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Abstract: Cold shock Y-box binding protein-1 (YB-1) coordinates several molecular processes be-
tween the nucleus and the cytoplasm and plays a crucial role in cell function. Moreover, it is involved
in cancer progression, invasion, and metastasis. As trophoblast cells share similar characteristics
with cancer cells, we hypothesized that YB-1 might also be necessary for trophoblast functionality. In
samples of patients with intrauterine growth restriction, YB-1 mRNA levels were decreased, while
they were increased in preeclampsia and unchanged in spontaneous abortions when compared to
normal pregnant controls. Studies with overexpression and downregulation of YB-1 were performed
to assess the key trophoblast processes in two trophoblast cell lines HTR8/SVneo and JEG3. Overex-
pression of YB-1 or exposure of trophoblast cells to recombinant YB-1 caused enhanced proliferation,
while knockdown of YB-1 lead to proliferative disadvantage in JEG3 or HTR8/SVneo cells. The
invasion and migration properties were affected at different degrees among the trophoblast cell
lines. Trophoblast expression of genes mediating migration, invasion, apoptosis, and inflamma-
tion was altered upon YB-1 downregulation. Moreover, IL-6 secretion was excessively increased in
HTR8/SVneo. Ultimately, YB-1 directly binds to NF-κB enhancer mark in HTR8/SVneo cells. Our
data show that YB-1 protein is important for trophoblast cell functioning and, when downregulated,
leads to trophoblast disadvantage that at least in part is mediated by NF-κB.

Keywords: cold shock protein; intrauterine growth restriction; preeclampsia; placentation; apoptosis;
NF-κB

1. Introduction

Adequate placenta development is a prerequisite of a successful pregnancy, while
inadequate placentation is a feature of many pregnancy-associated disorders, including
spontaneous abortion, intrauterine growth restriction (IUGR), and preeclampsia (PE) [1,2].
Although these disorders have complex pathophysiology with incompletely understood
etiology, many share similar origins, such as inadequate trophoblast proliferation and
shallow trophoblast invasion [3]. The placenta arises from the trophectoderm of the devel-
oping embryo, and, as soon as the embryo-derived trophoblasts adhere to the maternal
endometrium, they start to proliferate, migrate towards the basal membrane, and invade
into the surrounding endometrial stroma [4]. Here, they attain to remodel the spiral ar-
teries under tightly balanced exposure to growth factors and cytokines derived from the
surrounding immune and stromal cells [5].
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Interestingly, the trophoblasts share several common characteristics with malignant
cells, including proliferative, migratory and invasive features [6]. Moreover, the molecular
traits of the trophoblasts, e.g., gene expression and cell response to extracellular stimuli,
are similar to those found in malignant cells [7]. Hence, understanding of the molecular
mechanisms underlying tumor growth and invasiveness might be of essential interest in
understanding the trophoblast functionality, as well.

In several cancer types, YB-1 has been reported as a promoter of cell proliferation,
migration, invasion, and inflammation and as an inhibitor of apoptosis [8–11]. YB-1 is
encoded by the YBX1 gene, performs pleotropic functions, and contains a highly conserved
cold shock domain. This domain has an extreme affinity to bind to DNA and RNA [12],
which enables YB-1 to regulate the expression of numerous genes, such as the mechanistic
target of rapamycin (mTOR), vascular endothelial growth factor (VEGF), signal transducer
and activator of transcription 3 (STAT3), nuclear factor ’kappa-light-chain-enhancer’ of
activated B-cells (NF-κB), and major histocompatibility complex class 2 genes (MHC2)
and Notch homolog 3 (NOTCH3), which are involved in cell growth and metabolism,
angiogenesis, inflammation, immune system evasion, and embryo development, respec-
tively [13–16]. In addition to the functions in carcinogenesis, YB-1 has been suggested to
play a role in embryo development, as well [17]. Throughout embryogenesis, it is highly
expressed in the skeletal muscle, spleen and liver, and, after birth, its expression levels
quickly decrease [17]. In YBX1-/- knockout embryos, the development advances usually
up to embryonic day 10.5 (E10.5), and, afterwards, they exhibit severe growth retardation,
neurological and pulmonary lesions, and are embryonically lethal by E18 [18,19], which
indicates that YB-1 is necessary at late developmental stages. Recently, we characterized the
effects of YB-1 deficiency on placenta development in vivo [20], where trophoblast-specific
YB-1 deficient mice showed reduced implantation areas and negatively affected gross
placental morphometry already at E10 [20]. This shows a direct involvement of YB-1 not
only in placenta growth but also in implantation processes. Knowing that YB-1 is necessary
for adequate placental development, we now aim to understand the participation of YB-1
in trophoblast functionality. In that order, firstly, we checked the relevance of YB-1 mRNA
expression in different pregnancy-associated disorders using patient samples. Secondly, we
performed targeted overexpression and downregulation analysis of human YB-1 in two dif-
ferent trophoblast cell lines. Ultimately, we investigated a possible underlying connection
with trophoblast specific genes of proliferation, migration, invasion, and inflammation.

2. Results
2.1. YB-1 Expression is Unaltered in Miscarriage Samples but is Impaired in IUGR and
PE Syndrome

To assess whether YB-1 is affected in early pregnancy events, we analyzed the YB-1
expression in placenta samples from spontaneous abortions and normally progressing
pregnancies that were legally terminated (induced abortions), which served as controls.
Overview of the baseline patients characteristics is given in Table 1. Unexpectedly, there
were no changes in YBX1 expression levels between the groups (Figure 1A). Next, we
checked the YBX1 levels in control term placentas and placentas obtained from late preg-
nancy events, such as preterm birth complicated by IUGR or PE syndrome. In IUGR
placentas, YBX1 expression was significantly lower in comparison to controls (Figure 1B).
This was, however, not the case in the group of patients with PE syndrome, where we
detected increased YBX1 expression levels (Figure 1B). To further investigate whether YB-1
can be detected in serum from pregnant women in the last trimester, we quantified the
YB-1 concentrations in a next set of patients. As expected, YB-1 serum concentrations were
in line with the results obtained from the gene expression analysis in the placenta, meaning
that IUGR pregnancies had lower YB-1 concentrations (Figure 1C). We observed a trend
towards increased YB-1 serum concentrations in PE pregnancies, but the results did not
reach statistical significance compared to the controls (Figure 1C). Our data suggest that
YB-1 expression is not affected in the same way in different pregnancy-associated disorders
with a possible role in later stages of pregnancy.
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Table 1. Descriptive representation of patient data. Data are presented as mean ± SD for continuous data and as % for
categorical data. Spontaneous abortions were compared to induced abortions, * p < 0.05. IUGR and PE pregnancies were
compared to control pregnancies; * p < 0.05; ** p < 0.01; **** p < 0.0001. PE = preeclampsia, Y = years, SC = Cesarean section.

Patient Characteristics Induced Abortion (n = 20) Spontaneous Abortion (n = 20)

Maternal age (y) 26.79 ± 5,52 29.85 ± 6.84
Gestational week 10.74 ± 1.50 9.69 ± 3.55*

Patient Characteristics Control (n = 18) IUGR (n = 12) PE (n = 18)

Maternal age (y) 28.80 ± 5.25 28.00 ± 3.07 32.29 ± 8,18
Gestational week 39.65 ± 1.58 32.25 ± 4.09 **** 28.97 ± 3,01 ****
Fetal weight (g) 3518 ± 459.3 1897 ± 869.2 ** 1017 ± 388,1 ****
Fetal length (cm) 52.13 ± 2.56 46.17 ± 6.24 42.50 ± 2.12 *
Sex (% female) 33.33 63.64 42.86
Mode of delivery (% SC) 40 63.64 100

Figure 1. Comparison of YB-1 levels in pregnancy-associated disorders. mRNA levels of YBX1 in placenta samples from
induced and spontaneous abortions (A), mRNA levels of YBX1 in placenta samples from term, preeclamptic, and IUGR
pregnancies, at delivery (B), and serum YB-1 concentration comparison between term, preeclamptic, and IUGR pregnancies,
at delivery (C). Data are presented as median with 95% confidence interval, and p-values were calculated with one-way
ANOVA; * p < 0.05, ** p < 0.01. IUGR=intrauterine growth restriction.

2.2. YB-1 Enhances Trophoblast Cell Proliferation

To address whether trophoblast growth is affected by YB-1, we overexpressed YBX1
in two different trophoblast cell lines. We used the choriocarcinoma JEG3 cell line and
HTR8/SVneo, a first trimester immortalized trophoblast cell line. These two cell lines have
different origins and are used to assess different trophoblast characteristics [21]. Overex-
pression of YB-1 (Figure 2A) results in proliferative advantage at 24 h for both cell lines
(Figure 2B), without affecting the number of dead cells (Supplementary Figure S1A,B).
Next, we assessed whether the effect of YB-1 on trophoblast proliferation is similarly
mediated by adding recombinant YB-1 (rYB-1) protein to the culture. We tested several
concentrations of rYB-1, and the effects were recorded after 24 h of exposure to the recombi-
nant protein. At 5 µg/mL, rYB-1 induced proliferation in both trophoblast cell lines, while
lower concentrations of rYB-1 showed proliferative capacity only for the HTR8/SVneo
cell line (Figure 2C). Collectively, these data show that YB-1 positively affects trophoblast
viability and proliferation.
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2.3. Exposure to YB-1 Positively Affects Migration and Invasion of Trophoblasts

Next, we assessed the effect of YB-1 on trophoblast migratory abilities by performing
wound healing assays with HTR8/SVneo cells. rYB-1 significantly increased the tro-
phoblast migration (Figure 3A), and, similarly, the overexpression of YBX1 in HTR8/SVneo
cells leads to increased migration and complete closure of the wound in 24 h (Figure 3B).
Additionally, the invasion properties of HTR8/SVneo and JEG3 cells upon exposure to
rYB-1 were assessed via transwell invasion assay. In line with the previous observations,
the invasion rates of HTR8/SVneo cells were around 2-fold increased after 18-h expo-
sure to rYB-1 (Figure 3C left panel), while almost no effect was seen regarding invasion
properties of JEG3 cells upon stimulation with rYB-1 (Figure 3C, right panel). Hence,
YB-1 stimulated migration and invasion in HTR8/SVneo trophoblast cells but not in JEG3
choriocarcinoma cells.

Figure 2. Proliferative advantage in trophoblast cell lines upon exposure to YB-1. mRNA levels of YBX1 in HTR8/SVneo
and JEG3 cells 24 h after plasmid overexpression (A). Trophoblast cell line proliferation upon YBX1 plasmid overexpression
(B) and after 24-h exposure to rYB-1 (C). The results from three independent experiments were statistically analyzed using
t-test (A,B) or one-way ANOVA (C). Data are presented as mean with SD; * p < 0.05; ** p < 0.01; *** p < 0.001.

Figure 3. Positive effects of YB-1 on migration and invasion in HTR8/SVneo cells. Migration of HTR8/SVneo cells upon
rYB-1 stimulation (A) and after YBX1 plasmid overexpression (B). Invasion rates of HTR8/SVneo and JEG3 upon 18-h rYB-1
stimulations (C). The results from three independent experiments were statistically analyzed using one-way ANOVA (A) or
t-test (B,C). Data are presented as mean with SD; * p < 0.05; ** p < 0.01; **** p < 0.0001. Scale bar 50 µm.
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2.4. Loss of YB-1 Function Reduces Proliferation and Affects Apoptosis in Trophoblasts

Given that YBX1 overexpression positively affected the trophoblast phenotype, we
next investigated whether YB-1 is crucial for overall trophoblast functionality. For this,
we used a control and two shRNA YB-1 lentiviral vectors (shYB-1.1 and shYB-1.2), which
were used to transduce HTR8/SVneo and JEG3 cell lines. Transduction efficacy and
downregulation of YB-1 was confirmed by Western Blot. In both cell lines, the controls
transduced with a scramble shRNA expressed endogenous YB-1, but, upon lentiviral
transduction, with both shRNA YB-1 vectors, at least a 4-fold decrease in expression
was observed (Figure 4A). As indicated in Figure 4B, downregulation of YB-1 provided
a proliferative disadvantage of HTR8/SVneo as the population of live cells showed a
3-fold lower numbers at 72 h and more than a 7-fold lower numbers at 96 h post-seeding
of the cells (Figure 4B, upper panel). A similar trend was observed when JEG3 cells
were used, where the number of live cells decreased significantly at 72 h post-seeding
(Figure 4B, lower panel). Additionally, as apoptosis is an important regulator of growth
in trophoblast cells, we detected the rate of apoptosis in intact HTR8/SVneo cells using
a caspase 3/7 fluorescent assay. Interestingly, YB-1 downregulation resulted in a 3-fold
and 6-fold increase of caspase 3/7 activated cells (Figure 4C). Furthermore, we tested
the expression of genes related to apoptosis in trophoblast cells (Figure 4D). Levels of
mRNA of B-cell lymphoma 2 (BCL2), caspase 3 (CASP3), and FOS Like 1 (FOSL1) were
upregulated in HTR8/SVneo YB-1 downregulated cells (Figure 4D, left panel). No changes
were observed for BCL2 Associated X (BAX), caspase 9 (CASP9), and galectin-3 (LGALS3)
(Figure 4D, left panel). In comparison, in JEG3 YB-1 downregulated cells only, BCL2 was
significantly upregulated related to controls (Figure 4D, right panel). These data indicate
that, in vitro, YB-1 downregulation results in a trophoblast growth disadvantage that is
further associated with alterations in apoptosis-relevant genes.

Figure 4. Trophoblast cell lines disadvantage upon lentiviral YB-1 downregulation. Representative Western Blot image
of YB-1 protein levels 7 days upon YB-1 downregulation (A). Effects of YB-1 downregulation on proliferative rates (B),
apoptosis in HTR8/SVneo cells (C), and apoptosis related genes expression (D) in trophoblast cell lines. The results from
three independent experiments (except A) were statistically analyzed using one-way ANOVA. Data are presented as mean
with SD; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. Scale bar 50 µm. BAX= BCL2-associated X, BCL2 = B-cell
lymphoma 2, CASP3 = Caspase 3, CASP9 = Caspase 9, FOSL1= Fos-related antigen 1, LGALS3= Galectin-3.
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2.5. Loss of YB-1 Affects Trophoblast Functionality by Modulation of Genes Involved in Cell
Migration and Invasion

Decreased proliferation rates due to YB-1 downregulation may lead to decreased
migration/invasion of trophoblast cells. In order to confirm that the impaired migratory
and invasive capability of trophoblasts was not a side effect of decreased proliferation,
we quantified the cell viability of YB-1 downregulated cells after 24 h in culture with
an MTT assay. Both cell lines showed more than 80% cell viability compared to the
controls treated with scramble shRNA (Figure 5A). Next, we evaluated the migratory
properties of YB-1 downregulated HTR8/SVneo cells, and, as depicted in Figure 5B, it
resulted in decreased migration in comparison to control HTR8/SVneo cells. Moreover,
the invasion properties of YB-1 downregulated HTR8/SVneo and JEG3 cells were also
decreased to different degrees (Figure 5C). Additionally, we analyzed the expression
levels of genes involved in the promotion and inhibition of cell migration and invasion
(Figure 5D). While matrix metalloproteinase 9 (MMP9) was differentially expressed in both
HTR8/SVneo shYB-1 groups, the inhibitors of matrix metalloproteinases, tissue inhibitor
of metalloproteinase 1 (TIMP1) and serpin family E member 1 (SERPINE1) were both
significantly upregulated (Figure 5D, left panel). Additionally, there were no changes in the
expression levels of macrophage migration inhibitory factor (MIF) (Figure 5D, left panel).
In JEG3 cells, matrix metalloproteinase 2 (MMP2) showed disproportion in expression
after YB-1 downregulation with the two shRNAs against YB-1, while MMP9, TIMP1, and
MIF levels were similar to the controls (Figure 5D, right panel). Nevertheless, mRNA
levels of SERPINE1 were significantly upregulated in JEG3 cells with downregulated YB-
1 expression (Figure 5D, right panel). Moreover, in HTR8/SVneo YB-1 downregulated
cells, NOTCH1 and NF-κB were both significantly upregulated, and signal transducer
and activator of transcription 3 (STAT3) showed no changes between the groups, while
NOTCH3 was downregulated (Figure 5D, left panel). As for JEG3 YB-1 downregulated cells,
only NOTCH1 and STAT3 were significantly upregulated, and no changes in the expression
of NOTCH3 were observed, while NF-κB showed a trend towards decreased expression
(Figure 5D, right panel). Taken together, these results indicate that YB-1 downregulation
promotes trophoblast dysfunctionality with effective regulation of downstream targets.

2.6. YB-1 Mediates IL-6 Secretion and Directly Binds to NF-κB Regulatory DNA Regions

YB-1 is implicated in inflammation and cytokine production. In the previous experi-
ments, we showed that YB-1 downregulation altered the expression of NF-κB, NOTCH1,
and NOTCH3, which are important modulators of the interleukin (IL-6) signaling path-
ways [22,23]. To investigate whether YB-1 downregulation also translates into changes in
cytokine secretion, cell supernatants from YB-1 downregulated HTR8/SVneo and JEG3
cells were analyzed for interleukin 6 (IL-6) secretion. Interestingly, while YB-1 downreg-
ulated JEG3 cells showed similar IL-6 concentrations as the controls, HTR8/SVneo cells
with downregulated YB-1 expression showed around a 40-fold increase in secreted IL-6
concentrations (Figure 6A).

Since YB-1 has translational, transcriptional, and chromatin binding abilities, we sought
to investigate whether the genes that are significantly changed after YB-1 downregulation and
are implicated in IL-6 secretion are functional targets of YB-1 under non-perturbed conditions.
We tested the binding areas by designing CHIP-qPCR primers (Table 2) at the loci that are
enriched for H3K27Ac. We chose these regions as potential binding sites for YB-1 as they
indicate activation of transcription and are potential enhancer markers [24]. As a control,
we confirmed that YB-1 antibody does bind to the YB-1 H3K27ac enriched area, but it does
not bind to the selection position 2, which is an H3K27ac poor area (Figure 6B, lower panel).
For NOTCH3, YB-1 does not bind throughout the selected H3K27ac enriched loci, which we
identified as possible target marks (Figure 6C). Interestingly, we observed that YB-1 has a
rudimentary binding to the chosen position 1, which lies at the exon 1 region of NF-κB
in HTR/SVneo cell line (Figure 6D). Taken together, these data suggest that YB-1 might
collaborate with NF-κB to induce impaired trophoblast phenotype.
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Figure 5. Negative effects of YB-1 on migration and invasion in HTR8/SVneo cells. YB-1 downregulation effects on
trophoblast cell line viability (A), migration (B), invasion (C), and expression levels of genes relevant for trophoblast
migration, invasion, and overall function (D). The results from three independent experiments were statistically ana-
lyzed using one-way ANOVA. Data are presented as mean with SD; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.
Scale bar 50 µm. MIF = Macrophage migration inhibitory factor, MMP2 = Metalloproteinase 2, MMP9 = Metallopro-
teinase 9, TIMP1 = Metallopeptidase inhibitor 1, SERPINE1 = Serpin family e member 1, NOTCH1 = Notch homolog 1,
NOTCH3 = Notch homolog 3, STAT3 = Signal transducer and activator of transcription 3, NF-κB = Nuclear factor kappa-
light-chain-enhancer of activated B cells.

Figure 6. YB-1 downregulation increases IL-6 secretion and binds to NF-κB in HTR8/SVneo cells. IL-6 was detected in cell
supernatants from YB-1 downregulated trophoblast cell lines (A). qPCR-CHIP primer positions and YB-1 binding is pre-
sented as percent of input for YB-1 (B), NOTCH3 (C), and NF-κB (D). The results from three independent experiments were
statistically analyzed using one-way ANOVA. Data are presented as mean with SD; * p < 0.05; *** p < 0.001; **** p < 0.0001.
NOTCH3 = Notch homolog 3, NF-κB = nuclear factor kappa-light-chain-enhancer of activated B cells.
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Table 2. qPCR-CHIP primer sequences.

No. Primer (Gene) Name (Sequence 5‘-3‘)

1 hYBX1 fw position 1 GGGAAGCCTTTTCTTCACGG
2 hYBX1 rv position 1 GAGTAGTCGGCCACGAAAAC
3 hYBX1 fw position 2 GAAGCTAGGGATTGGGGTCA
4 hYBX1 rv position 2 GCTACCGATCGAACTAGCGA
5 hNOTCH3 fw position 1 CACAGAGGAAGTGGGTTGCT
6 hNOTCH3 rv position 1 ATTTGCAGCCTCAGACCTCA
7 hNOTCH3 fw position 2 ATGGGGAAACACGAGAGGTTG
8 hNOTCH3 rv position 2 TTTGTCACTTGGGCCTGGGG
9 hNF-κB1 (p50) fw position 1 CCCCTCTGCCAGATCAGTATT
10 hNF-κB1 (p50) rv position 1 CGACTTGTGCCCAGTAAAGT
11 hNF-κB1 (p50) fw position 2 CTTCCTCATTCCTGCGCTAAC
12 hNF-κB1 (p50) rv position 2 GTAAGAGTTCCCCTCCGGTT

3. Discussion

YB-1 plays an essential role in tumorigenesis by regulating cell proliferation, inflam-
mation, migration, invasion, and apoptosis via relevant pathways [25]. During pregnancy,
these processes are also crucial for the normal development of the placenta and changes in
YB-1 expression might be involved in impaired placenta growth and/or functionality. We
have recently shown that heterozygous YBX1 mice and mice with trophoblast-specific YBX1
deficiency display placental abnormalities with subsequent fetal growth retardation [20].
The present study demonstrates that pregnancy-associated disorders are associated with
altered YB-1 concentrations in tissue and blood samples. Our experiments comprising
overexpression and downregulation of YB-1 in trophoblasts show that YB-1 is an important
regulator of their functionality.

Discordant YB-1 in pregnancy might lead to defective placentation and subsequent
development of pregnancy-associated disorders. To date, we are the first to report results
on YBX1 expression changes in patients suffering from spontaneous abortion, preterm
birth, or PE syndrome. We did not observe any differences in placental YBX1 expression
between subjects having a spontaneous abortion or induced termination of pregnancy.
Thus, it suggests that YB-1 may not be particularly relevant in early events of pregnancy.
However, in pregnancies complicated by preterm birth and intrauterine growth restriction,
YB-1 transcript levels and serum concentrations were significantly decreased compared to
controls. Thus, it indicates that YB-1 may have a considerable role in trophoblast physiology
in the later stages of pregnancy. Surprisingly, in PE patients, YBX1 transcript levels were
increased, but we could not confirm this in the few obtained matching serum samples. This
discrepancy may be attributed to the slightly different pathophysiological traits underlying
these disorders [26]. Preeclampsia, among defective placentation, is also characterized
with angiogenic imbalance due to increased concentrations of antiangiogenic factors, such
as soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin (sEnd), and decreased
concentrations of vascular endothelial growth factor (VEGF) and placental growth factor
(PlGF) [27,28]. We speculate that this imbalance might, in turn, lead to a compensatory
mechanism, such as an increase in YB-1 levels, which promotes angiogenesis [29]. Although
it is known that YB-1 regulates the levels of angiogenic factors, it is yet to be elucidated
whether angiogenic imbalance can trigger YB-1 upregulation. This might be the focus
of subsequent studies, but it is not the main aim of the present one and will not be
further discussed.

To investigate the impact of elevated YB-1 levels on the trophoblast phenotype, we
used two different approaches: YBX1 overexpression and direct exposure to rYB-1 protein
in the two most widely used trophoblast cell lines. The first one aims at understanding the
significance of YBX1 expression in the trophoblast itself. The second one rather addresses
the contribution of secreted YB-1 by other cells present at the feto-maternal interface [30].
Transient YBX1 overexpression led to an increased proliferation of both cell lines, and



Int. J. Mol. Sci. 2021, 22, 7226 9 of 16

promotion of migration in HTR8/SVneo cells. Direct exposure to YB-1 resulted in similar
outcomes, confirming the positive effect of this cold shock protein in stimulating the
proliferation and migration of trophoblasts. Additionally, we tested the invasive properties
of both cell lines in the presence of rYB-1, and, while no changes were registered for JEG3
cells, HTR8/SVneo cells increased their invasive activity upon YB-1 addition to the culture.
The upregulation of trophoblast proliferation, migration, and invasion linked to YB-1 is in
accordance with several previous studies using other cell types which demonstrated that
overexpression of YBX1 acts as a potent enhancer of cellular functions [29,31]. In regard
to the discrepancy we see in the affinity of YB-1 to the different trophoblast cell lines,
we link this to the origin of the cell lines. The HTR8/SVneo cell line is a first trimester
extravillous trophoblast cell line that was immortalized with an origin-defective simian
virus 40 construct and was revealed that consists of two distinct populations; epithelial and
mesenchymal [32] . Given that YB-1 is known to physically and functionally interact with
the viral regulatory protein T- antigen [33], we speculate that this is the reason for the more
pronounced effect in the HTR8/SVneo cell line compared to JEG3 cell line that is derived
from cancerous tissue.

Normal placental development dependent not only on controlled cell proliferation
and differentiation but also on programmed cell death that occurs as a rate-limiting pro-
liferation factor [34]. Likewise, in normal pregnancies, trophoblast apoptosis increases as
the pregnancy progress and in pregnancy-associated disorders, such as PE and IUGR, a
greater incidence of apoptosis is observed [35]. The central players of apoptosis are the
caspases, however many other genes are involved in this process [36]. Our study shows
that YB-1 downregulated cells possess increased caspase activity and upregulated expres-
sion of the pro-apoptotic molecules BCL2 and FOSL1 in HTR8/SVneo cells. This clearly
demonstrates that the absence of YB-1 results in excessive apoptosis in HTR8/SVneo cells
via upregulation of several genes that propagate the death signal.

One essential feature for optimal placenta development is the ability of the tro-
phoblasts first to migrate and then invade into the surrounding tissue. To date, YB-1
has been fundamentally implicated in the migration and invasion processes in several
types of cancers, including breast cancer [37], lung cancer [38], melanoma [39], and spinal
chordoma [40]. YB-1 downregulation leads to reduced invasive and migratory abilities
of tumorigenic cells, consistent with changes in mRNA levels of genes necessary for cell
proliferation and invasion, such as zinc finger protein SNAI1, NF-κB, MMP2, etc. [41].
This is also in line with our results, where we show that stable downregulation of YB-1
in trophoblast cell lines leads to a defective trophoblast phenotype that is impaired in
proliferation, migration, and invasion. Furthermore, the invasive trophoblast ability is
dependent on balanced protease activation and inhibition. While trophoblast invasion
is mediated via MMPs, and namely MMP2 and MMP9, the inhibition is dependent on
TIMP1 and SERPINE1 [42]. In our study, we show that the tissue inhibitors of matrix
metalloproteinases TIMP1 and SERPINE1 were upregulated, and this may contribute to
the decreased invasive profile of trophoblast cells.

Trophoblasts are known to secrete cytokines, and IL-6 is amongst the most abun-
dantly produced factors [43]. IL-6 acts as a pro- and anti-inflammatory cytokine and
modulates immune responses, angiogenesis, and trophoblast proliferation, migration, and
apoptosis [44]. Moreover, cytotrophoblast cells express high IL-6 mRNA levels, which
are further stimulated by IL-6 itself [45]. However, excessive production of IL-6 has been
also implicated in the development of several pregnancy-associated disorders [46,47]. In
the present study, we show that indeed, HTR8/SVneo cells with downregulated YB-1
secrete excessively high concentrations of IL-6. While the cytokine production is a tightly
controlled process, the signaling pathways regulating IL-6 secretion are still not completely
disclosed. Independently, it was reported that NOTCH3 and NF-κB could mediate the
induction of IL-6 production in malignant cells [48] and in macrophages [22]. When deter-
mining the expression of NF-κB and NOTCH3 in our YB-1 downregulated HTR8/SVneo,
we came to the conclusion that the expression levels were differentially affected. This
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provides evidence that YB-1 interacts with inflammation relevant genes that, in turn, can
also perturb the trophoblast functionality.

Several studies have shown that YB-1 is required for NF-κB activation either via
IL-1βR [49] or via TNFR1 [50]. Here, we show that, in unaltered conditions, YB-1 has the
affinity to directly bind to a region that encloses the first exon of the NF-κB gene, which
is also an H3K27ac enriched region as depicted in the UCSC genome browser [51]. This
suggests that NF-κB can act as a functional target of YB-1. Knowing that NF-κB is involved
in the regulation of several cellular processes, including proliferation, differentiation,
apoptosis, oxidative stress, and inflammation [52], it is of no surprise that this protein
is critically implicated in the placentation, as well [53]. Previously, it was shown that
NF-κB can modulate the placenta development either via regulation of factors important
for trophoblast invasion, such as MMP2, MMP9, and SERPINE1 [54], or via regulation
of the feto-maternal vascularization through cytokines (IL-6, IL-8) [55] and angiogenic
proteins (PlGF, VEGF, sEnd) [54,56]. Hence, the detrimental roles that we observe for YB-1
in trophoblast function may be, in part, mediated by NF-κB.

4. Conclusions

Our findings indicate that YB-1 acts as a potent regulator of trophoblast functionality
via changes in the molecular footprint of genes involved in proliferation, apoptosis, mi-
gration, invasion, and inflammation. Moreover, we showed that YB-1 could directly bind
to the NF-κB gene, which, in turn, can shed light on the YB-1 involvement in pregnancy-
associated disorders.

5. Materials and Methods
5.1. Sampling and Ethical Approval

Placental tissue was collected from induced (elective) pregnancy terminations and
spontaneous abortions or shortly after birth and was processed for RNA isolation. Periph-
eral blood samples were obtained from healthy pregnant or pregnant patients admitted
to hospital due to preterm birth or development of PE. Inclusion criteria for PE were:
singleton pregnancy, hypertension (diastolic blood pressure ≥ 90 mmHg on at least two
occasions), and proteinuria (urine dipstick > 1+ (≥30 mg/dL) on at least two occasions,
and protein: creatinine ratio of ≥0.35 or 24-h urine protein concentration ≥ 300 mg). For
IUGR patients, the inclusion criteria were the following: singleton fetus, normotensive
(120–80 mmHg), estimated fetal weight, and/or abdominal circumference <10th percentile.
Exclusion criteria for all patients recruited in this study were: multiple pregnancy, presence
of congenital infections and chromosomal defects, and autoimmune disorder of the mother.
The clinical study was approved by the ethics board at the University of Magdeburg with
reference number EK28/08. All subjects provided written informed consent, and the study
was performed in accordance with the Declaration of Helsinki. Subject characteristics are
presented in Table 1.

5.2. Cell Lines

The human choriocarcinoma cell line JEG3 (DMZO, Braunschweig, Germany) was
cultured in Dulbecco

′
s modified Eagle’s medium (DMEM) (Invitrogen, Karlsruhe, Ger-

many) supplemented with 10% fetal bovine serum (FBS, Biochrom, Berlin, Germany) and
100 nmol/L penicillin/streptomycin (Invitrogen, Karlsruhe, Germany). The immortalized
human extravillous cytotrophoblast cell line HTR8/SVneo (ATCC, CRL-327) was cultured
in Roswell Park Memorial Institute (RPMI) 1640 medium, supplemented with 10% fetal
bovine serum (FBS, Biochrom, Berlin, Germany), 100 nmol/L penicillin/streptomycin
(Invitrogen, Karlsruhe, Germany), 100 nmol/L MEM nonessential amino acids (Invitrogen,
Karlsruhe, Germany), 1 mmol/L sodium pyruvate (Invitrogen, Karlsruhe, Germany), and
10 mmol/L HEPES (Invitrogen, Karlsruhe, Germany). Both cell lines were cultured at
37 °C with 5% CO2 and humidified atmosphere and subcultured using 0.05% Trypsin-
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EDTA (Invitrogen, Karlsruhe, Germany). The cell lines were regularly tested for absence of
mycoplasma infection.

5.3. YB-1 Detection in Serum

Whole blood was collected in SST II Advance tubes (BD Vacutainer) and was allowed
to clot for 30 min at room temperature. Afterwards, the samples were centrifuged at 2000
rpm for 10 min at 4 °C. Serum was collected, aliquoted, and stored at −80 °C until further
analysis. Only samples that were not hemolyzed were used for the analysis. YB-1 serum
concentrations were detected using ELISA method (Genway, Wuhan, China) following
manufacturer’s instructions.

5.4. Recombinant YB-1 Protein Harvest and Purification

Seventy percent confluent HEK293T cells were transduced with pcDNA/Flag YB-1
sequence using Ca-phosphate-DNA precipitates. After 48 h of transduction, the cells were
harvested in RIPA-lysis buffer (50 nM Tris, 150 nM NaCl, 1% Nonidet P40, 0.25% sodium
deoxycholate, 1 mM EDTA, 1 mM Na3VO4, 1 mM NaF), supplemented with protease
inhibitors (Complete EDTA-free cocktail tablet, Roche, Mannheim, Germany), and were
immunoprecipitated using anti-DYKDDDDK G1 affinity resin (Genscript, Piscataway, NJ,
USA) and binding buffer (50 mM Tris-HCl pH 7.4; 1 mM EDTA, 150 mM NaCl, 1% Triton
X-100). The next day, the samples were eluted with 100 µg/mL FLAG-peptide stock (Sigma-
Aldrich, St. Louis, MO, USA) and dialyzed with 40% Polyethylene glycol 20,000 (Roth,
Karlsruhe, Germany). Protein concentration was determined using BioRad DC protein
assay (BioRad, Hercules, CA, USA).

5.5. YBX1 Overexpression

JEG3 and HTR8/SVneo cells were transfected using Lipofectamine 2000 (Life Tech-
nologies, Carlsbad, CA, USA), according to the manufacturer’s protocol. In short, 70%
confluent cells were transiently transfected with 1 µg control FuGW-eGFP or 1 µg FuGW-
eGFP-YBX1 plasmid DNA. FUGW was a kind gift from David Baltimore (Addgene plasmid
14883; http://n2t.net/addgene:14883; RRID:Addgene 14883). After 24 h, the transfection
efficacy was inspected by detection of GFP signal by fluorescence microscopy.

5.6. Lentiviral Transduction of YB-1

Downregulation of YB-1 was performed as previously described [50]. In short, the
control plasmid pLKO and two different pLKO-YB-1.1 and pLKO-YB-1.2 shRNA were
obtained from Sigma-Aldrich (shRNA: CCGGCCAGTTCAAGGCAGAAATATCTCGA-
GATA TTTACTGCCTTGAACTGG-TTTTTG). Two micrograms of YB-1 construct, 1 µg
psPAX2, and 1 µg pVSV-G with calcium phosphate precipitates was used for lentiviral
transduction of human embryonic kidney HEK 293T cells. Virus containing supernatants
were then added to the target cells JEG3 and HTR8/SVneo. Stably transduced cell lines
were selected using puromycin (1.5 µg/mL) for 7 days. Cells were harvested 3 and 7 days
after transduction to confirm the YB-1 downregulation by Western Blot analysis.

5.7. Protein Isolation and Western Blot Analysis

Cells were lysed in RIPA buffer (50 mM Tris-HCl, 150 mM nonidet P-40, 1 mM sodium
deoxycholate, 1 mM EDTA, and 1 mM Na3VO4) containing protease inhibitor cocktail
(Complete EDTA-free cocktail tablet, Roche, Mannheim Germany) at 4°C for 30 min.
Protein concentrations were quantified using Bio-Rad protein assay (BioRad, Hercules, CA,
USA). Only the samples that had good protein yield were used for the study. Proteins were
detected using primary antibodies anti-YB-1 (Eurogentec, Liège, Belgium) and anti-vinculin
(Santa Cruz, Dallas, Texas, USA) was used as a loading control. Secondary antibodies
coupled to horseradish peroxidase (Southern Biotech, Birmingham, AL, USA) were used
for immuno-detection. The detection was performed using Pierce ECL Western blotting
substrate (Thermo Fischer Scientific, Waltham, MA, USA).

http://n2t.net/addgene:14883
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5.8. Functional Assays

Proliferation was assessed by the trypan blue exclusion assay using Neubauer cham-
bers and manual quantification of cells. For the cell migration assay, 20,000 cells were
plated in 24-well plates, and, after 24 h, scratch was performed with 200 µL pipette tip.
Pictures were taken after 24 h, and the distances crossed were measured using an electronic
grid. The mean value for the controls was set to 100%, and the data are expressed as
percentages of the control value. Transwell invasion assay was conducted in 24-well plate
with 8 µm pore size Transwell inserts (Corning, Durham, NC, USA). Insert membranes
were precoated with 50 µl of growth factors reduced Matrigel (Corning, Bedford, MA, USA)
at a concentration of 0.5 µg/mL for 1 h at 37 °C. JEG3 or HTR8/SVneo (25,000 cells/100
µL) were resuspended in serum free medium with 1 or 5 µg/mL rYB-1 added to the upper
part of the Transwell chamber. In the lower part of the chamber, complete medium was
added with 10% FBS as chemoattractant. Cells were incubated for 18 h and the Transwell
membranes were stained with 0.2% Crystal Violet (Sigma-Aldrich, Germany). Quantifi-
cation of cells on the underside of the filter were counted with brightfield microscope for
average of 10 picture fields at 20×magnification total.

5.9. RNA Isolation and qPCR Analysis

Total RNA was isolated using TRIzol (Life Technologies, Carlsbad, CA, USA), fol-
lowing manufacturer’s protocol. Quantity and purity of RNA were determined using
Infinite F200 Nanoquant (Tecan, Grödig, Austria). The cDNA synthesis was carried out
with 800 ng of total RNA by using Im Prom-II™ Reverse Transcription System (Promega,
Mannheim, Germany). Real-time quantitative PCR was carried out on a LightCycler 480
System (Roche Applied Science, Mannheim, Germany) with the following cycling pro-
gram: 2 min at 50 °C, 10 min at 95 °C, followed by 35 cycles of 95 °C for 15 s, 1 min at
60 °C, and 70 °C for 5 s. All reactions were performed in duplicates. Primers and UPL
probes were designed and selected by the Universal Probe Library Assay Design Center
(http://qpcr.probefinder.com/organism.jsp). Ct values and the expression of the refer-
ence gene GAPDH was uniform among the groups. The data was analyzed using the
ddCT method.

5.10. IL-6 Quantification

Cell supernatants from trophoblast cell lines with downregulated YB-1 expression
were collected, spun at 2000 rpm for 5 min at 4 °C, and stored at −80 °C until further
analysis. IL-6 quantification was obtained with human IL-6 ELISA detection assay (R&D
Systems, Minneapolis, MN, USA) according to manufacturer’s instruction. Absorbance
was measured using Infinite F200 microplate reader (Tecan, Grödig, Austria).

5.11. Caspase Activity Assay

HTR8/SVneo control and YB-1 downregulated cells were plated in 24-well plate at a
density of 20,000 cells per well and incubated for 48 h under standard cell culture conditions.
The caspase activity was studied using CellEvent™ Caspase-3/7detection reagent (Invit-
rogen, Eugene, OR, USA). After 30 min of incubation, fluorescence was observed using
fluorescent microscope (KEYENCE BZ-X800, Osaka, Japan), coupled with a confocal mod-
ule. Excitation and absorption wavelength were 360/40 nm and 470/40 nm, respectively.
Nuclei were stained with Hoechst 33342 (Invitrogen, Eugene, OR, USA). The intensity of
fluorescence was analyzed with respective KEYENCE BZ-X800 analysis software.

5.12. MTT Assay

One thousand cells were plated onto 96-well plates, and 3-(4,5-dimethylthiazol-2-yl)-
2,5-dipheny ltetrazolium bromide (Sigma-Aldrich, St. Loius, MO USA) was added after
24 h at a final concentration of 5 mg/mL. After incubation at 37 °C and 5% CO2 for 3 h,
the MTT was removed and MTT formazan crystals were dissolved in 150 µL of DMSO.

http://qpcr.probefinder.com/organism.jsp
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Absorbance at 590 nm was determined on an automatized microtiter plate reader (BioTek
Synergy HT, Watertown, MA, USA).

5.13. Chromatin Immunoprecipitation Assay (CHIP)

Chromatin was isolated from 1x107 JEG3 cells. In short, cells were cross-linked with
1% formaldehyde for 10 min and resuspended in SDS buffer (5 M NaCl, 1 M Tris-HCl, pH
8,1; 0.5 M EDTA pH 8,0; 10 M NaN3, 10% SDS) with added protease inhibitor (Complete
EDTA-free cocktail tablet, Roche, Mannheim, Germany), and stored at −80 °C until further
analysis. After defrost and centrifugation, samples were resuspended in IP buffer (66.7
mM Tris–HCl, 100 mM NaCl, 5 mM EDTA, 0.2% NaN3, 1.67% Triton-X-100, and 0.33%
SDS) and sonicated 5 times for 30 s. Chromatin shearing was checked by reverse cross
link reaction of 2 h on 65 °C at 850 rpm using reverse cross link buffer (Tris EDTA buffer
1x, SDS 20%, 5 M NaCl). One microgram of anti-YB-1 recombinant antibody (EP2708Y,
Abcam, Cambridge, UK), or IgG from rabbit serum (I8140, Sigma-Aldrich, St. Louis, MO,
USA), was used per immunoprecipitation. nProtein A Sepharose beads (GE Healthcare,
Danderyd, Sweden) were used to pull-down the immune complexes. Wash of the beads
and samples complexes was performed with High Salt Buffer 500 mM (1% Triton X-100,
0,1% SDS, 150 mM NaCl, 2 mM EDTA pH 8.0, 20 mM Tris-HCl) and 1x Tris-EDTA buffer.
Reverse cross linking of all samples was done with reverse cross- link buffer on 65 °C
at 1300 rpm for 12 h. The products were purified with QIAquick PCR purification kit
(Qiagen, Hilden, Germany) following the manufacturer’s instructions. The real-time PCR
was performed using SYBR Green PCR Master Mix on a sequence detector (7500 Fast
Real-Time PCR System; Applied Biosystems, Foster City, CA, USA) with 2.5 µL of material
per point. Primer sequences are available in Table 2. The input DNA fraction corresponded
to 10% of the immunoprecipitation.

5.14. Statistical Analysis

All results were confirmed in three independent experiments, if not otherwise stated.
The patient data are presented as median and 95% confidence interval, if not otherwise
stated. All other data are presented as mean with SD. Statistical data analysis was per-
formed using GraphPad Prism software version 8.0 (GraphPad Software, San Diego, CA,
USA). Differences between groups were calculated with unpaired t-test. For multiple
comparisons, statistical difference was calculated by one-way ANOVA. When statistically
significant differences were shown, post hoc analysis were performed using the Sidak test.
p < 0.05 was considered statistically significant.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/13/7226/s1.
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