (s, 4H), 1.77-1.47 (m, 6H), 1.45 (s, 9H). HRMS calculated for C₁₆H₂₆N₆O₆ [M+H]⁺: 399.1986 *m/z*, found: 399.1976 *m/z*, Δ : -2.5 ppm.

(9*H*-fluoren-9-yl)methyl (*S*)-(1-hydroxy-6-(3-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)hexan-2-yl)carbamate; Fmoc-*h*Arg(Pbf)-ol: white solid; yield: 85% (flash chromatography: DCM/MeOH 95:5 v:v); ¹H NMR (CDCl₃, 300 MHz): δ 7.65 (d, *J* = 7.4 Hz, 2H), 7.49 (d, *J* = 7.4 Hz, 2H), 7.29 (t, *J* = 7.4 Hz, 2H), 7.22-7.18 (m, 2H, signal overlapped with CHCl₃), 6.46 (s, 1H), 5.40 (d, *J* = 7.2 Hz, 1H), 4.27 (d, *J* = 7.0 Hz, 2H), 4.11-4.04 (m, 1H), 3.57-3.47 (m, 2H), 3.40 (t, *J* = 7.0 Hz, 2H), 3.11 (bs, 2H), 2.84 (s, 2H), 2.48 (s, 3H), 2.41 (s, 3H), 1.99 (s, 3H), 1.57-1.37 (m, 6H), 1.36 (s, 6H).

(S)-N-(N-(5-azido-6-hydroxyhexyl)carbamimidoyl)-2,2,4,6,7-pentamethyl-2,3-

dihydrobenzofuran-5-sulfonamide; N₃-*h*Arg(Pbf)-ol: white foam; yield: 73% (flash chromatography: AcOEt:cycloheksane 9:1, 8:2, 7:3 v:v); ¹H NMR (CDCl₃, 300 MHz): δ 6.40 (s+bs, 3H), 3.69-3.52 (m, 2H), 3.43-3.35 (m, 1H), 2.23-2.14 (m, 2H), 2.95 (s, 2H), 2.55 (s, 3H), 2.48 (s, 3H), 2.09 (s, 3H), 1.63-1.1.47 (m, 6H), 1.46 (s, 6H).

2,5-dioxopyrrolidin-1-yl (*S*)-(2-azido-6-(3-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-yl)sulfonyl)guanidino)hexyl)carbamate; N₃-hArg (Pbf) BB: white solid; yield: 35%; total yield: 18%; ¹H NMR (CDCl₃, 300 MHz): δ 6.48 (bs, 1H), 3.62-3.57 (m, 1H), 3.46-3.39 (m, 1H), 3.35-3.20 (m, 3H), 2.98 (s, 2H), 2.85 (s, 4H), 2.58 (s, 3H), 2.52 (s, 3H), 2.12 (s, 3H), 1.74-1.56 (m, 6H), 1.27 (s, 6H). HRMS calculated for C₂₅H₃₆N₈O₇S [M+H]⁺: 593.2500 *m/z*, found:593.2473 *m/z*, Δ : -4.6 ppm.

Figure S1. ¹H NMR (300MHz, CDCl₃) of Boc-Dap(Fmoc)-ol, Boc-Dap(N₃)-ol and Boc-Dap(N₃) BB and HRMS spectrum of Boc-Dap(N₃) BB.

Figure S2. ¹H NMR (300MHz, CDCl₃) of Boc-Dab(Fmoc)-ol, Boc-Dab(N₃)-ol and Boc-Dab(N₃) BB and HRMS spectrum of Boc-Dab(N₃) BB.

Figure S3. ¹H NMR (300MHz, CDCl₃) of Boc-Orn(Fmoc)-ol, Boc-Orn(N₃)-ol and Boc-Orn(N₃) BB and HRMS spectrum of Boc-Orn(N₃) BB.

Figure S4. ${}^{1}H$ NMR (300MHz, CDCl₃) of Boc-Lys(N₃)-ol and Boc-Lys(N₃) BB and HRMS spectrum of Boc-Lys(N₃) BB.

Figure S5. ¹H NMR (300MHz, CDCl₃) of Fmoc-*h*Arg(Pbf)-ol, N₃-*h*Arg(Pbf)-ol and N₃-*h*Arg(Pbf) BB and HRMS spectrum of N₃-*h*Arg(Pbf) BB.

4. Analytical data of urea-peptide hybrids. Purity of compounds (> 98%) was determined using RP-HPLC with UV detection. Analysis of pure products was carried out by HPLC with a Shimazu Prominence HPLC system (Duisburg, Germany) with binary pump system LC-20AD and autosampler SIL-20AC HT coupled to a SPD-20A UV detector. Chromatographic separation was achieved on Phenomenex Jupiter Proteo C12 column (250 × 4.6 mm) (Torrance, CA, USA) at 35°C. Mobile phases consisted of H₂O:TFA (99.9:0.1 v/v, phase A) and ACN:TFA (99.9:0.1 v/v, phase B) at a flow rate of 1 mL/min. Elution was performed with gradient as follows: 0 – 20% B in 20 min.

1 mg/ml solution of each compound was prepared in H₂O and 10 μ L was injected. UV detection was performed at $\lambda = 200$ nm. Purity of compounds was estimated using peak area.

Background substracted high resolution resolution mass spectra (HRMS) and high resolution fragmentation spectra (MS/MS) were recorded on a SCIEX TripleTOF 6600 instrument with ESI ionization source and by infusion at 10 μ L/min. 0.1 mg/ml solutions of each compound were prepared in 50% MeOH 0.1% FA.

The electrospray ionization (ESI) was operated in positive mode. Curtain gas (CUR) was set to 25 psi. Nebulizing gas (GS1) was set to 20 psi and drying gas (GS2) was set to 15 psi. Needle voltage (ISVF) was set to 5kV and temperature (TEM) was set to 50°C. Declustering potential (DP) was set to 80 V. To induce fragmentation, collision energy voltage (CE) was set to 30 V and collision energy spread voltage (CES) was set to 15 V. Mass spectrometer was operated in TOFMS mode in range the 100-2000 m/z and in Product Ion (MS/MS) mode in range the 100-1000 m/z.

Theoretical [M+nH]ⁿ⁺ values and errors were calculated using Mass Calculators tool integrated with spectrometer operating software.

Compound	MW [g/mol]	MW+TFA [g/mol]	Yield	RT [min]
1	724.9	1294.9	59%	18.66
2	724.9	1294.9	63%	18.46
3	724.9	1294.9	51%	18.84
4	724.9	1294.9	65%	18.51
5	724.9	1294.9	55%	18.31
6	724.9	1294.9	59%	18.98
7	725.9	1295.9	55%	18.51
8	725.9	1295.9	63%	18.40
9	725.9	1295.9	51%	18.51
10	1083.2	1539.2	39%	19.90

Table S1. Molecular weight, reaction yields and HPLC analytical data of compounds 1-10.

Compound	Molecular	[M+H] ⁺	[M+H] ⁺	Error	[M+2H] ²⁺	[M+2H] ²⁺	Error	[M+3H] ³⁺	[M+3H] ³⁺	Error
Compound	formula	calculated	found	[ppm]	calculated	found	[ppm]	calculated	found	[ppm]
1	$C_{31}H_{60}N_{14}O_6$	725.4893	725.4894	0.2	363.2483	363.2500	4.7	242.5013	-	-
2	$C_{31}H_{60}N_{14}O_6$	725.4893	725.48692	-3.5	363.2483	363.24852	0.4	242.5013	-	-
3	$C_{31}H_{60}N_{14}O_6$	725.4893	725.4871	-3.0	363.2483	363.24840	1.7	242.5013	-	-
4	$C_{31}H_{60}N_{14}O_6$	725.4893	725.4886	-0.9	363.2483	363.2483	0.0	242.5013	242.5014	0.4
5	$C_{31}H_{60}N_{14}O_6$	725.4893	725.4883	-1.4	363.2483	363.2482	-0.3	242.5013	242.5013	0.0
6	$C_{31}H_{60}N_{14}O_6$	725.4893	725.4871	-3.1	363.2483	363.2479	-1.0	242.5013	242.5012	-0.2
7	C ₃₀ H ₅₉ N ₁₅ O ₆	726.4846	726.4811	-4.8	363.7459	363.7459	0.0	242.8330	242.8328	-0.8
8	C ₃₀ H ₅₉ N ₁₅ O ₆	726.4846	726.4811	-4.8	363.7459	363.7459	0.0	242.8330	242.8326	-1.6
9	$C_{30}H_{59}N_{15}O_6$	726.4846	726.4818	-3.9	363.7459	363.7461	0.5	242.8330	242.8325	-2.1
10	$C_{52}H_{70}N_{14}O_{12}$	1083.5370	1083.5359	-1.0	542.2722	542.2725	0.6	361.8505	361.8516	3.0

 Table S2. HRMS analytical data of compounds 1-10.

1	fragment formula	<i>m/z</i> calculated	<i>m/z</i> found	Error [ppm]	2	fragment formula	<i>m/z</i> calculated	<i>m/z</i> found	Error [ppm]	3	fragment formula	<i>m/z</i> calculated	<i>m/z</i> found	Error [ppm]
	$C_{6}H_{15}N_{4}O_{2}{}^{+}$	175.1190	175.1197	4.0		$C_{6}H_{15}N_{4}O_{2}^{+}$	175.1190	175.1184	-3.4		$C_5H_{11}N_4O^+$	143.0927	143.0927	0.0
	$C_{11}H_{28}N_7O^+ \\$	274.2350	274.2370	7.3		$C_{11}H_{28}N_7O^+ \\$	274.2350	274.2347	-1.1		$C_{6}H_{15}N_{4}O_{2}^{+}$	175.1190	175.1193	1.7
	$C_{12}H_{26}N_7O_2{}^+$	300.2143	300.2162	6.3		$C_{12}H_{26}N_7O_2{}^+$	300.2143	300.2139	-1.3		$C_{11}H_{28}N_7O^+ \\$	274.2350	274.2358	2.9
	$C_{15}H_{28}N_5O_3{}^+$	326.2187	326.2206	5.8		$C_{15}H_{28}N_5O_3{}^+$	326.2187	326.2184	-0.9		$C_{12}H_{26}N_7O_2{}^+$	300.2143	300.2153	3.3
	$C_{16}H_{34}N_9O_3{}^+$	400.2779	400.2794	3.7		$C_{16}H_{34}N_9O_3{}^+$	400.2779	400.2773	-1.5		$C_{15}H_{28}N_5O_3{}^+$	326.2187	326.2200	4.0
	$C_{19}H_{36}N_7O_4{}^+$	426.2823	426.2848	5.9		$C_{19}H_{36}N_7O_4{}^+$	426.2823	426.2818	-1.2		$C_{16}H_{34}N_9O_3{}^+$	400.2779	400.2790	2.7
	$C_{20}H_{34}N_7O_5{}^+$	452.2616	452.2640	5.3		$C_{20}H_{34}N_7O_5{}^+$	452.2616	452.2616	-1.1		$C_{19}H_{36}N_7O_4{}^+$	426.2823	426.2835	2.8
											$C_{20}H_{34}N_7O_5{}^+$	452.2616	452.2629	2.9
											$C_{26}H_{51}N_{10}O_5^+$	583.4038	583.4056	3.1
											$C_{31}H_{58}N_{13}O_{6}{}^{+}$	708.4628	708.4657	4.1
-														
4	fragment formula	<i>m/z</i> calculated	[M+H] ⁺ found	Error [ppm]	5	fragment formula	<i>m/z</i> calculated	<i>m/z</i> found	Error [ppm]	6	fragment formula	<i>m/z</i> calculated	<i>m/z</i> found	Error [ppm]
4	fragment formula C ₆ H ₁₄ N ₅ O ⁺	<i>m/z</i> calculated 172.1193	[M+H] ⁺ found 172.1194	Error [ppm] 0.6	5	fragment formula C ₆ H ₁₅ N ₄ O ₂ ⁺	<i>m/z</i> calculated 175.1190	<i>m/z</i> found 175.1194	Error [ppm] 2.3	6	fragment formula C ₆ H ₁₅ N ₄ O ₂ ⁺	<i>m/z</i> <u>calculated</u> 175.1190	<i>m/z</i> <u>found</u> 175.1181	Error [ppm] -5.1
4	$\label{eq:constraint} \begin{array}{c} \mbox{fragment} \\ \mbox{formula} \\ \mbox{C}_{6} \mbox{H}_{14} \mbox{N}_{5} \mbox{O}^{+} \\ \mbox{C}_{6} \mbox{H}_{15} \mbox{N}_{4} \mbox{O}_{2}^{+} \end{array}$	<i>m/z</i> calculated 172.1193 175.1190	[M+H] ⁺ found 172.1194 175.1193	Error [ppm] 0.6 1.7	5	$\label{eq:constraint} \begin{array}{c} \mbox{fragment} \\ \mbox{formula} \\ \mbox{C}_6 \mbox{H}_{15} \mbox{N}_4 \mbox{O}_2^+ \\ \mbox{C}_7 \mbox{H}_{16} \mbox{N}_5 \mbox{O}^+ \end{array}$	<i>m/z</i> calculated 175.1190 186.1349	<i>m/z</i> <u>found</u> 175.1194 186.1355	Error [ppm] 2.3 3.2	6	$\label{eq:fragment} \begin{array}{c} \mbox{fragment} \\ \mbox{formula} \\ \mbox{C}_6 \mbox{H}_{15} \mbox{N}_4 \mbox{O}_2^+ \\ \mbox{C}_8 \mbox{H}_{18} \mbox{N}_5 \mbox{O}^+ \end{array}$	<i>m/z</i> calculated 175.1190 200.1506	<i>m/z</i> <u>found</u> 175.1181 200.1499	Error [ppm] -5.1 -3.5
4	$\label{eq:constraint} \begin{array}{c} {\rm fragment} \\ {\rm formula} \\ {\rm C_6H_{14}N_5O^+} \\ {\rm C_6H_{15}N_4O_2^+} \\ {\rm C_{15}H_{25}N_4O_3^+} \end{array}$	<i>m/z</i> calculated 172.1193 175.1190 309.1921	[M+H] ⁺ found 172.1194 175.1193 309.1931	Error [ppm] 0.6 1.7 3.2	5	$\label{eq:1} \begin{array}{c} \mbox{fragment} \\ \mbox{formula} \\ \mbox{C}_{6}\mbox{H}_{15}\mbox{N}_{4}\mbox{O}_{2}^{+} \\ \mbox{C}_{7}\mbox{H}_{16}\mbox{N}_{5}\mbox{O}^{+} \\ \mbox{C}_{15}\mbox{H}_{25}\mbox{N}_{4}\mbox{O}_{3}^{+} \end{array}$	<i>m/z</i> calculated 175.1190 186.1349 309.1921	<i>m/z</i> found 175.1194 186.1355 309.1935	Error [ppm] 2.3 3.2 4.5	6	$\begin{tabular}{l} fragment \\ formula \end{tabular} \\ C_6H_{15}N_4O_2^+ \\ C_8H_{18}N_5O^+ \\ C_{15}H_{28}N_5O_3^+ \end{tabular} \end{tabular}$	<i>m/z</i> calculated 175.1190 200.1506 326.2187	<i>m/z</i> found 175.1181 200.1499 326.2178	Error [ppm] -5.1 -3.5 -2.5
4	$\label{eq:constraint} \begin{array}{c} {\bf fragment} \\ {\bf formula} \\ C_6 H_{14} N_5 O^+ \\ C_6 H_{15} N_4 O_2^+ \\ C_{15} H_{25} N_4 O_3^+ \\ C_{15} H_{28} N_5 O_3^+ \end{array}$	<i>m/z</i> calculated 172.1193 175.1190 309.1921 326.2187	[M+H] ⁺ found 172.1194 175.1193 309.1931 326.2200	Error [ppm] 0.6 1.7 3.2 4.0	5	$\label{eq:hyperbolic} \begin{array}{c} \mbox{fragment} \\ \mbox{formula} \\ \mbox{C}_{6}\mbox{H}_{15}\mbox{N}_{4}\mbox{O}_{2}^{+} \\ \mbox{C}_{7}\mbox{H}_{16}\mbox{N}_{5}\mbox{O}^{+} \\ \mbox{C}_{15}\mbox{H}_{25}\mbox{N}_{4}\mbox{O}_{3}^{+} \\ \mbox{C}_{15}\mbox{H}_{28}\mbox{N}_{5}\mbox{O}_{3}^{+} \end{array}$	<i>m/z</i> calculated 175.1190 186.1349 309.1921 326.2187	<i>m/z</i> found 175.1194 186.1355 309.1935 326.2202	Error [ppm] 2.3 3.2 4.5 4.6	6	$\begin{tabular}{l} fragment \\ formula \end{tabular} \\ C_6H_{15}N_4O_2^+ \\ C_8H_{18}N_5O^+ \\ C_{15}H_{28}N_5O_3^+ \\ C_{16}H_{34}N_9O_3^+ \end{tabular} \end{tabular}$	<pre>m/z calculated 175.1190 200.1506 326.2187 400.2779</pre>	<i>m/z</i> <u>found</u> 175.1181 200.1499 326.2178 400.2772	Error [ppm] -5.1 -3.5 -2.5 -1.7
4	$\label{eq:Generalized} $$ \frac{fragment}{formula}$$ C_6H_{14}N_5O^+$$ C_6H_{15}N_4O_2^+$$ C_{15}H_{25}N_4O_3^+$$ C_{15}H_{28}N_5O_3^+$$ C_{25}H_{48}N_9O_5^+$$ }$	<i>m/z</i> calculated 172.1193 175.1190 309.1921 326.2187 554.3773	[M+H] ⁺ found 172.1194 175.1193 309.1931 326.2200 554.3790	Error [ppm] 0.6 1.7 3.2 4.0 3.1	5	$\label{eq:ragment} $$ fragment formula $$ C_6H_{15}N_4O_2^+$$ C_7H_{16}N_5O^+$$ C_{15}H_{25}N_4O_3^+$$ C_{15}H_{28}N_5O_3^+$$ C_{16}H_{34}N_9O_3^+$$ $$ C_{16}H_{34}N_9O_3^+$$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $	<i>m/z</i> calculated 175.1190 186.1349 309.1921 326.2187 400.2779	<i>m/z</i> found 175.1194 186.1355 309.1935 326.2202 400.2790	Error [ppm] 2.3 3.2 4.5 4.6 2.7	6	$\begin{tabular}{l} fragment \\ formula \end{tabular} \\ C_6H_{15}N_4O_2^+ \\ C_8H_{18}N_5O^+ \\ C_{15}H_{28}N_5O_3^+ \\ C_{16}H_{34}N_9O_3^+ \\ C_{19}H_{36}N_7O_4^+ \end{tabular} \end{tabular}$	<pre>m/z calculated 175.1190 200.1506 326.2187 400.2779 426.2823</pre>	<i>m/z</i> found 175.1181 200.1499 326.2178 400.2772 426.2834	Error [ppm] -5.1 -3.5 -2.5 -1.7 -2.1
4	$\label{eq:response} \begin{array}{c} \mbox{fragment}\\ \mbox{formula} \\ C_6H_{14}N_5O^+ \\ C_6H_{15}N_4O_2^+ \\ C_{15}H_{25}N_4O_3^+ \\ C_{15}H_{28}N_5O_3^+ \\ C_{25}H_{48}N_9O_5^+ \\ C_{26}H_{26}N_9O_6^+ \end{array}$	<i>m/z</i> calculated 172.1193 175.1190 309.1921 326.2187 554.3773 580.3566	[M+H] ⁺ found 172.1194 175.1193 309.1931 326.2200 554.3790 580.3585	Error [ppm] 0.6 1.7 3.2 4.0 3.1 3.3	5	$\label{eq:ragment} $$ fragment \\ formula $$ C_6H_{15}N_4O_2^+$$ C_7H_{16}N_5O^+$$ C_{15}H_{25}N_4O_3^+$$ C_{15}H_{28}N_5O_3^+$$ C_{16}H_{34}N_9O_3^+$$ C_{19}H_{36}N_7O_4^+$$ $$ $$ C_{19}H_{36}N_7O_4^+$$ $$ $$	<i>m/z</i> calculated 175.1190 186.1349 309.1921 326.2187 400.2779 426.2823	<i>m/z</i> found 175.1194 186.1355 309.1935 326.2202 400.2790 426.2834	Error [ppm] 2.3 3.2 4.5 4.6 2.7 2.6	6	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	m/z calculated 175.1190 200.1506 326.2187 400.2779 426.2823 526.3460	<i>m/z</i> found 175.1181 200.1499 326.2178 400.2772 426.2834 526.3449	Error [ppm] -5.1 -3.5 -2.5 -1.7 -2.1 -2.1
4	$\label{eq:response} \begin{array}{c} \mbox{fragment} \\ \mbox{formula} \\ \mbox{C}_{6}\mbox{H}_{14}\mbox{N}_{5}\mbox{O}^{+} \\ \mbox{C}_{6}\mbox{H}_{15}\mbox{N}_{4}\mbox{O}_{2}^{+} \\ \mbox{C}_{15}\mbox{H}_{25}\mbox{N}_{4}\mbox{O}_{3}^{+} \\ \mbox{C}_{15}\mbox{H}_{28}\mbox{N}_{5}\mbox{O}_{3}^{+} \\ \mbox{C}_{25}\mbox{H}_{48}\mbox{N}_{9}\mbox{O}_{5}^{+} \\ \mbox{C}_{26}\mbox{H}_{26}\mbox{N}_{9}\mbox{O}_{6}^{+} \\ \mbox{C}_{31}\mbox{H}_{58}\mbox{N}_{13}\mbox{O}_{6}^{+} \end{array}$	<i>m/z</i> calculated 172.1193 175.1190 309.1921 326.2187 554.3773 580.3566 708.4628	[M+H] ⁺ found 172.1194 175.1193 309.1931 326.2200 554.3790 580.3585 708.4656	Error [ppm] 0.6 1.7 3.2 4.0 3.1 3.3 4.0	5	$\label{eq:ragment} $$ formula$ $$ C_6H_{15}N_4O_2^+$ $$ C_7H_{16}N_5O^+$ $$ C_{15}H_{25}N_4O_3^+$ $$ C_{15}H_{28}N_5O_3^+$ $$ C_{16}H_{34}N_9O_3^+$ $$ C_{19}H_{36}N_7O_4^+$ $$ C_{24}H_{46}N_9O_5^+$ $$ $$ $$ C_{24}H_{46}N_9O_5^+$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	<i>m/z</i> calculated 175.1190 186.1349 309.1921 326.2187 400.2779 426.2823 540.3616	<i>m/z</i> found 175.1194 186.1355 309.1935 326.2202 400.2790 426.2834 540.3636	Error [ppm] 2.3 3.2 4.5 4.6 2.7 2.6 3.7	6	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	m/z calculated 175.1190 200.1506 326.2187 400.2779 426.2823 526.3460 552.3253	<i>m/z</i> found 175.1181 200.1499 326.2178 400.2772 426.2834 526.3449 552.3240	Error [ppm] -5.1 -3.5 -2.5 -1.7 -2.1 -2.1 -2.4
4	$\label{eq:response} \begin{array}{c} \mbox{fragment}\\ \mbox{formula} \\ C_6H_{14}N_5O^+ \\ C_6H_{15}N_4O_2^+ \\ C_{15}H_{25}N_4O_3^+ \\ C_{15}H_{28}N_5O_3^+ \\ C_{25}H_{48}N_9O_5^+ \\ C_{26}H_{26}N_9O_6^+ \\ C_{31}H_{58}N_{13}O_6^+ \end{array}$	<i>m/z</i> calculated 172.1193 175.1190 309.1921 326.2187 554.3773 580.3566 708.4628	[M+H] ⁺ found 172.1194 175.1193 309.1931 326.2200 554.3790 580.3585 708.4656	Error [ppm] 0.6 1.7 3.2 4.0 3.1 3.3 4.0	5	$\label{eq:ragment} formula \\ C_6H_{15}N_4O_2^+ \\ C_7H_{16}N_5O^+ \\ C_{15}H_{25}N_4O_3^+ \\ C_{15}H_{28}N_5O_3^+ \\ C_{16}H_{34}N_9O_3^+ \\ C_{19}H_{36}N_7O_4^+ \\ C_{24}H_{46}N_9O_5^+ \\ C_{25}H_{44}N_9O_6^+ \\ \end{array}$	<i>m/z</i> calculated 175.1190 186.1349 309.1921 326.2187 400.2779 426.2823 540.3616 566.3410	<i>m/z</i> found 175.1194 186.1355 309.1935 326.2202 400.2790 426.2834 540.3636 566.3431	Error [ppm] 2.3 3.2 4.5 4.6 2.7 2.6 3.7 3.7	6	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	m/z calculated 175.1190 200.1506 326.2187 400.2779 426.2823 526.3460 552.3253 708.4628	<i>m/z</i> found 175.1181 200.1499 326.2178 400.2772 426.2834 526.3449 552.3240 708.4616	Error [ppm] -5.1 -3.5 -2.5 -1.7 -2.1 -2.1 -2.1 -2.4 -1.7
4	$\label{eq:response} \begin{array}{c} \mbox{fragment} \\ \mbox{formula} \\ C_6H_{14}N_5O^+ \\ C_6H_{15}N_4O_2^+ \\ C_{15}H_{25}N_4O_3^+ \\ C_{15}H_{28}N_5O_3^+ \\ C_{25}H_{48}N_9O_5^+ \\ C_{26}H_{26}N_9O_6^+ \\ C_{31}H_{58}N_{13}O_6^+ \end{array}$	<i>m/z</i> calculated 172.1193 175.1190 309.1921 326.2187 554.3773 580.3566 708.4628	[M+H] ⁺ found 172.1194 175.1193 309.1931 326.2200 554.3790 580.3585 708.4656	Error [ppm] 0.6 1.7 3.2 4.0 3.1 3.3 4.0	5	$\label{eq:ragment} formula \\ \hline C_6H_{15}N_4O_2^+ \\ \hline C_7H_{16}N_5O^+ \\ \hline C_{15}H_{25}N_4O_3^+ \\ \hline C_{15}H_{28}N_5O_3^+ \\ \hline C_{16}H_{34}N_9O_3^+ \\ \hline C_{19}H_{36}N_7O_4^+ \\ \hline C_{24}H_{46}N_9O_5^+ \\ \hline C_{25}H_{44}N_9O_6^+ \\ \hline C_{31}H_{58}N_{13}O_6^+ \\ \end{matrix}$	<i>m/z</i> calculated 175.1190 186.1349 309.1921 326.2187 400.2779 426.2823 540.3616 566.3410 708.4628	<i>m/z</i> found 175.1194 186.1355 309.1935 326.2202 400.2790 426.2834 540.3636 566.3431 708.4659	Error [ppm] 2.3 3.2 4.5 4.6 2.7 2.6 3.7 3.7 4.4	6	$\begin{tabular}{l} fragment \\ formula \end{tabular} \\ C_6H_{15}N_4O_2^+ \\ C_8H_{18}N_5O^+ \\ C_{15}H_{28}N_5O_3^+ \\ C_{16}H_{34}N_9O_3^+ \\ C_{19}H_{36}N_7O_4^+ \\ C_{23}H_{44}N_9O_5^+ \\ C_{24}H_{42}N_9O_6^+ \\ C_{31}H_{58}N_{13}O_6^+ \end{tabular}$	<i>m/z</i> calculated 175.1190 200.1506 326.2187 400.2779 426.2823 526.3460 552.3253 708.4628	<i>m/z</i> found 175.1181 200.1499 326.2178 400.2772 426.2834 526.3449 552.3240 708.4616	Error [ppm] -5.1 -3.5 -2.5 -1.7 -2.1 -2.1 -2.1 -2.4 -1.7

 Table S3. MS/MS analytical data of compounds 1-10.

7	fragment	m/z	m/z	Error	Q	fragment	m/z	m/z	Error	0	fragment	m/z	m/z	Error
	formula	calculated	found	[ppm]	0	formula	calculated	found	[ppm]	,	formula	calculated	found	[ppm]
	$C_{6}H_{15}N_{4}O_{2}{}^{+}$	175.1190	175.1184	-3.4		$C_6H_{14}N_5O^+$	172.1193	172.1192	-0.6		$C_5H_{12}N_5O^+$	158.1036	158.1036	0.0
	$C_7H_{16}N_5O^+$	186.1349	186.1345	-2.5		$C_{6}H_{15}N_{4}O_{2}^{+}$	175.1190	175.1190	0.0		$C_{6}H_{15}N_{4}O_{2}^{+}$	175.1190	175.1194	2.3
	$C_{10}H_{27}N_8O^+$	275.2302	275.2300	-0.7		$C_{10}H_{27}N_8O^+ \\$	275.2302	275.2310	2.9		$C_{15}H_{28}N_5O_3{}^+$	326.2187	326.2200	4.0
	$C_{11}H_{25}N_8O_2{}^+$	301.2095	301.2091	-1.3		$C_{11}H_{25}N_8O_2{}^+$	301.2095	301.2100	1.7		$C_{19}H_{36}N_7O_4{}^+$	426.2823	426.2834	2.6
	$C_{15}H_{28}N_5O_3{}^+$	326.2187	326.2184	-0.9		$C_{15}H_{28}N_5O_3{}^+$	326.2187	326.2194	2.1		$C_{20}H_{34}N_7O_5{}^+$	452.2616	452.2628	2.7
	$C_{19}H_{36}N_7O_4{}^+$	426.2823	426.2823	-1.4		$C_{19}H_{36}N_7O_4{}^+$	426.2823	426.2828	1.2		$C_{25}H_{49}N_{10}O_{5}^{+}$	569.3882	569.3897	2.6
	$C_{20}H_{34}N_7O_5{}^+$	452.2616	452.2609	-1.5		$C_{20}H_{34}N_7O_5{}^+$	452.2616	452.2616	1.1		$C_{26}H_{47}N_{10}O_{6}{}^{+}$	595.3675	595.3695	3.4
	$C_{23}H_{45}N_{10}O_5{}^+$	541.3569	541.3563	-1.1		$C_{24}H_{47}N_{10}O_5{}^+$	555.3725	555.3736	2.0		$C_{30}H_{57}N_{14}O_6$	709.4580	709.4609	4.1
	$C_{24}H_{43}N_{10}O_6{}^+$	567.3362	567.3355	-1.2		$C_{25}H_{45}N_{10}O_{6}{}^{+}$	581.3518	581.3526	1.4					
						$C_{30}H_{57}N_{14}O_6$	709.4580	709.4597	2.4					

10	fragment	m/z	m/z	Error
10	formula	calculated	found	[ppm]
	$C_7 H_{20} N_5^+$	174.1713	174.1713	0.0
	$C_{6}H_{15}N_{4}O_{2}{}^{+}$	175.1190	175.1190	-0.6
	$C_{15}H_{25}N_4O_3{}^+$	309.1921	309.1925	1.3
	$C_{15}H_{28}N_5O_3{}^+$	326.2187	326.2190	0.9
	$C_{15}H_{28}N_5O_3{}^+$	326.2187	326.2190	0.9
	$C_{25}H_{19}N_2O_7{}^+$	459.1187	459.1187	0.0
	$C_{29}H_{27}N_4O_8{}^+$	559.1823	559.1815	-1.4
	$C_{37}H_{44}N_9O_9{}^+$	758.3247	758.3257	-1.3
	$C_{31}H_{58}N_{13}O_{6}^{+}$	708.4628		

Compound 1: H₂N-Dab^U(hArg)-Dab-Oic-Arg-OH

Figure S6. HPLC chromatogram of hybrid 1 at 200 nm, HRMS spectrum (value in bracket represent the charge state) and MS/MS fragmentation of [M+H]⁺.

Compound 2: H₂N-Orn^U(Arg)-Dab-Oic-Arg-OH

Figure S7. HPLC chromatogram of hybrid 2 at 200 nm, HRMS spectrum (value in bracket represent the charge state) and MS/MS fragmentation of [M+H]⁺.

Compound 3: H₂N-Lys^U(gDab)-Dab-Oic-Arg-OH

Figure S8. HPLC chromatogram of hybrid 3 at 200 nm, HRMS spectrum (value in bracket represent the charge state) and MS/MS fragmentation of [M+H]⁺.

Compound 4: H2N-Lys(gDab^U)-Dab-Oic-Arg-OH

mAU (x1,000)

Figure S9. HPLC chromatogram of hybrid 4 at 200 nm, HRMS spectrum (value in bracket represent the charge state) and MS/MS fragmentation of [M+H]⁺.

Compound 5: H2N-Orn(Arg^U)-Dab-Oic-Arg-OH

Figure S10. HPLC chromatogram of hybrid 5 at 200 nm, HRMS spectrum (value in bracket represent the charge state) and MS/MS fragmentation of [M+H]⁺.

Compound 6: H₂N-Dab(hArg^U)-Dab-Oic-Arg-OH

Figure S11. HPLC chromatogram of hybrid 6 at 200 nm, HRMS spectrum (value in bracket represent the charge state) and MS/MS fragmentation of [M+H]⁺.

Compound 7: H₂N-Dap^U(Arg^U)-Dab-Oic-Arg-OH

Figure S12. HPLC chromatogram of hybrid 7 at 200 nm, HRMS spectrum (value in bracket represent the charge state) and MS/MS fragmentation of [M+H]⁺.

Compound 8: H2N-Dab^U(gDab^U)-Dab-Oic-Arg-OH

Figure S13. HPLC chromatogram of hybrid 8 at 200 nm, HRMS spectrum (value in bracket represent the charge state) and MS/MS fragmentation of [M+H]⁺.

Compound 9: H₂N-Orn^U(gDap^U)-Dab-Oic-Arg-OH

Figure S14. HPLC chromatogram of hybrid 9 at 200 nm, HRMS spectrum (value in bracket represent the charge state) and MS/MS fragmentation of [M+H]⁺.

Compound 10: 5/6-FAM-Dab(hArg^U)-Dab-Oic-Arg-OH

Figure S15. HPLC chromatogram of hybrid 10 at 200 nm, HRMS spectrum (value in bracket represent the charge state) and MS/MS fragmentation of [M+H]⁺.

5. Dose-response curves of urea-peptide hybrids. The concentration-dependent inhibitory dose-curve data were plotted as percentage inhibition normalized to controls with applied curve fits calculated using GraphPad Prism (Version-5.01, GraphPad software). Data are presented as log(inhibitor) versus normalized response-variable slope. Error bars are representing means +/- SEM for 2 or 3 independent experiments. Top and bottom plateau of each curve was constrained to be a constant value equal to the mean of the positive control values and to the mean of the NS values, respectively.

Figure S16. Dose-response curves of the best urea-peptide hybrids 4-6.

6. Inhibitory effect on VEGF-A₁₆₅/NRP-1 complex formation of hybrid 10.

Table S4. Urea-pep	tide hybrid 10 inhibito	ry effect on VEGF-A ₁₆₅ /NRP-1	complex formation.
--------------------	--------------------------------	---	--------------------

Compound	Sequence	logIC ₅₀ ± SEM	IC50 [µM]
10	5(6)-FAM-Dab(hArg ^U)Dab-Oic-Arg-OH	-5.39 ± 0.03	4.04

R²=0.99; compound was tested in the concentrations range $0.05 - 10 \ \mu M$.

7. Analytical data of serum degradation. Analysis of plasma degradation products was carried out by HPLC-ESI-Q-TOF-MS with a Shimadzu Nexera HPLC system consisting of LC-30AD quaternary pump (LPGE), autosampler SIL-30AC and CTO30A column oven controlled by CBM20Alite controller. HPLC system was coupled to TripleTOF®5600 mass spectrometer equipped with a DuoSprayTM ion source. Chromatographic separation was achieved on Waters ACQUITY UPLC CSH130 C18 1.7 μ column (150 × 2.1 mm) at 40°C. Mobile phases were 10 mM ammonium formate and 0.1% FA in water (phase A), 10 mM ammonium formate and 0.1% FA in 80% acetonitrile (phase B) at total flow rate of 0.3 mL/min.

Elution was performed with a gradient as follows: 0-1min 0%B, 1-7 min 0-30% B, 7-8 min 30-100% B, 8-9 min 10% B. The column was reconditioned at 0%B for 7 min, resulting in total time of analysis t=17min. The injection volume was 30 μ L. Retention time is only given for untouched compound and identified degradation products. Other signals were not identified and are supposedly from plasma and its natural degradation in time.

The electrospray ionization (ESI) was operated in positive mode. Curtain gas (CUR) was set to 25 psi. Nebulizing gas (GS1) was set to 30 psi and drying gas (GS2) was set to 40 psi. Needle voltage (ISVF) was set to 5kV and temperature (TEM) was set to 500°C. Declustering potential was set to 80V.

Mass spectrometer was operated in mixed HRMS/SWATH-MS/MS acquisition mode with total cycle time of 510 ms. MS1 experiment was performed in TOFMS mode in mass range 50-1000 with 100 ms accumulation time. MS2 experiment consisted of 12 independent 50 Da SWATH windows covering mass range of 150-750, with 30 ms accumulation time per each window. To induce fragmentation, collision energy voltage (CE) was set to 35 V and collision energy spread voltage (CES) was set to 15 V.

RT [min]	$[\mathbf{M}\mathbf{+}\mathbf{H}]^{+}$ found	[M+H] ⁺ calc.	Error [ppm]	Formula	Predicted structure
5.27	724.4939	724.4941	-0.3	$C_{32}H_{62}N_{13}O_6^+$	$HN \underset{NH_{2}}{\overset{H}{}} H \underset{NH_{2}}{\overset{O}{}} H \underset{H}{\overset{O}{}} H \underset{H}{\overset{H}{}} H \underset{H}{\overset{H}{}} H \underset{H}{\overset{H}{}} H \underset{H}{\overset{H}{}} H \underset{H}{\overset{H}{}} H \underset{H}{\overset{H}{}} H \underset{H}{\overset{H}{} H \underset{H}{\overset{H}{}} H \underset{H}{\overset{H}{}} H \underset{H}{\overset{H}{}} H \underset{H}{\overset{H}{} H \underset{H}{} H \underset{H}{$
5.39	568.3919	569.3929	-1.8	$C_{26}H_{50}N_9O_5{}^+$	
2.87	554.3761	554.3773	-2.2	$C_{25}H_{48}N_9O_5^+$	H_2N
3.54	426.2814	426.2823	-2.1	$C_{19}H_{36}N_7O_4^+$	
6.06	170.1177	170.1176	0.6	$C_9H_{16}NO_2{}^+$	HNW HNW

Table S5. Identified substrate and products of parent peptide after 8h of incubation in human serum.

Figure S17. XIC, MS/MS spectra and MS/MS analytical data of parent peptide after 8h degradation in human serum.

Figure S18. XIC, MS/MS spectra and MS/MS analytical data of enzymatic hydrolysis product 568.3919 m/z.

Figure S19. XIC, MS/MS spectra and MS/MS analytical data of 554.3761 *m/z*.

229.1659

309.1921

326.2187

380.2656

229.1649

309.1924

326.2187

380.2648

-4.4

1.0

0.0

-2.1

 $C_{10}H_{21}N_4O_2^+$

 $C_{15}H_{25}N_4O_3{}^+$

 $C_{15}H_{28}N_5O_3{}^+$

 $C_{19}H_{34}N_5O_3{}^+$

formula	calculated	found	[ppm]
$C_{6}H_{16}N_{4}O_{2}^{+}$	175.1190	175.1186	-2.3
$C_{13}H_{20}N_{3}O^{+} \\$	234.1601	234.1594	-3.0
$C_{13}H_{22}N_{3}O_{2}^{+}$	252.1707	252.1699	-3.2
$C_{15}H_{28}N_5O_3^+$	326.2187	326.2181	1.8

Figure S20. XIC, MS/MS spectra and MS/MS analytical data of 426.2814 *m/z*.

Figure S21. XIC, MS/MS spectra and MS/MS analytical data of 170.1177 *m/z*.

Figure S22. XICs of parent peptide and its degradation products after 0h degradation time.

Figure S23. XICs of parent peptide and its degradation products after 8h degradation time.

RT [min]	$[\mathbf{M}\mathbf{+}\mathbf{H}]^{+}$ found	[M+H] ⁺ calc.	Error [ppm]	Formula	Predicted structure	
5.27	725.4879	725.4893	-1.9	$C_{31}H_{60}N_{14}O_{6}{}^{+}$	$H_{N} \xrightarrow{H}_{NH_{2}} H_{NH_{2}} \xrightarrow{NH_{2}} H_{N} \xrightarrow{H}_{NH_{2}} H_{N} \xrightarrow{H}_{N} \xrightarrow{H}_{$	
5.43	569.3880	569.3882	-0.4	$C_{25}H_{49}N_{10}O_5^+$		
5.28	583.4024	583.4038	-2.4	$C_{25}H_{49}N_{10}O_5^+$	$H_2 N \xrightarrow{NH_2} H \xrightarrow{H} O \xrightarrow{NH_2} N \xrightarrow{NH_2} H \xrightarrow{H} O \xrightarrow{NH_2} N \xrightarrow{N} N \xrightarrow$	
5.46	427.3031	427.3027	0.9	$C_{29}H_{39}N_6O_4^+$	H_2N H_2 H	
6.06	170.1176	170.1176	0.0	$C_9H_{16}NO_2{}^+$	ну HN	

Table S6. Identified substrate and products of hybrid 3 after 96h of incubation in human serum.

Figure S24. XIC, MS/MS spectra and MS/MS analytical data of compound 3 after 96h degradation in human

708.4628

3.1

-2.5

583.4038

708.4628

 $C_{26}H_{51}N_{10}O_5{}^+$

 $C_{31}H_{58}N_{13}O_{6}{}^{+}$

serum.

Figure S25. XIC, MS/MS spectra and MS/MS analytical data of enzymatic hydrolysis product 583.4024 m/z.

Figure S26. XIC, MS/MS spectra and MS/MS analytical data of enzymatic hydrolysis product 569.3880 m/z.

Figure S27. XIC, MS/MS spectra and MS/MS analytical data of enzymatic hydrolysis product 427.3031 *m/z*.

296.1605

1.9

1.0

270.1817

296.1608

 $C_{13}H_{24}N_{3}O_{3}{}^{+}$

 $C_{14}H_{22}N_{3}O_{4}{}^{+}$

Figure S28. XIC, MS/MS spectra and MS/MS analytical data of enzymatic hydrolysis product 170.1176 m/z.

Figure S29. XICs of compound 3 and its degradation products after 0h degradation time.

Figure S30. XICs of compound 3 and its degradation products after 96h degradation time.

RT [min]	$[\mathbf{M}\mathbf{+}\mathbf{H}]^{+}_{found}$	[M+H] ⁺ calc.	Error [ppm]	Formula	Predicted structure
5.26	725.4893	725.4893	0.0	C ₅₂ H ₇₀ N ₁₄ O ₁₂	$H_{N} \xrightarrow{H}_{NH_{2}} H_{H_{2}} \xrightarrow{H_{2}} H_{H_{2}} $
5.36/5.72	569.3886	569.3882	0.7	$C_{25}H_{49}N_{10}O_5^+$	$\underset{NH_2}{\overset{H}{\underset{NH_2}}} \overset{O}{\underset{NH_2}} \overset{NH_2}{\underset{H}{\underset{H}}} \overset{O}{\underset{H}{\underset{H}}} \overset{NH_2}{\underset{H}{\underset{H}}} \overset{O}{\underset{H}{\underset{H}}} \overset{O}{\underset{H}} \overset{O}{\underset{H}{\underset{H}}} \overset{O}{\underset{H}{\underset{H}}} \overset{O}{\underset{H}{\underset{H}}} \overset{O}{\underset{H}} \overset{O}{\underset{H}} \overset{O}{\underset{H}} \overset{O}{\underset{H}} \overset{O}{\underset{H}} \overset{O}{\underset{H}} \overset{O}{\underset{H}} \overset{O}{\underset{H}} \overset{O}}{\underset{H}} \overset{O}{\underset{H}} \overset{O}{\underset{H}} \overset{O}}{\underset{H}} \overset{O}{\underset{H}} \overset{O}}{\underset{H}} \overset{O}{\underset{H}}} \overset{O}{\underset{H}} \overset{O}}{\underset{H}} \overset{O}}{\overset{O}} \overset{O}}{\overset{O}} \overset{O}}{\underset{H}} \overset{O}}{\underset{H}}} \overset{O}}{\underset{H}} \overset{O}}{\underset{H}} \overset{O}}{\underset{H}} \overset{O}}{\underset{H}} \overset{O}}{\underset{H}} \overset{O}}{\underset{H}} \overset{O}}{\underset{H}} \overset{O}}{\underset{H}} \overset{O}}{\underset{H}} \overset{O}}{} \overset{O}}{\overset{O}}$
6.44/6.64	551.3783	551.3776	1.3	$C_{25}H_{46}N_{10}O_4{}^+$	
3.53	426.2821	426.2823	-0.5	$C_{19}H_{36}N_7O_4^+$	
1.21	318.2255	318.2248	2.2	$C_{12}H_{27}N_7O_3^+$	$\underset{NH_2}{\overset{H}{}} \underset{NH_2}{\overset{NH_2}{}} \underset{NH_2}{\overset{O}{}} \underset{H}{\overset{O}{}} \underset{H}{\overset{NH_2}{}} \underset{H}{\overset{O}{}} \underset{H}{\overset{NH_2}{}} \underset{O}{\overset{O}{}} \underset{H}{\overset{O}{}} \underset{O}{\overset{O}{}} \underset{O}} \underset{O}{\overset{O}{}} \underset{O}{\overset{O}{}} \underset{O}{\overset{O}{}} \underset{O}{\overset{O}{}} \underset{O}} \underset{O}{\overset{O}{}} \underset{O}{\overset{O}{}} \underset{O}} \underset{O}{\overset{O}{}} \underset{O}} \underset{O}{\overset{O}{}} \underset{O}} \underset{O}} \underset{O}{\overset{O}{}} \underset{O}} \underset{O}} \underset{O}} \underset{O} \underset{O}} \underset{O} \underset{O}} \underset{O}} \underset{O}} \underset{O}} \underset{O}} \underset{O} \underset{O}} \underset{O}} \underset{O}} \underset{O} \underset{O}} \underset{O}} \underset{O}} \underset{O}} \underset{O} \underset{O}} \underset{O}} \underset{O}} \underset{O}} \underset{O} \underset{O}} \underset{O} \underset{O}} \underset{O}} \underset{O}} \underset{O} \underset{O}} \underset{O} \underset{O}} \underset{O}} \underset{O}} \underset{O} \underset{O}} \underset{O}} \underset{O}} \underset{O} \underset{O}} \underset{O} \underset{O} \underset{O} \underset{O} \underset{O} \underset{O}} \underset{O} \underset{O} \underset{O} $
6.07	170.1170	170.1176	-3.5	$C_{9}H_{16}NO_{2}^{+}$	HN WY

 Table S7. Identified products of hybrid 6 after 96h of incubation in human serum.

Figure S31. XIC, MS/MS spectra and MS/MS analytical data of compound 6 after 96h degradation in human serum.

0.7

552.3253

 $C_{24}H_{42}N_9O_6^+$

formula	calculated	found	[ppm]
$C_{7}H_{20}N_{5}^{+}$	174.1713	174.1717	-2.3
$C_9H_{16}NO_2^+$	170.1176	170.1171	-2.9
$C_8H_{12}N_3O^+$	166.0974	166.0971	-1.8
$C_8H_{15}N_4O^+$	183.1240	183.1233	-3.8
$C_8H_{18}N_5O^+$	200.1506	200.1504	-1.0
$C_{13}H_{24}N_3O_3$	270.1812	270.1810	-0.7
$C_{16}H_{34}N_9O_3{}^+$	400.2779	400.2770	-2.2

Figure S32. XIC, MS/MS spectra and MS/MS analytical data of enzymatic hydrolysis product 569.3886 *m/z*.

Figure S33. XIC, MS/MS spectra and MS/MS analytical data of enzymatic hydrolysis product 551.3783 *m/z*.

Figure S34. XIC, MS/MS spectra and MS/MS analytical data of enzymatic hydrolysis product 426.2823 m/z.

309.1921

326.2187

408.2718

252.1711

309.1921

326.2189

408.2716

1.6

2.3

0.6

-0.5

 $C_{13}H_{22}N_{3}O_{2}{}^{+}$

 $C_{15}H_{25}N_4O_3^+$

 $C_{15}H_{28}N_5O_3{}^+$

 $C_{19}H_{34}N_7O_3{}^+$

Figure S35. XIC, MS/MS spectra and MS/MS analytical data of enzymatic hydrolysis product 318.2255 m/z.

Figure S36. XIC, MS/MS spectra and MS/MS analytical data of enzymatic hydrolysis product 170.1176 m/z.

Figure S37. XICs of compound 6 and its degradation products after 0h degradation time.

Figure S38. XICs of compound 6 and its degradation products after 96h degradation time.

RT [min]	$[\mathbf{M}\mathbf{+}\mathbf{H}]^+$ found	[M+H] ⁺ calc.	Error [ppm]	Formula	Predicted structure
5.25	726.4811	726.4846	-4.8	$C_{30}H_{59}N_{15}O_6^+$	$H_{N} \xrightarrow{H_{2}} H_{2} \xrightarrow{H_{2}} H_{1} \xrightarrow{H_{2}} H_{1} \xrightarrow{H_{2}} H_{2} \xrightarrow{H_{2}} H_{1} \xrightarrow{H_{2}} H_{2} \xrightarrow{H_{2}} H_{1} \xrightarrow{H_{2}} H_{1$
5.35	570.3834	570.3821	-2.3	$C_{24}H_{48}N_{11}O_5^+$	$\begin{array}{c} H \\ H N \\ H N \\ N H_2 \end{array} \xrightarrow{N H_2} H \\ H N \\ H H_2 \end{array} \xrightarrow{N H_2} H \\ H N \\ H N \\ H H_2 \end{array} \xrightarrow{N H_2} H \\ H $
1.20	401.2732	401.2741	-2.2	$C_{15}H_{33}N_{10}O_3^+$	
6.07	170.1174	170.1176	-1.2	$C_9H_{16}NO_2{}^+$	ну HNWY

 Table S8. Identified products of hybrid 7 after 96h of incubation in human serum.

Fragment formula	<i>m/z</i> calculated	<i>m/z</i> found	Error [ppm]
$C_{7}H_{16}N_{5}O^{+}$	186.1349	186.1350	0.5
$C_{10}H_{27}N_8O^+$	275.2302	275.2295	-2.5
$C_{11}H_{25}N_8O_2{}^+$	301.2095	301.2092	-1.0
$C_{15}H_{28}N_5O_3{}^+$	326.2187	326.2172	-4.6
$C_{19}H_{36}N_7O_4{}^+$	426.2823	426.2809	-3.3
$C_{20}H_{34}N_7O_5{}^+$	452.2616	452.2609	-1.5
$C_{23}H_{45}N_{10}O_{5}^{+}$	541.3569	541.3554	-2.8
$C_{24}H_{43}N_{10}O_{6}^{+}$	567.3362	567.3342	-3.5

Figure S39. XIC, MS/MS spectra and MS/MS analytical data of compound 7 after 96h degradation in human serum.

Figure S40. XIC, MS/MS spectra and MS/MS analytical data of enzymatic hydrolysis product 570.3834 *m/z*.

Figure S41. XIC, MS/MS spectra and MS/MS analytical data of enzymatic hydrolysis product 401.2732 m/z.

Figure S42. XIC, MS/MS spectra and MS/MS analytical data of enzymatic hydrolysis product 170.1176 m/z.

Figure S43. XICs of compound 7 and its degradation products after 0h degradation time.

Figure S44. XICs of compound 7 and its degradation products after 96h degradation time.

Figure S45. Level of found metabolites at different time intervals (represented as percentage of highest peak area) for a) parent peptide, b) hybrid 3, c) hybrid 6 and d) hybrid 7. All results are represented as an average from 3 individual experiments on LCMS with error bars indicating ± SEM (N = 3).

8. 2D NMR characterisation of parent peptide H₂N-Lys(hArg)-Dab-Oic-Arg-OH.

Figure S46. ¹H NMR spectrum of parent peptide H₂N-Lys(*h*Arg)-Dab-Oic-Arg-OH (600MHz, 9:1 DPBS buffer:D₂O).

Figure S47. Assignment of signals in parent peptide H₂N-Lys(*h*Arg)-Dab-Oic-Arg-OH based on the correlations found in 2D NMR spectra (COSY, TOCSY, HSQC).

Figure S48. The fingerprint of NH_{pep}/aliphatic protons region of TOCSY spectrum of parent peptide H₂N-Lys(*h*Arg)-Dab-Oic-Arg-OH, recorded in 9:1 DPBS buffer:D₂O (600MHz).

Figure S49. The fingerprint of NH_{pep}/CH, CH₂ region of COSY spectrum of parent peptide H₂N-Lys(*h*Arg)-Dab-Oic-Arg-OH, recorded in 9:1 DPBS buffer:D₂O (600MHz).

Figure S50. HSQC (13C/1H correlations) spectrum of parent peptide H₂N-Lys(*h*Arg)-Dab-Oic-Arg-OH, recorded in 9:1 DPBS buffer:D₂O (600MHz). CH groups marked red, while CH₂ groups marked blue.

Figure S51. The imposition of TOCSY (yellow/cyan colours) and ROESY (blue/maroon colours) spectra of parent peptide H₂N-Lys(hArg)-Dab-Oic-Arg-OH A) aliphatic region; B) NH_{pep}/aliphatic region, recorded in 9:1 DPBS buffer: D₂O (600MHz)

9. 2D NMR characterisation of hybrid 6.

Figure S52. ¹H NMR spectrum of hybrid 6 (600MHz, 9:1 DPBS buffer:D₂O).

Figure S53. Assignments of signals in hybrid 6 based on the correlations found in 2D NMR spectra (COSY, TOCSY, HSQC).

Figure S54. The fingerprint of NH_{pep}/aliphatic protons and NH_{urea}/aliphatic protons region of TOCSY spectrum of hybrid **6**, recorded in 9:1 DPBS buffer: D₂O (600MHz).

Figure S55. The fingerprint of NH_{pep}/CH and NH_{urea}/CH₂ region of COSY spectrum of hybrid **6**, recorded in 9:1 DPBS buffer: D₂O (600MHz).

Figure S56. HSQC (13C/1H correlations) spectrum of hybrid 6, recorded in 9:1 DPBS buffer: D₂O (600MHz). CH groups marked red, while CH₂ groups marked blue.

Figure S57. The imposition of TOCSY (yellow/cyan colours) and ROESY (blue/maroon colours) spectra of hybrid **6 A)** aliphatic region; **B**) NH_{pep/urea}/aliphatic region, recorded in 9:1 DPBS buffer: D₂O (600MHz)

10. Molecular dynamics.

Figure S58. Time evolution of distances between Cγ of Asp320 and Cζ of Arg residue in **A**) parent peptide and **B**) compound **6**.

Figure S59. Time evolution of distances between Oγ of Ser346 and CO of Arg residue in A) parent peptide and B) compound 6.

Figure S60. Time evolution of distances between Oη of Tyr353and CO of Arg residue in **A**) parent peptide and **B**) compound **6**.

Figure S61. Time evolution of distances between Oγ of Thr349 and CO of Arg residue in A) parent peptide and B) compound 6.

Figure S62. Time evolution of distances between C δ of Glu319 and C η of *h*Arg residue in A) parent peptide and B) compound 6.

Figure S63. Time evolution of distances between C δ of Glu319 and N α of *h*Arg residue in A) parent peptide and B) compound 6.

Figure S64. Time evolution of distances between C δ of Glu319 and CO of *h*Arg residue in A) parent peptide and B) compound 6.

Figure S65. Time evolution of distances between C δ of Glu324 and C η of *h*Arg residue residue in A) parent peptide and B) compound 6.

Figure S66. Time evolution of distances between C δ of Glu348 and C η of *h*Arg residue in **A**) parent peptide and **B**) compound **6**.

Figure S67. Time evolution of distances between Cδ of Glu319 and Nα of Lys/Dab (P1) residue in **A**) parent peptide and **B**) compound **6**.

Figure S68. Time evolution of distances between Cδ of Glu319and Nδ of Dab (P2) residue in **A**) parent peptide and **B**) compound **6**.

Figure S69. Time evolution of distances between CO of Arg and C η of *h*Arg residue in A) parent peptide and B) compound 6.

Figure S70. Time evolution of distances between C γ of Asp320 and C η of *h*Arg residue in **A**) parent peptide and **B**) compound **6**.

Figure S71. Time evolution of distances between Cγ of Asp320 and Nα of Lys/Dab (P1) residue in **A**) parent peptide and **B**) compound **6**.

Figure S72. Interactions between NRP-1 residues and ligands (parent peptide and hybrid 6) functional groups represented as contacts between selected atoms and total time they occurred. Colour difference represents individual runs.

11. References

- Douat-Casassus, C.; Pulka, K.; Claudon, P.; Guichard, G. Microwave-Enhanced Solid-Phase Synthesis of N,N'-Linked Aliphatic Oligoureas and Related Hybrids. *Org. Lett.* 2012, *14*, 3130–3133. doi.org/10.1021/ol3012106
- Puszko, A. K.; Sosnowski, P.; Pułka-Ziach, K.; Hermine, O.; Hopfgartner, G.; Lepelletier, Y.; Misicka, A. Urea Moiety as Amide Bond Mimetic in Peptide-like Inhibitors of VEGF-A₁₆₅/NRP-1 Complex. *Bioorganic Med. Chem. Lett.* **2019**, *29*, 2493-2497. doi.org/10.1016/j.bmcl.2019.07.016
- Collie, G.W.; Pulka-Ziach, K.; Lombardo, C.M.; Fremaux, J.; Rosu, F.; Decossas, M.; Mauran' L.; Lambert, O.; Gabelica, V.; Mackereth, C.D.; Guichard, G. Shaping quaternary assemblies of water-soluble non-peptide helical foldamers by sequence manipulation. *Nat Chem.* 2015, 7, 871-8. doi: 10.1038/nchem.2353