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Abstract: A novel bioluminescent Monoacylglycerol lipase (MAGL) substrate 6-O-arachidonoylluciferin,
a D-luciferin derivative, was synthesized, physico-chemically characterized, and used as highly
sensitive substrate for MAGL in an assay developed for this purpose. We present here a new
method based on the enzymatic cleavage of arachidonic acid with luciferin release using human
Monoacylglycerol lipase (hMAGL) followed by its reaction with a chimeric luciferase, PLG2, to
produce bioluminescence. Enzymatic cleavage of the new substrate by MAGL was demonstrated,
and kinetic constants Km and Vmax were determined. 6-O-arachidonoylluciferin has proved to be
a highly sensitive substrate for MAGL. The bioluminescence assay (LOD 90 pM, LOQ 300 pM) is
much more sensitive and should suffer fewer biological interferences in cells lysate applications than
typical fluorometric methods. The assay was validated for the identification and characterization
of MAGL modulators using the well-known MAGL inhibitor JZL184. The use of PLG2 displaying
distinct bioluminescence color and kinetics may offer a highly desirable opportunity to extend the
range of applications to cell-based assays.

Keywords: bioluminescence; monoacylglycerol lipase; kinetic assay; PLG2

1. Introduction

In the last decade, the endocannabinoid system (ECS) has stimulated renewed in-
terest, thanks to medical research results based on modern technologies highlighting its
large distribution in human tissues [1,2] and its involvement in several physiological
and pathological processes [3]. Indeed, deeper investigations in this field have demon-
strated how the dysregulation of the ECS can induce pathological conditions such as pain
and inflammation [4–6], neurological disorders [7], and cancer [8–10]. Although cannabi-
noid receptor stimulation [11,12] and endocannabinoid turnover modulation [13–15] have
been investigated, targeting the ECS through enzyme modulation remains an ambitious
objective [16]. In this regard, several studies have shown the involvement of the monoa-
cylglycerol lipase (MAGL) as a playmaker in simultaneously coordinating multiple lipid
signaling pathways in both physiological and disease contexts [17], thus suggesting a role
as a therapeutic target.

MAGL inhibitors are potential antiproliferative and cytostatic drugs for cancer chem-
otherapy not only for enhancing endocannabinoid signaling but also controlling fatty acid
release for synthesis of protumorigenic signaling lipids. Moreover, these inhibitors are also
antineurodegenerative compounds that induce an anti-inflammatory activity by reducing
the production of eicosanoids. The role of MAGL as a therapeutic target has increased
interest not only in the development of selective inhibitors but also in the set-up of efficient

Int. J. Mol. Sci. 2021, 22, 6148. https://doi.org/10.3390/ijms22116148 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-3865-0709
https://orcid.org/0000-0003-1151-7040
https://orcid.org/0000-0003-3379-0582
https://orcid.org/0000-0001-5795-4989
https://orcid.org/0000-0003-2227-1373
https://doi.org/10.3390/ijms22116148
https://doi.org/10.3390/ijms22116148
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22116148
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22116148?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 6148 2 of 14

protocols amenable to high-throughput screening (HTS) formats. In this context, different
analytical methods to determine MAGL activity, generally based on its enzymatic action
on fatty acid compounds, have been developed using various techniques. The procedures
most used to screen MAGL inhibitors quantify the arachidonic acid released from 2-AG
hydrolysis using high-performance liquid chromatography (HPLC) coupled with UV [18]
or mass spectrometric detector [19]. Furthermore, a fluorescence-based assay employing
7-hydroxycoumarinyl arachidonate (7-HCA) substrate [20] and new procedures for MAGL
continuous assay based on long-wavelength fluorogenic substrates, 7-hydroxyresorufinyl
arachidonate [21] and 7-hydroxyresorufinyl octanoate [22] have been reported.

Bioluminescence (BL) approaches offer several advantages such as high sensitivity,
lowering of the background, wide dynamic range, and relative ease of performance. Beetle
luciferases have been extensively investigated and are being widely used for bioanalytical
purposes, and many of these applications can be used in a high-throughput screening
format in support of drug development [23]. Luciferases catalyze the ATP-dependent
oxidation of firefly D-luciferin (LH2), a benzothiazole-containing compound, in a two-step
reaction [24]: (i) adenylation of LH2 with ATP, producing luciferyl adenylate with the
release of pyrophosphate, and (ii) oxidation of the luciferyl adenylate by molecular oxygen,
producing a dioxetanone that rapidly cleaves, generating CO2 and electronically excited
singlet oxyluciferin, which decays by emitting a photon of light in the green to the red
range with a quantum yield of 15–60%, depending on the luciferase [25,26]. Bioluminescent
imaging (BLI) has been employed for imaging various biological phenomena, such as
protein–protein interaction [27] and gene regulation [28]. The firefly luciferase system is
widely used for BLI systems, which generally employ LH2 or aminoluciferin as a substrate
in the presence of ATP, Mg2+, and O2 to produce detectable photons. Based on this strategy,
several bioluminescent probes have been applied to the in vivo imaging of H2S, F−, H2O2,
nitroreductase, aminopeptidase, and so on [29–33].

Given our continued interest in the development of selective probes for MAGL suitable
for in vitro and in vivo assays, we report here a straightforward assay in which arachi-
donoyl luciferin (ArLuc-1) is hydrolyzed by MAGL, and the released LH2 reacts with PLG2
to generate light in a single reaction mixture (Scheme 1). LH2 was chosen as the substrate
to be modified through an ester linkage with the arachidonoyl group, because it produces
readily detected (with PMTs) 562 nm maximum BL.
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Scheme 1. Bioluminescence reactions of compound 6′-O-arachidonoylluciferin (ArLuc-1). The substrate chemical structure
and biochemical reactions leading to 562 nm peak light emission (λ max) are shown.

Indeed, it has been found that the 6′-hydroxy group of LH2 is crucial for BL [34];
therefore, the blocking of this function essentially quenches BL. Once the caged substrate is
cleaved by MAGL, BL can be produced via the reaction with luciferase (Scheme 1).

PLG2 was used instead of the wild-type enzyme, because it is a thermostable luciferase
that produces a bright BL signal and is resistant to low pH shifting, making it well suited
for cell-based assays.
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2. Results and Discussion
2.1. Design and Synthesis of the Probe

In this study, a novel BL assay for MAGL was established. To resolve the optimum BL
assay conditions for MAGL using the luciferase–luciferin reaction, the substrate ArLuc-1
was designed, and various conditions for the assay were examined. The instability of
LH2 toward acid, base, light, and oxygen [35], together with the presence of the carboxyl
group, precluded direct esterification of LH2 at the 6′-position. However, LH2 is stable
in solution at neutral pH, whereas in acid solution (pH < 2), a rapid degradation to D-
cysteine, and a benzothiazole derivative occurs. In alkaline solution, LH2 is oxidized to
dehydroluciferin, which is a potent inhibitor of luciferase [36]. Consequently, the ester
of LH2 is prepared, as in the synthesis of other analogues, by construction of the labile
thiazoline ring at a late stage in the synthesis. The synthesis of ArLuc-1 (Scheme 2) follows
a variation of the method applicable to the syntheses of LH2 derivatives modified at the
6′-position [37]. N,N′-dicyclohexylcarbodiimide (DCC) and 4-dimethylaminopyridine
(DMAP) were used to directly couple arachidonic acid to the commercially available
6-hydroxy-2-cyanobenzothiazol, producing compound 2 in nearly quantitative yield. Com-
pound 2 was then reacted with D-cysteine hydrochloride under conditions that did not
hydrolyze the ester yielding ArLuc-1 in 52% overall yield. ArLuc-1 was completely char-
acterized by 1H– and 13C–NMR and 2D–COSY, HMQC, and HMBC correlation spectra.
The purity, assessed by H1–NMR, was greater than 98%, and no signals for free LH2 were
detected. The purity of the compound was also verified by thin layer chromatography and
by luminometric assay.
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Scheme 2. Chemical synthesis of ArLuc-1.

Because of the high sensitivity of the luminometric assay [38], the luciferin derivative
had to be free of LH2, since traces of it in substrate preparations would result in a significant
increase of background luminescence and lower the sensitivity of the method. To ensure
that the observed BL signal was due only to the consecutive hydrolysis and PLG2 reactions
and assess the stability of the substrate in reaction condition, the enzymatic assay was
further investigated by systematic elimination of MAGL from the assay. The results
(Figure 1) show that LH2 production is not observed unless ArLuc-1 is hydrolyzed by
MAGL, demonstrating the stability of the substrate under assay condition.
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2.2. PLG2 Expression and Purification

We expressed PLG2, a thermostable and specific activity enhanced green (λmax = 559 nm)
light-emitting luciferase that was engineered from a chimeric protein consisting of the large
N-terminal domain of P. pyralis luciferase fused to the small C-terminal domain of Luciola
italica luciferase [39]. Because PLG2 is a thermostable luciferase that produces a bright
BL signal and is resistant to low pH shifting, it is well suited for cell-based assays. E. coli
JM109 competent cells were transformed with the pQE-30 vector containing the PLG2
cDNA sequence fused to an N-terminal 6xHis tag. After expression, PLG2 was purified by
affinity chromatography and obtained in 28.7 mg/L yield [24].

2.3. PLG2 Activity: Effects of DMSO and ArLuc-1

To develop the bioluminescence assay, several preliminary controls were performed.
The effect of DMSO was investigated to determine whether the solvent would influence
the assay readout. DMSO is commonly used to solubilize substrates and inhibitors that
are poorly soluble in aqueous solutions in enzymatic assays, but it can inhibit some
enzymes in a concentration-dependent manner. In fact, while luciferases exhibit high
selectivity and sensitivity, practical applications can be limited by low resistance to organic
solvents. Several concentrations of DMSO (0.5%, 1%, 2.5%, and 5%) were assessed to
determine sufficient ArLuc-1 solubility levels that did not inhibit PLG2 activity. As shown
in Figure 2, 2.5% (v/v) DMSO is a good compromise between the complete solubilization
of the substrate and a tolerable reduction in PLG2 activity.
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Next, the assay required a standard curve relating relative light units (RLU) to the
concentration of LH2 produced (Figure 3). Calibration curves with LH2 standards (0 to
250 nM) were made for PLG2, as described in Materials and Methods, and linearity was
observed over the entire concentration range tested.

The limit of detection (LOD) and limit of quantification (LOQ) of the assay were calcu-
lated from calibration curves and blank values according to the formulas LOD = 3.3σ/s
and LOQ = 10σ/s, where “σ” is the averaged standard deviation of the blanks and “s” is
the slope of the calibration curve [40,41]. The resulting values were 0.09 nM for LOD and
0.3 nM for LOQ. Subsequently, ArLuc-1 was evaluated as a potential inhibitor of PLG2,
because the absence of this interference is essential for the sensitivity of the assay. To
address this issue, luminescence experiments were performed with PLG2 and LH2 in the
presence of increasing concentrations of ArLuc-1 (0.1, 1, 5 µM). Reassuringly, PLG2 activity
is essentially independent of ArLuc-1 at the concentrations tested (Figure 4).
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2.4. ArLuc-1 as MAGL Substrate: Assay Development and Validation

After demonstrating excellent sensitivity and linearity for LH2 detection and estab-
lishing that MAGL could hydrolyze ArLuc-1 and release free LH2 (Figure 1), the two-step
MAGL assay was further investigated by steady state kinetics analysis. Briefly, 10 µL of
hMAGL enzyme solution (25 ng) were pipetted into the wells of a white 96-well plate, and
90 µL of PLG2 assay mix, containing varying amounts of ArLuc-1 (final concentrations
0.5, 1, 5, 8, 10, and 20 µM) were quickly added by automatic injector. Luminescence was
read immediately and at 3 min intervals for 10 min. Control experiments yielded a very
low background (Figure 1) signal with ArLuc-1 in the absence of MAGL. Measurement
of the net luminescent signal at varying concentrations of substrate ArLuc-1 were con-
verted into amounts of LH2 produced using calibration curves. The data were fit to the
Michaelis–Menten equation to obtain kinetic parameters Km and Vmax (Figure 5).

The final step in the validation of the assay was undertaken with JZL184, a known
MAGL inhibitor [42], to substantiate that ArLuc-1 is a true substrate for MAGL. DMSO
solutions of JZL184 (100, 1, 0.5, 0.1, and 0.01 µM) were incubated with hMAGL for 20 min,
and then the results of subsequent two-step assays were plotted as a dose-response curve
(Figure 6). The activity of hMAGL was calculated as described for the kinetic assay. The
IC50 for JZL184 was found to be 260 nM, which agrees well with values reported by
Lauria et al. (217 nM) and by Savinainen et al. (209 nM) [21,43].
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2.5. Docking Studies

We also performed a docking study of ArLuc-1 using a crystallographic model the
structure of human monoacylglycerol lipase (hMAGL) co-crystallized in complex with a
noncovalently bound inhibitor (PDB ID: 5ZUN, resolution 1.35 Å). This structure recently
was effectively used in a structure-based drug design of a novel series of reversible MAGL
inhibitors [44]. The docking procedure (see experimental) was validated by docking
the cognate ligand (1-(2-chlorobiphenyl-3-yl)-4-[4-(1,3-thiazol-2-ylcarbonyl)-piperazin-1-
yl]pyrrolidin-2-one) of 5ZUN. This ligand was built through the Schrödinger Maestro Build
Toolbar, prepared with Schrödinger Ligand Preparation, and docked into the apo form
of 5ZUN protein. The obtained top pose (XP docking score −12.37 kcal mol-1) showed
an excellent superimposition to its native crystallographic pose in 5ZUN (RMSD 0.16,
maximum atomic displacement: 0.33 Å), confirming the accuracy of this approach.

The top pose obtained by Glide docking of ArLuc-1 shows a G score and MM–GBSA
binding energy values (−10.33 and −78.68 kcal mol-1, respectively) that confirm its ability
to bind to MAGL in the catalytic site. In particular, (Figure 7), the carbonyl oxygen atom of
the substrate ester moiety is H-bonded to main chain nitrogen atoms of Ala51 and Met123.
During catalysis, these residues constitute the oxyanion hole involved in the stabilization
of the developing negative charge on the carbonyl in the transition state en route to the
tetrahedral intermediate [45]. Moreover, the distance from the hydroxyl oxygen of the
catalytic serine (Ser122) to the reactive carbonyl carbon of the substrate ester is 3.09 Å,
which is the ideal position for the initial nucleophilic attack to take place.
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The luciferin moiety of ArLuc-1 falls into the narrow amphiphilic pocket [44] of MAGL,
and its benzothiazole component forms a π–π stacking interaction with the histidine of the
catalytic triad (Ser122, His269, Asp239) [44], while its nitrogen atom is involved in a water-
mediated H-bonding network with the Tyr194 hydroxyl group and the Ala51 main-chain
carbonyl oxygen. Additionally, the arachidonoyl chain is well-accommodated in the large,
hydrophobic pocket of MAGL (Figure 8) surrounded by hydrophobic/aromatic residues
as Phe159, Phe209, Ala151, Ala156, Ile179, Leu148, Leu205, Leu213, Leu214, and Leu241.
The extensive hydrophobic interactions can play a significant role in the stabilization of
the complex.
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3. Materials and Methods
3.1. Chemicals and Reagents

Reactions progress was monitored by analytical thin-layer chromatography (TLC) on
precoated aluminum foil (Silica Gel 60 F254-plate, Sigma–Aldrich, St. Louis, MO, USA),
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and the products were visualized by UV light. Purity of all compounds (>98%) was verified
by thin layer chromatography and NMR measurements [46,47]. The chemicals required
for validation, all of analytical grade, and all reagents required for bacterial cell culture
and the kit for plasmid extraction were purchased from Sigma–Aldrich (St. Louis, MO).
E. coli JM109 competent cells were from Promega, (Fitchburg, WI, USA). Ni-NTA agarose
and 3–12 mL 10kDa Slide-A-Lyzer™ Dialysis Cassette used for protein purification were
purchased from Thermo Fisher Scientific (Waltham, MA, USA). SDS-PAGE experiments
were performed using Mini-PROTEAN® II handcast systems (Bio-Rad, Hercules, CA, USA)
kits for both equipment and reagents, unless specified. Monoacylglycerol lipase (human
recombinant, 50 µg, hMAGL) was purchased from Cayman Chemical (Ann Arbor, MI,
USA). For bioluminescence experiments, LH2 potassium salt was purchased from Promega
Italia Srl, while ATP magnesium salt was from Sigma–Aldrich.

3.2. Instruments

1H–NMR spectra were recorded in CDCl3 (isotopic enrichment 99.95%) solutions at
300 K using a Bruker AVANCE 500 instrument (500.13 MHz for 1H, 125.76 MHz for 13C)
using 5 mm inverse detection broadband probes and deuterium lock. Chemical shifts (δ)
are given as parts per million relative to the residual solvent peak (7.26 ppm for 1H and
77.0, central line, for 13C) and coupling constants (J) are in Hertz. For two-dimensional ex-
periments (COSY-45, HSQC, and HMBC), standard Bruker microprograms using gradient
selection (gs) were applied (for more information, see electronic Supplemental Data).

The quantification of the cDNA plasmid was done with a NanoDrop™ 2000 Microvol-
ume Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and the sonicator
was a Sonopuls HD2070 (Bandelin, Berlin, Germany) at ~50% power (~35 W). Lumines-
cence signals (λmax = 559 nm) were recorded by a GloMax®-Multi+ Microplate Multimode
Reader (Promega, Fitchburg, WI, USA). The GloMax reagent lines and injector were cleaned
before and after use with 70% ethanol, then abundantly rinsed with ddH2O water.

3.3. Synthesis of 6-O-Arachidonoylluciferin (ArLuc-1)

To a stirred solution of arachidonic acid (0.18 mmol) in anhydrous CH2Cl2 (3 mL),
under an argon atmosphere and cooled in an ice bath, was added DMAP (2 mg, 0.01 mmol)
and 6-hydroxy-2 cyanobenzothiazole (30 mg, 0.18 mmol). DCC (72 mg, 0.35 mmol) was
added to the reaction mixture at 0 ◦C. Stirring was continued overnight at room tempera-
ture. Product formation was confirmed by TLC (petroleum ether/ethyl acetate, 95:5). The
CH2Cl2 solution was washed twice with saturated NaHCO3 (2.5 mL), dried on anhydrous
Na2SO4, and concentrated to give the crude product as a brown oil. Filtration on column
chromatography on silica gel (petroleum ether/ethyl acetate, 95:5) gave 80 mg (0.17 mmol)
of the nitrile product as a colorless oil. The nitrile and D-cysteine hydrochloride monohy-
drate (0.19 mmol) were dissolved in a mixed solvent of 1.5 mL MeOH and 400 µL CH2Cl2
in an argon atmosphere. A total of 500 µL H2O and K2CO3 (0.19 mmol) were added, and
the solution was kept stirring at RT for 1 h. HCl 1M was added until the solution reached
a 2–3 pH value. The precipitate was collected and washed with water to give compound
ArLuc-1 as a white solid (30 mg overall yield 30%). 1H–NMR (CDCl3, 500 MHz): δ (ppm)
0.90 (3H, t, J = 7.6, 20′′-CH3), 1.28-1.40 (6 H, m, 17′′–19′′ CH2), 1.88 (2H, tt, J = 7.0, 7.6 Hz,
3′′-CH2), 2.06 (2H, dt, J = 7.6, 7.6 Hz, 16′′-CH2), 2.24 (2H, dt, J = 7.0, 7.4 Hz, 4′′-CH2),
2.64 (2H, t, J = 7.0 Hz, 2′′-CH2), 2.82-2.88 (6H, m, 7′′–10′′- and 13′′-CH2), 3.80-3.87 (2H, AB
part of ABX system, 5a- and 5b-H), 5.32-5.50 (9H, m, 5′′–6′′–8′′–9′′–11′′–12′′–14′′–15′′-CH
and 4-H), 7.29 (1H, dd, J = 2.3, 8.9 Hz, 5′-H), 7.73 (1H, d, J = 2.3 Hz, 7′-H), 8.16 (1H, d,
J = 8.9 Hz, 4′-H). 13C–NMR (CDCl3, 500 MHz): δ (ppm) 14.1 (20′′), 22.6 (19′′), 24.7 (3′′),
25.7 (7′′, 10′′, 13′′), 26.5 (4′′), 27.2 (16′′), 29.3 (17′′), 31.5 (18′′), 33.7 (2′′), 35.1 (5), 78.2 (4),
114.7 (7′), 121.6 (5′), 125.2 (4′), 127.5, 127.8, 128.0, 128.4, 128.6, 128.6, 129.3, 130.5 (5′′, 6′′,
8′′, 9′′, 11′′, 12′′, 14′′, 15′′), 136.7 (8′), 149.7 (6′), 150.8 (9′), 158.0 (2), 160.3 (2′), 167.1 (1′′),
171.9 (COOH). IUPAC numbering of 6-O-arachidonoylluciferin, 1H and 13C NMR spectra
of 6-O-arachidonoylluciferin (1) are reported in Supplementary Materials.
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3.4. Stability of the Substrate

The stability of ArLuc-1 was assessed in PLG2 working solution. A total of 10 µL of
the ArLuc-1 working solution were pipetted into the wells of a white 96-well plate; the
injection system of the instrument automatically injected 100 µL of PLG2 mix into the well
to be analyzed, and the luminescence was read every 30 min for 150 min.

3.5. PLG2 Expression and Purification

The pQE-30 vector containing the PLG2 cDNA sequence (GenBank: KY486507) fused
with N-terminal 6xHis tag was used to transform E. coli JM109 competent cells subsequently
grown on LB plates containing ampicillin (100 µg/mL) for selection. PLG2 expression
was induced in liquid cultures with 0.1 mM IPTG, overnight at 300 rpm and 37 ◦C, to
avoid protein precipitation. The cells were harvested by ultracentrifugation at 5000× g
for 10 min and frozen at −80 ◦C for subsequent purification. Frozen cell pellets were
lysed by sonication, and 6xHis-PLG2 was affinity purified on Ni-NTA agarose according
to the manufacturer’s instructions. Positive elution fractions were pooled and dialyzed
against PCB buffer (50 mM Tris, 150 mM NaCl, 1 mM DTT, 1 mM EDTA, pH 7) using a
3–12 mL-10kDa Slide-A-Lyzer™ Dialysis Cassette. The protein concentrate was divided
into small aliquots, flash-frozen into liquid nitrogen, and stored at −80 ◦C. The purity of
purified PLG2 was checked by SDS-PAGE, followed by Coomassie staining.

3.6. Stock, Working, and Enzymatic Assay Solutions

LH2: LH2 working solution was prepared at 0.5 mM concentration by dissolving LH2
potassium salt in Tris-HCl 50 mM, pH 7.8. The concentration was adjusted by dilution
based on UV using a molar absorptivity coefficient of 7600 M/cm at 266 nm. LH2 calibration
curve was obtained pipetting appropriate amounts of the 0.5 mM LH2 working solution
into test tubes containing DMSO and adding 50 mM Tris-HCl pH 7.8 buffer with 1 mM
EDTA (DMSO 5%).

ATP: ATP solution was prepared by dissolving 9 mM ATP in 50 mM Tris-HCl, pH 7.8.
The concentration was adjusted by dilution based on UV using a molar absorptivity
coefficient of 15,400 M/cm at 259 nm.

ArLuc-1: The substrate ArLuc-1 was dissolved in DMSO at 1 mM concentration to
obtain stock solution. To prepare working solution an aliquot of stock, solution was diluted
1:20 in DMSO. To prepare ArLuc-1 testing solutions, ArLuc-1 stock solution was diluted in
DMSO to final concentrations of 1, 10, and 50 µM. To prepare ArLuc-1 reagent solution,
ArLuc-1 working solution was pipetted into an Eppendorf tube, then 50 mM Tris-HCl
buffer, pH 7.8, was slowly added, vortexing the tube to obtain homogeneous solution at
2.8 µM final concentration.

PLG2: PLG2 working solution was prepared from an aliquot of purified PLG2, ice-
thawed, by dilution to a 3.3 µM concentration with 50 mM Tris-HCl, pH 7.8. MgSO4 and
ATP solution were added to a final concentration of 10 mM and 0.4 µM, respectively. PLG2
calibration solution for the LH2 calibration curve was prepared as PLG2 working solution
and DMSO were added to reach a final concentration of 2.5%. PLG2 assay mix solution
for the enzymatic assay was prepared from an aliquot of purified PLG2, ice-thawed, by
dilution to a 3.3 µM concentration with 50 mM Tris-HCl, pH 7.8. MgSO4, ATP, and ArLuc-1
were added at final concentration of 10 mM, 0.4 µM, and 1.4 µM, respectively.

hMAGL: hMAGL was diluted to 250 ng/mL in 50 mM Tris-HCl buffer pH 7.8 contain-
ing 1mM EDTA.

JZL184: JZL184 stock solution was prepared by dissolving JZL184 powder into DMSO
at 4 mM concentration. JZL184 working solutions were prepared at four different concen-
trations, (40, 20, 4, 0.4 µM) by diluting an aliquot of stock solution with DMSO.

Any leftover mix could be stored at 4 ◦C and used within 48 h with no loss in performance.
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3.7. PLG2 DMSO Trials

The DMSO concentration effects on the enzyme activity was determined by adding
different amounts of DMSO to PLG2 working solution (0.5%, 1%, 2,5%, and 5% (v/v)).
A sample of PLG2 working solution without DMSO was treated as control. The enzyme
stability was expressed as the remaining activity assayed relative to the control value.
All measurements were performed as follows: 100 µL of solution containing LH2 were
pipetted into the wells of a white 96-well plate. The injection system of the instrument
would then automatically inject 100 µL of PLG2 mix into the first well to be analyzed. After
the injection, the luminometer had a lag time of 1 s, and then integrated the luminescence
signal for 1 s. The luminometer would then pass to the following well to be analyzed. The
reagent lines and injector were cleaned before and after use with 70% ethanol.

3.8. PLG2 ArLuc-1 Trials

The effects of ArLuc-1 concentration on PLG2 enzymatic activity were assessed at
3 different concentrations of ArLuc-1 (0.1, 1, 5 µM). In a typical experiment, 100 µL of
the LH2 working solution were pipetted in a well of a white 96-well plate, and 20 µL of
the appropriate ArLuc-1 testing solution were added. Then, the injection system of the
instrument automatically injected 100 µL of PLG2 working solution into the first well to be
analyzed, and the plate was read every 3 min for 10 min. The time course analyses were
linearly regressed, and the slope obtained used to compare PLG2 activity considering as
100% activity the experiment performed without the addition of ArLuc-1.

3.9. Linearity Tests and Sensitivity of the Method

Calibration curves with LH2 standards at different concentrations were built for PLG2.
All measurements were performed as described, above (paragraph 3.8.). The tested LH2
concentrations were 0.5, 2.5, 5, 12.5, 25, 50, 125, 250 nM. The LOD and LOQ for the assay
were calculated on calibration curves. Six blank values were averaged (50 mM Tris-HCl
pH 7.8 buffer with 1 mM EDTA, DMSO 2.5%), and the resulting SD was used to calculate
LOD and LOQ.

3.10. MAGL Bioluminescent Assays and Kinetic Tests

MAGL assays were set up as follows: 10 µL of the hMAGL solution (enzyme 25 ng)
were pipetted at the bottom of the appropriate well; then, 90 µL of the PLG2 assay mix
were quickly added to the enzyme, and the plate was read immediately and every 3 min
for 10 min. The kinetic values were determined for hMAGL with ArLuc-1 as substrate.
Experiments were set up in the same fashion as the ones above. This time, six reagent
solutions were prepared for ArLuc-1 in-well final concentrations of 0.5, 1, 5, 8, 10, and
20 µM. For negative controls, 50 mM Tris-HCl, pH 7.8 was used, while for blank samples,
50 mM Tris-HCl, pH 7.8 containing 2.5% DMSO was used. The signal coming from negative
control solutions was subtracted to that of the corresponding concentration and time point,
in order to consider only the signal due to enzymatic hydrolysis. The resulting values were
converted into LH2 µmoles in accordance with the calibration curves, and the data points
were regressed to a linear curve. The slope of each curve was converted into µmol/min/mg
produced by the enzyme. The values between the various experiments were averaged and
fit to a Michaelis–Menten equation.

3.11. MAGL Assay Validation

JZL184 was chosen for the method validation due to its well-known MAGL inhibitory
activity. In a typical experiment, 10 µL of the appropriate JZL184 working solution, or of the
stock solution for the highest inhibitor concentration or of DMSO for 100% hMAGL activity
curve, were diluted in an Eppendorf tube with PLG2 working solution that was added
dropwise and vortexed to obtain a homogeneous solution, avoiding JZL184 precipitation.
hMAGL solution was then added and incubated for 30 min. Then, 10 µL of Arluc-1
working solution were pipetted into a well of a white 96-well plate, and 90 µL of the
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solution prepared before and incubated were added, and the luminescence assay was
run. Final concentrations for JZL184 were 100, 1, 0.5, 0.1, and 0.01 µM. For all the other
reagents (hMAGL, PLG2, Arluc-1), final concentrations resemble that of bioluminescence
assays. Blank and negative controls were also analyzed. Control experiment samples
were performed as validation experiment without the addition of hMAGL. For blank
experiments, 10µL of the appropriate JZL184 working solution, or of the stock solution for
the highest inhibitor concentration, were diluted in an Eppendorf tube with PLG2 assay
buffer (50 mM Tris-HCl, pH 7.8, 10 mM MgSO4, 0.4 µM ATP) that was added dropwise.
The tube was vortexed to obtain a homogeneous solution avoiding JZL184 precipitation.
After 30 min, 10 µL of Arluc-1 working solution were pipetted in a well, 90 µL of the
appropriate blank solution were added, and the assay was run. In a typical time, course
analysis luminescence was read every 3 min for 10 min. The resulting points were regressed
to a linear curve (r2 ≥ 0.98 for every curve). The slopes were normalized, and then that
of the curve relative to hMAGL without inhibitors was taken as the 100% value, and the
others were related to this one.

3.12. In silico Molecular Docking Simulations

Protein coordinates were downloaded from the Protein Data Bank, accession code
5ZUN. The Schrödinger suite 2017 (Schrödinger, Cambridge, MA, USA) was used for all
the computational procedures, and, unless otherwise stated, default settings were applied.
The protein was prepared using Protein Preparation Wizard; tetraethylene glycol (PG4),
1,2 ethanediol (EDO), chloride ion (CL), and water molecules (except water molecules
HOH542 and HOH585) were removed. Cognate ligand (1-(2-chlorobiphenyl-3-yl)-4-[4-(1,3-
thiazol-2-ylcarbonyl)-piperazin-1-yl]pyrrolidin-2-one) and ArLuc-1 were built using the
Maestro Build Toolbar and prepared for docking by Schrödinger Ligand Preparation. The
receptor grid was created by the Receptor Grid Generation, the box was centered on the
cognate ligand of 5ZUN, and the size of the ligand diameter midpoint cubic box was set
to 14 Å. The docking was run with Glide Docking using the extra precision (XP) mode,
keeping at most 20 poses per ligand and 200 poses to include in the minimization. The
top poses were refined using MM–GBSA (molecular mechanics with generalized Born
surface area), as implemented in Prime. Residues at a distance of 12 Å from the ligand
were considered as a flexible region in the refinement.

3.13. Statistical Analysis

All experiments were performed in triplicate and independently replicated at least
once. A calibration curve was constructed to convert luminescence data in to LH2 produced.
The values of negative controls were subtracted from the enzymatic curve. The initial
velocity was determined from the linear portion of the resulting curve. All data were
elaborated using GraphPad Prism 6.0c (GraphPad Software, La Jolla, CA, USA), and
kinetic parameters Km and Vmax were calculated applying a nonlinear regression analysis
(Michaelis–Menten). The quantitative data were calculated as means ± standard errors.
The IC50 was calculated with Prism 6 (GraphPad software) using a log (inhibitor) vs.
response–Variable slope (four parameters) function.

4. Conclusions

Fervent research on the ECS in the last decade has focused on the application of new
techniques to deeply investigate the biochemical mechanisms of action of this ubiquitous
system. The modulation of the activity of the ECS enzymes remains an important challenge
for mechanistic and pharmacological purpose. For this reason, having a range of useful
tools for varied research interests such as HTS methods for enzymes inhibitors or activators
and development of methods for ex vivo and in vivo assessments is of fundamental
importance. Our work, focused on the enzyme MAGL, aimed to add a new useful and
very sensitive tool for ECS research. The efficacy of the newly developed luminescence-
based assay for measuring the activity of MAGL has been demonstrated. D-luciferin
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esterified with arachidonic acid, ArLuc-1, has been synthesized and was found to enable
highly sensitive (LOD 90 pM, LOQ 300 pM) bioluminescent detection of MAGL activity
in vitro for potential use in the study of MAGL inhibitors. Recombinant PLG2 was also
produced and purified from bacterial cells in good yield (28.7 mg/L). This luciferase variant
functioned well in the presence of 2.5% DMSO, confirming its stability and resistance to
potentially denaturing conditions. The compatibility of the BL-based MAGL assay with
DMSO, which is essential for solubilizing ArLuc-1, suggests that additional applications
of PLG2 can be developed with reagents that are poorly soluble in aqueous buffers. The
BL-assay described here will very likely expand the scope of MAGL inhibitor screening,
which often involves solubilization of inhibitors in DMSO. The major advantages of this
new bioassay for MAGL activity are high sensitivity and rapidity making it very suitable
in applications when the amount of biological sample is limited. ArLuc-1 represents a
valuable addition to the available toolkit of substrates useful for determining the activity
of MAGL and can allow the development of efficient HTS protocols for the screening of
potential selective inhibitors of this endocannabinoid metabolic enzyme. Furthermore,
the very high sensitivity of this method together with the lower biological interference
associated with bioluminescence compared to fluorescence-based methods suggests likely
applicability to ex vivo or in vivo research.
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