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Abstract: The transmembrane glycoprotein mucin 1 (MUC1) is a mucin family member that has
different functions in normal and cancer cells. Owing to its structural and biochemical properties,
MUC1 can act as a lubricant, moisturizer, and physical barrier in normal cells. However, in cancer
cells, MUC1 often undergoes aberrant glycosylation and overexpression. It is involved in cancer in-
vasion, metastasis, angiogenesis, and apoptosis by virtue of its participation in intracellular signaling
processes and the regulation of related biomolecules. This review introduces the biological structure
and different roles of MUC1 in normal and cancer cells and the regulatory mechanisms governing
these roles. It also evaluates current research progress and the clinical applications of MUC1 in cancer
therapy based on its characteristics.

Keywords: MUC1; epithelial cancer; MUC1 cell barrier; tumor oncogene; therapeutic biomarkers; im-
munotherapy

1. Introduction

Mucin1 (MUC1 also known as EMA, MCD, PEM, PUM, KL-6, and MAM6) is a
macromolecular protein. It is the most readily recognized transmembrane protein of
the mucin family and has a highly glycosylated extracellular domain. Under normal
conditions, MUC1 covers the surface of all epithelial cells [1–3], forming a tight mesh. It
forms a protective barrier through the mucosal surface and protects the cells from extreme
environmental conditions [4–9]. In cancer cells, it has intracellular signaling functions and
plays a significant role in cancer development.

MUC1 is commonly overexpressed in various epithelial adenocarcinomas such as
lung, liver, colon, breast, pancreatic, and ovarian cancer. It is a well-known and vital
oncogene that regulates various aspects of cancer (cell growth, proliferation, metastasis,
apoptosis, developmental processes, etc.) by participating in different signaling path-
ways [6,10–14]. In the past, researchers have designed cancer therapeutic regimens based
on MUC1 characteristics to maximize its potential as a therapeutic and prognostic target,
used MUC1 as an immunogen to make vaccines, and controlled the expression of MUC1
to treat undesirable cancer-related phenomena. This review summarizes recent findings
on the composition of MUC1, its functions in different tissues (healthy and diseased), and
its clinical applications, with a special focus on the impact of MUC1 on various aspects
of cancer.

2. The Structure of MUC1

The epithelium is a laterally connected single cell layer with apical-basal polarity. Due
to its location, it is highly susceptible to external environmental influences and requires
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complex and well-developed defense mechanisms to maintain its integrity. Mucins are
located in the epithelial layer, with secreted mucins having appeared early in the evolution
of metazoans and formed transmembrane structures involved in the protection, repair,
and survival of vertebrate epithelia [5,15–17]. The family of mucins to which MUC1
belongs is that of large, highly glycosylated proteins [7]. There are three types of mucins:
trans-membrane (e.g., MUC1, MUC4, and MUC16), secreted (gel-forming) (e.g., MUC2,
MUC5AC, and MUC6), and soluble (non-gel-forming) (e.g., MUC7, MUC8, MUC9, and
MUC20) [17–19]. MUC1, the best-characterized transmembrane mucin, has a variable
number of highly glycosylated, 20-amino acid tandem repeats (VNTR), a sperm protein-
enterokinase-agarin (SEA) domain (extracellular), a transmembrane domain, and a 72-
amino acid cytoplasmic tail domain that extends up to 200–500 nm out of the cell surface
(Figure 1A) [20–23]. MUC1 is also thought to be encoded as a single polypeptide chain,
which is then self-protectively cleaved immediately after translation at the GSVV motif
(located within the SEA domain) into two peptide segments: the longer N-terminal subunit
(MUC1-N) and the shorter C-terminal subunit (MUC1-C) [24–27]. These two subunits
are linked through stable hydrogen bonds [1,28]. However, in cancer-related MUC1, its
structure was found to have changed—overexpressed due to loss polarity in epithelial cells,
and the carbohydrate side chain becomes uncomplete and forms new carbohydrate side
chains (Thomsen-Friedenreich (TF or T), Tn, and sialyl-Tn (STn)) and exposure of the core
peptide (Figure 1B) [3,29,30].
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Figure 1. Structure of MUC1 in normal tissues and diseased tissues. (A) The structure of MUC1 in
normal tissues; (B) The structure of MUC1 in diseased tissues.

2.1. The N-Terminus

The MUC1 N-terminus, which is extracellular, contains highly conserved VNTR
of 20 amino acids (HGVTSAPDTRPAPGSTAPPA), which are rich in proline (Pro or P),
threonine (Thr or T), and serine (Ser or S) residues. The N-terminus are extensively
modified by O-linked glycans (Ser and Thr residues) [5,8,29,31,32]. Notably, MUC1-N is
the mucin component of the heterodimer that functions as a cell barrier, blocking cell-cell
and cell-extracellular matrix interactions and protecting cells from cellular and pathogenic
invasions while keeping the epithelium moist and repairing it [33]. In some cases, MUC1-
N is released from the cell surface, leaving MUC1-C behind as a putative receptor that
can be phosphorylated and involved in multiple signaling pathways associated with
transformation and numerous signaling pathways related to tumor progression [1,7,34].
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2.2. The C-Terminus

The C-terminus of MUC1 has been more extensively studied, especially in the context
of inflammation and cancer development, due to its location. It includes the components
mentioned above, a transmembrane structural domain of 28 amino acids, and a cytoplasmic
tail of 72 amino acids [35]. The short and highly conserved cytoplasmic domain contains
seven tyrosine residues and several serine and threonine residues, which represent po-
tential docking sites for proteins with Src homology two domains and recognition sites
for receptor tyrosine and other kinases. This includes ErbB receptors such as protein
kinase C delta (PKCδ), glycogen synthase kinase 3β (GSK3β), and epidermal growth factor
receptor (EGFR). As this domain is cytoplasmic, its function is more relevant in signal
transduction [4,8,36].

3. Function of MUC1 in Normal Tissues

In healthy tissues, MUC1 functions as a barrier to protect cells mainly by virtue of its
extracellular domain [37]. Membrane-bound MUC1 acts as a physical barrier through the
action of its extracellular SEA domain, which can help regulate cell shedding and adhesion
during metastasis; protect the apical cell membrane of epithelial cells from rupture, harmful
environments, and immune attack; provide resistance to stimuli; inhibit immune responses
through receptor shielding; and act as a decoy receptor for invading pathogens [7]. It
is also involved in lubrication, cell surface hydration, and protection from degradative
enzymes (Figure 2A) [18,38–40]. In the normal oral mucosal epithelium, MUC1, together
with MUC5B and MUC7, exerts antimicrobial effects by continuously lubricating and
stabilizing the mucus on the cell surface and conferring protection against proteolysis,
thus preventing dehydration [1,41]. Sherry et al. showed that MUC1*, a transmembrane
cleavage product of the MUC1 protein, can help propagate large numbers of pluripotent
stem cells for therapeutic interventions [42].
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Figure 2. Different function of MUC1 in health or cancer tissues. (A) The function of MUC1 in normal
tissues; (B) The function and its main pathways of MUC1 in cancer tissues.
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4. Function of MUC1 in Cancer Tissues

In diseased tissues, the function of MUC1 has overly changed and tightly related to
the treatment of and progression of different epithelial cancers (Figure 2B).

4.1. Pro- or Anti-Inflammatory Role

MUC1 can play either a pro- or anti-inflammatory role in different infection-induced
cancers by acting as an immunomodulatory switch [37,43]. For example, in multiple scle-
rosis (MS), MUC1 plays an anti-inflammatory role and inhibits the dendritic cell (DC)
response that is essential for inflammation to occur [44]. MUC1 can also affect Toll-like
receptor (TLR) responses through immunomodulation. For example, paclitaxel can sig-
nificantly alleviate cercal ligation and puncture (CLP)-induced acute lung injury in septic
mice and in the lipopolysaccharide (LPS)-stimulated lung type II epithelial cell line A549
by activating MUC1 and inhibiting the TLR-4/nuclear factor (NF)-κB pathway [45].MUC1
can also inhibit TLR-4 expression by stabilizing hypoxia-inducible factor (HIF)-1α, thereby
alleviating sepsis-induced lung injury and protecting organ function [46]. However, in its
pro-inflammatory role, the tumor form of MUC1 can establish specific interactions with
DCs and macrophages by controlling the recruitment of inflammatory cells, promoting tu-
mor escape from the immune system, and creating a different inflammatory cell landscape
in the tumor microenvironment [47]. When MUC1 acts in a pro-inflammatory manner,
cancer cells use the vascular adhesion pathway of leukocytes in the inflammatory response
to metastasis [48]. MUC1-C also induces epithelial-mesenchymal transition (EMT) by
activating the inflammatory NF-κB p65 pathway, which activates the EMT transcriptional
repressor zinc-finger E-box-binding homeobox 1 (ZEB1) [49]. Altered MUC1 glycosylation
also promotes chronic inflammatory conditions that lead to malignant transformation and
cancer progression [47]. It has been observed that MUC1 serves different inflammatory
functions in different cancers. As an anti-inflammatory agent, MUC1 mainly affects DCs
and thereby inhibits inflammation. As a pro-inflammatory agent, MUC1 promotes in-
flammation through different pathways by modulating related biomolecules in the tumor
microenvironment and during EMT, and through altered glycosylation, contributing to the
further progression to tumor formation.

4.2. Pharmacodynamic Inhibitors

MUC1 can lead to the emergence of drug resistance during cancer therapy as it is
commonly overexpressed in various epithelial cancers. The overexpression of MUC1 has
been reported to limit the effectiveness of fluorouracil (5-FU) by reducing intracellular drug
uptake and anti-tumor drug action in pancreatic tumors [50]. MUC1 can also upregulate
ATP-binding cassette (ABC)-B1 expression in an EGFR-dependent manner and induce
chemoresistance [51]. MUC1-mediated nucleotide metabolism also plays a key role in
promoting radiotherapy resistance in pancreatic cancer and can inhibit effective targeting
through glycolysis [52]. MUC1 regulates the stabilization of HIF-1α and mediates the
metabolic reprogramming of resistance to gemcitabine by increasing glucose uptake and
thus enhancing resistance [53]. In hepatocellular carcinoma (HCC) cells, MUC1 can pro-
mote radioresistance by activating the Janus kinase (JAK)2/signal transducer and activator
of transcription (STAT)-3 signaling pathway [54]. In addition, MUC1-C exerts oncogenic
activity by targeting GalNAc-T5, a glycosyltransferase associated with tumor suppres-
sion in pancreatic cancer [55]. Clearly, drug resistance mediated by MUC1 occurs largely
through the regulation of glycolytic metabolism, with some regulation of other specific
pathways. A rise in glucose uptake can make tumor tissues less sensitive to increased drug
concentrations; MUC1 amplifies this phenomenon, making it inextricably linked to drug
resistance in tumors.

4.3. MUC1 Promotes Migration and Invasion of Cancers

MUC1 promotes the migration and invasion of a variety of cancers; the regulatory
mechanisms governing this phenomenon are highly redundant and complex. The first



Int. J. Mol. Sci. 2021, 22, 6567 5 of 15

mechanism is through the regulation of factors that are closely associated with tumor
cell invasion and metastasis [56–60]. For example, EMT can be mediated through the
transforming growth factor β (TGF-β) signaling pathway to promote the invasive and
migratory capabilities of cancer cells. By treating HCC cells that express MUC1 with
exogenous TGF-β1, TGF-β type I receptor (TβRI) inhibitors, TGF-β1 siRNA or activator
protein 1 (AP-1) inhibitors, researchers have found that MUC1-induced autocrine TGF-β
promotes cell migration and invasion through the c-Jun N-terminal kinase (JNK)/AP-1
pathway [60]. Silencing MUC1 expression also inhibits the migration and invasion of
pancreatic cancer PANC-1 cells and induces apoptosis through the downregulation of
the transcription factor Slug [61]. MUC1 also enhances the invasiveness of pancreatic
cancer cells by inducing EMT [62]. The involvement of KL-6/MUC1 glycosylation in the
metastasis of and invasion by pancreatic cancer cells has also been shown and may be
related to the EMT process. Therapeutic strategies targeting KL-6/MUC1 glycosylation
may therefore help to control the invasive behavior of pancreatic cancer cells [63]. MUC1-
induced invasion and proliferation have also been shown to occur through the increased
production of exogenous platelet-derived growth factor (PDGF)-A [64].

In rectal cancer, the sialo-oligosaccharide form of MUC1 has been shown to determine
the metastatic potential of colorectal cancer cells and to have clinicopathological utility in
evaluating the outcome and prognosis of patients [13]. The crosstalk between MUC1 and
c-Met in HCC patients could be advantageous for HCC cell invasion through modulation
of the β-catenin/c-Myc pathway. Therefore, MUC1 and c-Met are potential therapeutic
targets for HCC [65].

Cancer cells survive hypoxic environments by promoting the expression of pro-
angiogenic genes to stimulate angiogenesis [24]. The expression of MUC1 promotes
angiogenesis in cancer and, to a certain extent, promotes tumor migration and invasion.
MUC1 and vascular endothelial growth factor (VEGF) expression in human breast can-
cer are highly correlated, and it has been demonstrated that MUC1 expression promotes
angiogenesis in human breast cancer both in vivo and in vitro [66,67]. MUC1 induces
angiogenesis in tumor microenvironments by increasing the expression of neuropilin-1
(NRP1, a co-receptor of VEGF) and its ligand VEGF. Alternatively, MUC1 can activate
intracellular signaling pathways such as Ras/mitogen-activated protein kinase (MAPK),
JAK/STAT, and phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin
(mTOR) to increase the expression of VEGF [62,66,68].

4.4. MUC1 Inhibits Cancer Cell Growth and Apoptosis

MUC1 is also involved in the regulation of different pathways of cancer cell growth
and apoptosis. Transformation and the loss of polarity in breast cancer epithelial cells
causes the overexpression of MUC1, which in turn induces Crumbs homolog-3 (CRB3)
expression and inhibits yes-associated protein (YAP) and YAP/β-linked protein-mediated
Myc expression. The overexpression of MUC1-C, but not MUC1-N, is also sufficient to in-
duce transformation and resistance to stress-induced apoptosis [15,69]. MUC1 contributes
to the growth and survival of pancreatic cancer cells by activating the MAPK pathway;
pharmacological inhibition of this pathway inhibits the proliferation of MUC1-expressing
cells [70]. The knockdown of MUC1 has been shown to inhibit cell proliferation, enhance
cell-cell aggregation, and induce apoptosis [71]. MUC1 also activates JNK1 and inhibits
cisplatin-induced apoptosis in human colon cancer HCT116 cells. The pharmacologi-
cal inhibition or knockdown of JNK significantly reduces the ability of MUC1 to inhibit
cisplatin-induced apoptosis in response to genotoxic anticancer drugs [72]. Cell permeabil-
ity inhibitors such as protein transduction domain MUC1 inhibitory peptide (PMIP), which
interfere with MUC1-EGFR interactions, have been extensively developed and shown to
effectively kill breast cancer cells both in vitro and in tumor models [73].

Overall, MUC1 affects a variety of tumor progression pathways. Pancreatic CD133+

cells exhibit higher expression levels of MUC1, contributing to their tumorigenic phenotype
through increased interactions between MUC1-C and β-catenin, which in turn modulate
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oncogenic signaling cascades [31]. In HCC cells, MUC1 overexpression promotes HCC
progression and tumorigenesis through the JNK/TGF-β signaling pathway [74]. In hema-
tological malignancies, MUC1-C has been associated with various pathways related to
disease pathogenesis, such as Wnt/β-catenin, fms-like tyrosine kinase 3 (FLT3), break-
point cluster region protein (BCR)/Tyrosine-protein kinase (ABL), and NF-κB, which are
involved in tumorigenesis [26]. The aberrant expression of MUC1-C is also sufficient to
induce transformation and block cell death in response to genotoxic, oxidative, and hypoxic
stresses [75]. In epithelial ovarian cancer tissues, the overexpression of tumor-associated
MUC1 and its multiple biological functions contribute to cell-cell adhesion, signaling,
migration, proliferation, and differentiation in cancer cells; the regulation of MUC1 in
malignant cells may therefore alter these carcinogenesis pathways [76].

5. Clinic Application

When it comes to the clinic application of MUC1, researchers are more focused on its
utilization in therapeutic clinical diagnosis and immunotherapy (Figure 3).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 3. Clinical applications of MUC1. 

5.1. Therapeutic Marker 
MUC1 is frequently used as a therapeutic marker in clinical applications because of 

its aberrant overexpression in various epithelial cells. Its receptor-like extracellular 
domain can be released into the external environment and act as a decoy for mucosal 
pathogens, sensing the external environment. The protein can also activate intracellular 
signaling pathways through its cytoplasmic structural domain [8]. 

MUC1 is also a well-established and useful biomarker for the early detection of 
gastric cancer (GC) [77]. The expression levels of MUC1 and MUC5AC correlate 
significantly with the tumor grade of colorectal cancer and are therefore used as markers 
for assessing the prognosis of GC patients [78,79]. In pancreatic cancer, MUC1 can be 
detected in different stages and can indicate initiation and progression with good 
diagnostic accuracy [80]. MUC1 can also be used as a biomarker for pigeon-sensitive 
asthma patients and not just a negative predictor of the survival of patients with cancers 
of epithelial origin [81]. In addition, MUC1 has been associated with immune checkpoint 
genes, neoantigens, and certain prognostic indicators of immunotherapy such as tumor 
mutational burden (TMB) and microsatellite instability (MSI), suggesting that it may also 
serve as a target and prognostic biomarker for immunotherapy. 

To further improve the detection accuracy and sensitivity of MUC1 biomarkers, some 
groups have designed sensors with different novel materials to detect and quantify MUC1 
with higher efficiency. For example, MUC1 inducer-linked PtAu nanoparticles (NPs) were 
developed from nanomaterials with unique physical and chemical properties to improve 
the selectivity and sensitivity of the colorimetric detection of dual cancer markers; this has 
aided the explicit recognition of the MUC1 proteins on the surface of cancer cells [82]. 
Directly competitive electrochemical immunosensors based on gelatin modifications of 
dopamine (DA)/MUC1-functionalized electroactive carbon nanotubes have also been 
designed to be used as signal generation probes for the early diagnosis of breast cancer. 
The gelatin-modified electrodes were used as supports to immobilize antibodies (anti-
MUC-1), and the electrochemical reactions of functionalized electroactive carbon 
nanoprobes were used for the quantitative measurement of MUC-1 [83]. New 
radiolabeled conjugates and peptides with desirable biological properties have also been 
used to target tumor-specific MUC1 antigens to diagnose and treat cancers [84]. Optical 
and electrochemical platform-based ensemble biosensors and nanosensors for detecting 
and quantifying MUC1 have also been developed with electrochemiluminescence sensors 
to detect MUC1 protein exocytosis in breast cancer cells and MUC1 protein in their 
derived exosomes [85,86]. 

  

MUC1

Vaccine

Antibodies

Therapeutic
Markers

Immunotherapy

G lycopeptide
epitope 

TM E

M U C 1-C

M U C 1
alone

M ulti
C om ponent

C om bination w ith
another drug

D N A

Figure 3. Clinical applications of MUC1.

5.1. Therapeutic Marker

MUC1 is frequently used as a therapeutic marker in clinical applications because of
its aberrant overexpression in various epithelial cells. Its receptor-like extracellular domain
can be released into the external environment and act as a decoy for mucosal pathogens,
sensing the external environment. The protein can also activate intracellular signaling
pathways through its cytoplasmic structural domain [8].

MUC1 is also a well-established and useful biomarker for the early detection of gastric
cancer (GC) [77]. The expression levels of MUC1 and MUC5AC correlate significantly with
the tumor grade of colorectal cancer and are therefore used as markers for assessing the
prognosis of GC patients [78,79]. In pancreatic cancer, MUC1 can be detected in different
stages and can indicate initiation and progression with good diagnostic accuracy [80].
MUC1 can also be used as a biomarker for pigeon-sensitive asthma patients and not just
a negative predictor of the survival of patients with cancers of epithelial origin [81]. In
addition, MUC1 has been associated with immune checkpoint genes, neoantigens, and
certain prognostic indicators of immunotherapy such as tumor mutational burden (TMB)
and microsatellite instability (MSI), suggesting that it may also serve as a target and
prognostic biomarker for immunotherapy.

To further improve the detection accuracy and sensitivity of MUC1 biomarkers, some
groups have designed sensors with different novel materials to detect and quantify MUC1
with higher efficiency. For example, MUC1 inducer-linked PtAu nanoparticles (NPs) were
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developed from nanomaterials with unique physical and chemical properties to improve
the selectivity and sensitivity of the colorimetric detection of dual cancer markers; this
has aided the explicit recognition of the MUC1 proteins on the surface of cancer cells [82].
Directly competitive electrochemical immunosensors based on gelatin modifications of
dopamine (DA)/MUC1-functionalized electroactive carbon nanotubes have also been
designed to be used as signal generation probes for the early diagnosis of breast cancer. The
gelatin-modified electrodes were used as supports to immobilize antibodies (anti-MUC-1),
and the electrochemical reactions of functionalized electroactive carbon nanoprobes were
used for the quantitative measurement of MUC-1 [83]. New radiolabeled conjugates and
peptides with desirable biological properties have also been used to target tumor-specific
MUC1 antigens to diagnose and treat cancers [84]. Optical and electrochemical platform-
based ensemble biosensors and nanosensors for detecting and quantifying MUC1 have also
been developed with electrochemiluminescence sensors to detect MUC1 protein exocytosis
in breast cancer cells and MUC1 protein in their derived exosomes [85,86].

5.2. Immunotherapy

MUC1 has also made a notable contribution to immunotherapy. For immunotherapy,
MUC1 research has followed three main lines [87]. The first is the glycopeptide epitope of
MUC1, whose role in the induction of humoral and cellular adaptive immune responses
has been recognized for many years [88]. The second is MUC1 expressed by cancer cells can
affect the phenotype and function of immune cells in the tumor microenvironment. Last,
focusing on smaller membrane-spanning component (MUC1-C) has increased. According
to the three lines, MUC1 was designed to be an antibody-based therapy, immune cells
hijacking therapy, and vaccine-based therapy.

First is the glycopeptide epitope of MUC1. The antibody PankoMab-GEX, a gly-
copeptide epitope located in the TR structural domain, can react with conformational
epitopes in which the threonine in PDTRP carries Tn or T glycans and selectively reacts
with cancer mucins [89]. PankoMab-GEX has been humanized and glycan-optimized to
enhance ADCC and ADCP activity and enhance NK cell killing [87]. Meanwhile, both
MUC1-N (hyperglycosylated) and MUC1-C components contribute to immune evasion
of cancer cells, which may also be an essential consideration in developing MUC1-based
immunotherapy strategies [87]. In addition, hyperglycosylated MUC1 can inhibit its pro-
cessing and presentation to T cells by DCs as tumor antigens, thus blocking anti-tumor
immune responses. Vaccines targeting oligosaccharylated MUC1 are being developed
to induce antibodies and T cells to eliminate inflammatory and/or tumor-initiating cells
expressing this form of MUC1, thereby preventing further inflammation promoting the
anti-tumor activity of many effector cells in the microenvironment [47].

In recent years, attention has increasingly turned to the role of MUC1-C in immunother-
apy and can affect immune cells in the tumor environment. For example, in lung cancer,
Lewis lung cancer cells expressing MUC1-C (LLC/MUC1) exhibit upregulation of Pro-
grammed death-ligand 1 (PD-L1) and inhibition of interferon-γ (IFN-γ). In addition,
MUC1-CPD-L1 signalling promoted activation of CD8C T cells, demonstrating that MUC1-
C is a potential target for reprogramming the tumor microenvironment [90]. Antibodies
specific for the extracellular structure of MUC1-C have also been isolated and screened
from them to inhibit the invasion of triple-negative breast cancer [91]. The reason is that
genetic or pharmacological targeting of the oncogenic MUC1 subunit MUC1-C enhances
the transcription rate of the immune checkpoint ligand PD-L1 in triple-negative breast
cancer (TNBC) cells by recruiting MYC and NF-kB p65, which in turn inhibits PD-L1 ex-
pression [92]. In addition, MUC1-C has emerged as an attractive target for the development
of mAb-based therapeutics. For example, mAb 3D1 is an antibody against the non-shed
MUC1 C-terminal subunit that binds to the restricted α3 helix of the extracellular structural
domain of MUC1-C with a low nM affinity. Its reactivity is selective for human cancer
cell lines and primary cancer cells that express MUC1-C. It also binds to monomethyl
whey protein E (MMAE) to form mAb 3D1-MMAE antibody-drug conjugate (ADC), which
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kills MUC1-C positive cells in vitro while being non-toxic to MUC1 transgenic (MUC1.Tg)
mice and active against human HCC827 lung tumors [93]. The concomitant use of anti-
MUC1-C/NPs antibodies prolonged their retention in the tumor microenvironment in vivo
and ensured that the radio-enhancing effect of NPs was maintained. By concomitant
administration with radiotherapy (XRT), the efficiency of XRT was significantly improved,
significantly enhancing the inhibition of tumor growth and prolonging the overall sur-
vival of the animals [94]. Several researchers have also isolated specific antibodies against
the extracellular structure of MUC1-C that recognize recombinant MUC1 and the native
MUC1-C protein in breast cancer cells and screened for antibodies that highly inhibit
the invasion of triple-negative breast cancers. This could be a very effective therapeutic
candidate for human breast cancer, especially triple-negative breast cancer (TNBC) [91,95].
There are also monoclonal antibodies specific for the extracellular region of the MUC1
subunit MUC1-C (anti-hMUC1 antibody and antibody GP1.4), the former recognizes the
MUC1-C protein in pancreatic cancer cells, thereby inhibiting epidermal growth factor
(EGF)-mediated extracellular signal-regulated kinase (ERK) phosphorylation and cell cycle
protein D1 expression and suppressing MUC1 in vitro and in vivo functions of MUC1.
The latter triggered the internalization of EGFR in pancreatic cancer cells, leading to the
inhibition of EGF-stimulated ERK phosphorylation, thus inhibiting the proliferation and
migration of pancreatic cancer cells. This is a promising targeted therapy that could be
further developed to treat pancreatic cancer [96,97].

MUC1 currently ranks second among 75 candidate antigens for cancer vaccines and
over the years, has been used as the basis for the development of different types of vac-
cines [98]. The first is a vaccine that uses MUC1 alongside tumor-associated carbohydrate
antigens (TACAs), such as Tn and STn, with variable number tandem repeats (VNTRs) as
immunogens. However, its therapeutic efficacy is not yet sufficiently high for clinical use.
This may be due to the low immune tolerance and xenobiotic nature of TACA-MUC1 [99].
Some groups have used different antigenic carrier proteins such as bovine serum albumin
or keyhole bug hemocyanin conjugated to MUC1 [100], whereas others have designed
MUC1 glycopeptide mimics in which the galactose-galactosamine disaccharide is linked
to threonine (TF antigen) via an unnatural β-glycosyl bond. The resulting MUC1-β-TF is
more stable against glycosidases that can cleave this sugar from the corresponding MUC1
glycopeptide with a natural α-TF linkage [101].

In the emerging field of targeted delivery, different antibodies or inducers against
MUC1 have proven helpful for tracking cancer cells [98]. Various adjuvants have been
used alongside MUC1 glycopeptides to enhance their immunogenicity. For example, fully
synthetic multicomponent vaccines have been synthesized by incorporating different T
helper cell epitopes and TLR agonists [100]. Alternatively, vaccine candidates with MUC1
glycopeptide epitopes and the lipopeptide adjuvant Pam2Cys have been shown to elicit
MUC1-specific antibodies and cytotoxic T lymphocyte (CTL) responses in the absence
of other injected lipids or adjuvants [102]. NPs have been developed to deliver mRNA
vaccines that encode the tumor antigen MUC1 to DCs in lymph nodes, thereby facilitating
the activation and expansion of tumor-specific T cells [103]. The construction of MUC1
glycopeptide vaccines by presenting α-GalCer adjuvants and antigens on gold NPs has also
been proposed; this technique can potentially enhance anti-tumor responses during cancer
immunotherapy [104]. The MUC1 vaccine has been tested in combination with other drugs
to increase its anti-tumor effects. Researchers have combined a vaccine consisting of the
MUC1 core peptide with indomethacin to stimulate tumor-specific immune responses and
alleviate the immunosuppressive microenvironment within breast tumors. Compared to
the administration of the vaccine alone, its combination with the drug reduced tumor cell
proliferation and increased tumor cell apoptosis, making the cells susceptible to killing
by immune cells [105]. Vaccines with the immune adjuvant Pam3CysSK4, the peptide
T-helper epitope, and the aberrantly glycosylated MUC1 peptide have also been designed.
The covalent linkage of these three components is essential for maximum efficacy. This
vaccine produces a CTL that recognizes both glycosylated and non-glycosylated peptides,
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thereby effectively circumventing the failure of CTLs and IgG antibodies in targeting
cancer expressing MUC1 due to conformational dissimilarities. The three-part vaccine
can also overcome the antigen-processing sensitivity of the densely glycosylated MUC1
peptide, unlike similar non-glycosylated vaccines that produce a CTL that recognizes only
non-glycosylated peptides [106].

MUC1 DNA vaccines have also been investigated. pcDNA3.1-VNTR is a MUC1 DNA
vaccine composed of VNTRs that induce a significant MUC1-specific CTL response; it has
preventive and therapeutic effects against pancreatic cell Panc02 -MUC1 tumors [107]. In
mice, the immune response to MUC1 DNA vaccination was seen to effectively suppress
CD4+ T cells in colon cancer cells transfected with MUC1 cDNA [108].

6. Conclusions

MUC1, a highly glycosylated protein, has two subunits that play different roles in
normal and diseased states. In normal conditions, the N-terminus serves as a barrier
to protect cells from harmful environmental and bacterial infections. In tumors, the C-
terminus is localized inside cells and is more involved in different signaling pathways
that influence and regulate tumor growth, survival, invasion, migration, and apoptosis.
MUC1 is undeniably an oncogene that transforms inflammation into cancer, enhances
drug resistance, promotes tumor metastasis, and has been shown to play a significant
role in cancer progression. Based on these characteristics, researchers have designed
different MUC1-targeting therapeutic approaches to treat cancer. Unlike in other organs,
the overexpression of MUC1 has been found in many types of epithelial cancers, making it
a good marker for diagnosis and prognosis in clinical treatment.

In the emerging field of tracking the targeted delivery of therapeutic agents to cancer
cells, researchers have designed different types of vaccines aimed against the overexpres-
sion of MUC1, which can be effective in cancer prevention and treatment. The development
of MUC1-based immunotherapeutic strategies has also been reported. This review has
highlighted the structural features of MUC1 and its primary functions in cancer progression.
Its clinical applications developed over the last decade were also discussed.

Although there have been many contributions to the study of MUC1, its role in differ-
ent aspects of cancer progression, and its utility as a biomarker, it is only after scientists
harnessed materials science to design detectors that the precise and quantitative deter-
mination of MUC1 in cancers was made possible. Despite these advances, the detailed
mechanisms by which MUC1 exerts its effects remain to be explored. Even though MUC1
vaccines and antibodies are being developed, with some having shown significant thera-
peutic effects and currently undergoing phase I/II clinical trials, certain side-effects and
clinical safety issues need to be further explored and confirmed [3,109,110]. In conclusion,
MUC1 is inextricably linked to various epithelial cancers, mandating further explorations
of this phenomenon.
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Abbreviations

5-FU fluorouracil
ABC ATP-binding cassette
AP-1 activator protein 1
CLP cercal ligation and puncture
CRB3 Crumbs homolog-3
CTL cytotoxic T lymphocyte
DA dopamine
DC dendritic cell
EGFR epidermal growth factor receptor
EMT epithelial-mesenchymal transition
FLT3 fms-like tyrosine kinase 3
GSK3β glycogen synthase kinase 3β
HCC hepatocellular carcinoma
HIF hypoxia-inducible factor
IFN-g interferon-g
JAK Janus kinase
JNK c-Jun N-terminal kinase
LLC Lewis lung cancer
LPS lipopolysaccharide
MAPK mitogen-activated protein kinase
MS multiple sclerosis
MSI microsatellite instability
mTOR mammalian target of rapamycin
MUC1 Mucin1
MUC1-C C-terminal subunit
MUC1-N N-terminal subunit
NF nuclear factor
NPs nanoparticles
NRP1 neuropilin-1
PD-L1 Programmed death-ligand 1
PDGF platelet-derived growth factor
PI3K phosphoinositide 3-kinase
PKCδ protein kinase C delta
PMIP inhibitory peptide
SEA sperm protein-enterokinase-agarin
STAT signal transducer and activator of transcription
TACAs tumor-associated carbohydrate antigens
TF or T Thomsen-Friedenreich
TGF-β transforming growth factor β
TLR Toll-like receptor
TMB as tumor mutational burden
TNBC triple-negative breast cancer
TRs tandem repeats
TβRI TGF-β type I receptor
VEGF vascular endothelial growth factor
VNTRs variable number tandem repeat
YAP yes-associated protein
ZEB1 zinc-finger E-box-binding homeobox 1
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