
 International Journal of 

Molecular Sciences

Review

An Overview of Physical, Microbiological and Immune Barriers
of Oral Mucosa

Sevda Şenel
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Abstract: The oral mucosa, which is the lining tissue of the oral cavity, is a gateway to the body and
it offers first-line protection against potential pathogens, exogenous chemicals, airborne allergens,
etc. by means of its physical and microbiological-immune barrier functions. For this reason, oral
mucosa is considered as a mirror to the health of the individual as well as a guard or early warning
system. It is organized in two main components: a physical barrier, which consists of stratified
epithelial cells and cell–cell junctions, and a microbiological-immune barrier that keeps the internal
environment in a condition of homeostasis. Different factors, including microorganism, saliva,
proteins and immune components, have been considered to play a critical role in disruption of oral
epithelial barrier. Altered mucosal structure and barrier functions results in oral pathologies as well
as systemic diseases. About 700 kinds of microorganisms exist in the human mouth, constituting
the oral microbiota, which plays a significant role on the induction, training and function of the host
immune system. The immune system maintains the symbiotic relationship of the host with this
microbiota. Crosstalk between the oral microbiota and immune system includes various interactions
in homeostasis and disease. In this review, after reviewing briefly the physical barriers of oral mucosa,
the fundamentals of oral microbiome and oral mucosal immunity in regard to their barrier properties
will be addressed. Furthermore, their importance in development of new diagnostic, prophylactic
and therapeutic strategies for certain diseases as well as in the application for personalized medicine
will be discussed.

Keywords: oral epithelium; cell junctions; oral immunity; oral microbiome; epithelial barrier; per-
sonalized medicine; antimicrobial peptides; permeability

1. Introduction

The mucosa, which consists of epithelial cells, acts as a barrier by forming a continuous
layer and protects the body from environmental exposures, physical and chemical damage,
microbes and toxins through its physical and immunological barrier functions. According
to the needs of these tissues, the structure and the function of the epithelial cells differs
between the skin, gastrointestinal system and the respiratory tract, which are the main
interfaces between the host and the environment. For example, oral mucosa protects the
deeper tissues from mechanical insults, and also prevents the entry of bacteria and some
toxic substances into the body, while skin provides a strong physical barrier; respiratory
epithelial cells provide continuous particle clearance for a healthy gas exchange in the
lungs and intestinal epithelial cells provide extensive nutrient and water exchange. In
this review, the focus will be the oral mucosa, which is the first-line protection barrier of
the body, consisting of physical and microbiological-immune barriers. Understanding the
function of oral mucosal barriers is essential for a wide variety of research areas such as
cancer, inflammation and infection diseases, dentistry, drug formulation and biomarkers.
The functionality of the barrier is regulated by its microenvironment and often altered
during pathological conditions or other external factors. Since it is a very broad subject,
herein it is aimed to give a general overview of the oral mucosal barriers, and the reader
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will be directed to the comprehensive review and research articles for the details on the
related areas.

2. Oral Epithelium and Cell Junctions

The oral mucosa lining the oral cavity functions to protect the underlying tissue from
mechanical damage, besides functioning as a primary barrier site and a portal for the entry
of food, microbes and airborne particles into the gastrointestinal tract. It comprises stratified
squamous epithelium and an underlying connective tissue termed lamina propria (Figure
1). The epithelial surface is kept moist with mucus produced by the major and numerous
minor salivary glands. In different regions of the oral cavity, the mucosa shows adaptation
to differing mechanical demands. Masticatory mucosa (hard palate and gingiva) consists
of a keratinized epithelium tightly attached to the underlying tissues by a collagenous
connective tissue, whereas lining (buccal, sublingual) mucosa comprises a nonkeratinized
epithelium supported by a more elastic and flexible connective tissue [1]. The epithelium is
constantly replaced by cell division in the deeper layers, and turnover is faster in the lining
than in the masticatory regions. The epithelium on the dorsum of the tongue is a specialized
epithelium, which is considered as a mosaic of keratinized and nonkeratinized epithelia.
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Figure 1. Structure of the oral mucosa.

Epithelium is separated and bound with strong integrin bonds to the underlying
extracellular matrix tissue by a fibrous basement membrane. Physical barriers are created
by the unique architectural integrity of the stratified epithelia, where epithelial cells are
interconnected by tight junctions (TJs) (occluding junction), gap junction and anchoring
junctions (desmosomes and adherens junctions) (Figure 2) [2,3]. In this way, oral epithelium
provides the first line of defense against a diverse range of environmental and microbial
irritants. Cell–cell interactions are essential in many physiological processes of the ep-
ithelium, and they can be rapidly rearranged in themselves under different physiological
and pathological conditions. Yet, in presence of some diseases, such as infectious diseases,
autoimmune diseases and cancer, they can be deregulated.

Cell production in the deeper layers of the epithelium is balanced by the loss of cells
from the surface. There is a rapid clearance of surface cells, which acts as a protective
mechanism by limiting colonization and invasion of the microbes adherent to the mucosal
surface. Various external factors as well as chemotherapeutic agents and radiation may
limit proliferation of the epithelium so that it becomes thin or ulcerated, mainly in the
lining regions.
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In the stratified oral epithelium, TJs are present in the superficial layers and are known
to be the main barrier function of the epithelium. TJs are complex protein structures that
seal the adjacent epithelial cells together. They prevent the passage of most dissolved
molecules, microbes and toxins from one side of the epithelial layer to the other, thereby
organizing number of different signaling and trafficking molecules, which regulate cell
differentiation, proliferation and polarity [4]. Among the transmembrane proteins which
forms the TJs are occludin, claudin, tricellulin and MarvelD3 (which all belong to the
TJ-associated MARVEL domain containing protein (TAMP) family) junctional adhesion
molecules (JAMs) [3,5–9]. In addition, there are peripheral intracellular membrane proteins
that connect transmembrane TJ molecules and actin filaments such as the zonula occludens
(ZO) proteins. Claudin and occludin, which are the main TJ proteins, have four trans-
membrane domains and two extracellular loops, while JAMs have immunoglobulin-like
domains. Due to the altered expression of these proteins, TJs have been linked to various
diseases that affect many tissues and organs. Some of these diseases are inherited, and
involve mutations or polymorphisms of the TJ proteins or may cause activation of TJ-
associated signaling mechanisms. Many pathogenic viruses and bacteria can also target TJs
interacting with the junctional proteins [7]. Mislocalization of the tight junction proteins,
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occludin and claudin in epithelial layers was reported to result in apoptosis through the
extrinsic pathway as well [10]. Although many diseases, such as chronic inflammatory
conditions and cancer, have been linked to dysfunction of the tight junctions, it is not
always possible to know whether this is the cause or the result of the disease [11].

The adherens junctions and desmosomes, which are localized below tight junctions,
maintain cell–cell adhesion. Both anchoring junctions are linked to the cytoskeletal fila-
ments and provide scaffolds for the maintenance of tissue integrity. They are important
for maintaining tissue architecture and cell polarity, and can limit cell movement and
proliferation [12]. The major component of the adherens junctions is the transmembrane
protein E-cadherin. Cadherins associate with cytoplasmic proteins, called catenins, which
in turn bind to cytoskeletal components, such as actin filaments and microtubules. The
desmosomal cadherin subfamily consists of desmogleins [13,14]. The adhesion cores of
the junctions consist of the proteins that mediate direct interactions between adjacent cells,
while on the cytoplasmic site the proteins are coupled to cytoskeleton via a collection
of adaptor proteins [2]. Gap junctions are clusters of intercellular channels facilitating a
direct connection between the cytoplasm of two neighboring cells to mediate intercellular
communication. These channels are formed connexons, which are oligomerized from
connexin proteins (Cxs) [2]. Cxs and gap junctions have been reported to play important
roles in maintaining the normal development and function of oral tissues [15].

3. Permeation Barrier of Oral Epithelium to Drugs

There are two major routes involved in drug permeation across oral epithelium:
the transcellular route (intracellularly—directly through the cells) and the paracellular
route (intercellularly—through the spaces between the cells) [16]. In general, permeation
across oral epithelial cells is largely achieved by simple passive diffusion and less by
carrier-mediated transport. The permeability of the epithelium varies depending on
the properties of a drug, such as lipophilicity, charge, molecular size. Small, lipophilic
molecules can diffuse across the cell membrane, while intercellular permeation occurs with
large hydrophilic molecules, such as peptides and proteins. TJs are the major selectively
permeable barriers that control the paracellular transport of drugs. In order to enhance
the permeation of the drugs across the oral mucosa, especially buccal and sublingual,
various penetration enhancement strategies, such as chemical penetration enhancers, and
physical methods, such as electric field and sonophoresis, have been investigated [17–19].
In early years, these studies were at a more basic level, but in recent years, there has been a
transition to a more molecular level in regard to interactions with the junctional proteins.
In an early study where the effect of bile salt as a penetration enhancer on buccal mucosa
was investigated in vitro, upon 4 h of treatment with bile salts, significant penetration
enhancement across porcine buccal mucosa was obtained for the FITC-dextrans (chosen
as model compound for peptide drugs) at different molecular weights (4–10 kD) [20,21].
Furthermore, freeze fracture micrographs of the bile salt-treated epithelial cells were
completely different than that of the intact epithelial cells, and instead of showing large
membrane surfaces (Figure 3a), the fracture plane passed almost exclusively across the
cytoplasmic space, showing icy and proteinaceous materials (Figure 3b). At that time,
we had concluded that the bile salts most likely enhance the permeability of the mucosa
by modifying the cell membrane integrity in such a way that the intracellular domain is
opened up, and hence, the transepithelial pathway significantly shortened. Correlations
between the flux data and histological observations were found to demonstrate that di-
and trihydroxy bile salts behaved identically in both aspects. After showing that the bile
salts enhance the buccal permeation of the drugs, in another study, we investigated the
effect of bile salt (5% sodium glycodeoxycholate) on the permeation of a small, morphine
sulfate across the buccal mucosa [22]. After 4 h of treatment with the bile salt, changes in
epithelium at ultrastructural level, such as formation of vacuoles, swelling of the cells and
possible increase in intercellular space, was observed. No tight junctions were observed
anymore, while fewer desmosomes were observed. The effect of bile salt on epithelial
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barrier was also investigated using Fourier transform infrared spectroscopy (FTIR). Bile
salt-treated tissue was compared to lipid-extracted (with solvents) tissue, and the results
revealed an interaction between bile salts and the epithelial lipids. Presence of the bile salt
was found to disrupt the epithelial lipids and, hence, to decrease the diffusional resistance
to permeants. Furthermore, in another study, we have shown that there was a linear
relationship between the accumulation of bile salt in the tissue and increase in penetration
of the drug [23].
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In the following years, different groups examined the relationship between the bile
salts and tight junctions in more detail. Raimondi et al. [24] have demonstrated that
treatment with deoxycholic acid, chenodeoxycholic acid but not ursodeoxycholic acid can
induce epithelial growth factor receptor (EGFR) phosphorylation in Caco-2 monolayers,
resulting in an increased paracellular permeability via occludin dephosphorylation and
cytoskeletal rearrangement at the TJ level. Chen et al. [25] have also investigated the effect of
bile acids on barrier function of squamous epithelial and tight junction (TJ) proteins. Upon
treatment of cells with taurocholic acid, glycocholic acid or deoxycholic acid, disruption of
the squamous epithelial barrier function was observed, which was attributed to modulation
of claudin-1 and claudin-4. In another study, the effect of different enhancers, such as
EDTA, sodium cholate, sodium dodecyl sulfate (SDS) and ethanol, on junction proteins was
investigated [26]. It was shown that the enhancers at certain concentration and action time
causes little cytotoxicity to Caco-2 cells and increased the permeability of FITC and FITC-
dextrans, and produces changes in ZO-1, claudin-1, occludin and E-cadherin distribution.

Various biomaterials such as chitosan have been shown the enhance the permeability
of drugs across mucosa [27,28]. Different mechanisms have been suggested to explain the
permeation enhancement of this polymer. Bioadhesive nature of chitosan, which increases
the retention of the drug at its application site, as well as disruption of lipid organization of
the cell membrane has been attributed to its penetration enhancing activity. Later, studies
that describe this interaction in more detail were published. Yeh et al. [29] have investigated
TJ disruption in the presence of chitosan at the gene and protein expression levels. Their
data showed that chitosan exposure resulted in a significant increase in claudin-4 (CLDN4)
gene transcription, which was observed to be reversible. Chitosan treatment induced redis-
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tribution of the TJ protein CLDN4 intracellularly, followed by its degradation in lysosomes,
and resulted in opening of TJs. The recovery of TJ was observed after exposure to chi-
tosan. It was concluded that chitosan regulates TJs by inducing changes in transmembrane
CLDN4 protein. Smith et al. [30] have reported that chitosan-mediated TJ disruption was
by translocation of TJ proteins (zona occludens 1 (ZO-1) and occludin) from the membrane
to the cytoskeleton. Sonaje et al. [31] have also investigated the effects of chitosan on
opening of TJs and paracellular transport at microscopic, ultrastructural and computed
tomographic levels in Caco-2 cell monolayers and animal models. Chitosan treatment was
observed to be associated with the translocation of JAM-1 (a trans-membrane TJ protein). It
was demonstrated that chitosan treatment slightly opened the apical intercellular space and
after removal of chitosan, the TJs were completely recovered. The authors have obtained
similar microscopic and ultrastructural findings in in vivo studies performed in Wistar rats.

The enhancers mentioned up to here are considered as non-specific TJ modulators.
Nonetheless, recent studies have focused on specific modulation of the TJ-associated
transmembrane proteins for enhancement of permeation of drugs across mucosa [32–34].
Specific peptide ligands of extracellular domains (ECDs) of TJ proteins have been designed,
which affect single TJ proteins, allowing selective targeting of specific barriers, depending
on the expression pattern of the TJ proteins. Furthermore, RNA interference techniques
to downregulate the expression of targeted TJ proteins have been applied [35]. These TJ
protein-targeted strategies have the potential to provide platforms for the development
of novel therapies [36]. However, at present, application of these approaches for the oral
mucosa remains very limited. Studies performed in human on oral mucosal delivery of
drugs, especially for systemic effect, are generally based on formulations, which include
non-specific enhancers such as surfactants, fatty acids, etc., as well as the mucoadhesive
polymers, which also exert penetration enhancing property [37]. Nevertheless, for oral mu-
cosal delivery, only the low-molecular-weight drugs successfully reached the marketplace,
while there is still more to do for large molecules. The oral spray formulation of human
insulin (Oral-Lyn), which consists of the combination of a surfactant, a solubilizer, a micelle
creating agent and emulsifying agents, allowing insulin to permeate across the buccal
mucosa can be given as an example for macromolecule delivery [38]; however, although
approved in some countries, it does not have approval in North America or Europe yet.

4. Oral Microbiota

The oral cavity has the second largest and diverse microbiota after the gut, harboring
over 700 species of microbial communities, that has evolved to promote oral health and
exists in a dynamic balance with the host [39]. In this habitat, microbes colonize the hard
surfaces of the teeth and the soft tissues of the oral mucosa. Commensal microbiota is
considered as the main driver of barrier immune function, shaping protective/homeostatic
immune responses at the mucosal tissues. Yet, complex biofilms of varying compositions of
bacteria can be formed, which are recognized as a virulence factor in many oral infectious
diseases. These biofilms consist of complex microbial communities embedded in a matrix of
polymers of bacterial and salivary origin [40]. Furthermore, some of these pathogens affect
the epithelial barrier function by various mechanisms: they can manipulate the barrier
related genes/proteins for their attachment and subsequent internalization, or directly de-
stroy the junctions, thereby providing a gateway to the underlying tissue [41,42]. Recently,
Takahashi et al. [43] have performed a search through an electronic database in regard to
bacterial species, regulated barrier junction markers/genes and their mechanisms. They
concluded that the periodontopathic bacteria contribute to epithelial barrier dysfunction
in the gingiva by producing several virulence factors. However, some bacteria in the oral
cavity were observed to be beneficial, helping gingival epithelial cells to maintain their
integrity and barrier function. It was suggested that beneficial bacteria induce antimicrobial
peptides (AMPs) through host immune response or express direct antimicrobial activity
against barrier-disrupting pathogens. AMPs are considered to maintain the epithelial
barrier by enhancing tight junction (TJ)-related gene expression. Nonetheless, the mech-
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anism of these junctional modifications has not been fully elucidated and there are still
controversies that need to be resolved. It is believed that there will not be a unified strategy
that is employed by all pathogens.

Microbiome is described as a community of commensal, symbiotic and pathogenic
microorganisms within a body space or other environment [44]. Although the terms
microbiome and microbiota are used interchangeably, in principle, the microbiota comprises
all living members forming the microbiome [45,46]. The human microbiome is, indeed, an
integral component in the maintenance of health. The Human Microbiome Project (HMP)
has been running for over 10 years and in two phases to provide resources, methods and
discoveries that link interactions between humans and their microbiomes to health-related
outcomes [47–49]. As part of the HMP, the expanded Human Oral Microbiome Database
(eHOMD) was created to provide the scientific community with comprehensive curated
information on the bacterial species present in the human aerodigestive tract (ADT), which
encompasses the upper digestive and upper respiratory tracts, including the oral cavity,
pharynx, nasal passages, sinuses and esophagus [50].

The beneficial effects of the human microbiome depend on the balance within the
microbiome and with the host [51]. Although the recent attention of the microbiome field
has focused mostly on the gut, the oral microbiome is also vital in maintaining oral as well
as systemic health. Furthermore, the oral cavity is the initiation point of digestion and a
large number of oral microorganisms enter the digestive tract from the oral cavity through
saliva, and they present a particularly close relationship with digestive diseases [52]. The
oral cavity is exposed to many factors, such as pH changes in the oral cavity, diet of the
host, nutrients, pharmacological factors and the external environment (e.g., climate and air
pollution). All these factors play dominant roles in the modulation of the oral microbial
community between different individuals. In the oral cavity, dental caries, periodontal dis-
ease and oral candidiasis are the major manifest diseases caused by an imbalance between
the microbiota and the host (dysbiosis) [53–55]. Oral infections can lead to the extension
of infection into surrounding tissues and to systemic infections. Dissemination of oral
bacteria into the bloodstream (bacteremia) plays a role especially in infective endocarditis
and prosthetic joint infection [56–58]. A good oral health status and satisfactory level of
oral hygiene are considered to be sufficient to control the consequences of the systemic
spread of oral microorganisms in healthy individuals. Furthermore, revised guidelines
for the prevention of infective endocarditis published by the American Heart Association
(AHA) in 2007 [59] recommend that caution is still needed and prophylactic antibiotics
must be administered to susceptible or medically compromised patients, especially for all
dental procedures that involve the manipulation of gingival tissue or the periapical region
of teeth or perforation of the oral mucosa.

Furthermore, some specific bacterial strains have been recognized and strongly associ-
ated with other local diseases, such as oral cancer (Capnocytophaga gingivalis, Fusobacterium
spp., Streptococcus spp., Peptostreptococcus spp., Porphyromonas gingivalis and Prevotella
spp.) [60]. Hypotheses to explain how the oral microbiota is involved in cancer pathogen-
esis are mainly based on chronic inflammation, microbial synthesis of cancerogenic sub-
stances and alteration of epithelial barrier integrity. The interaction between oral epithelial
cells and microbes provides oral cells with the capability of undergoing invasion and metas-
tasis. This microbial interference has been reported to promote epithelial-mesenchymal
transition (EMT), which allows polarized epithelial cells to mimic mesenchymal phenotype
through various biochemical and molecular changes [61]. Microbial intervention has been
shown to cause downregulation of important junctional proteins, such as E-cadherin and
β-catenin, along with upregulation of mesenchymal markers, such as N-cadherin, vimentin
and fibronectin. Hence, investigating the changes in these proteins has been suggested
to be utilized as predictors for metastasis in squamous cell carcinoma of the oral cavity
and oropharynx.

Dysbiosis is also associated with a range of systemic disorders, including inflamma-
tory bowel diseases, autoimmune disease, obesity and metabolic syndrome, peripheral
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vascular disease and hypertension, aberrant responses to drugs, depression and autism [51].
Changes in the human microbiota may represent also an underlying factor of allergic dis-
eases [62]. Commensal bacteria participate in the maintenance of immunological tolerance.
Epithelial barrier dysfunction, particularly at the tight junction (TJ) has been reported to
be essential for the pathogenesis of allergic diseases [63]. Disruption of epithelial barrier
allows the penetration of allergens leading to allergic inflammation. Thus, asthma, rhinitis,
chronic rhinosinusitis and allergic diseases have been demonstrated to be manifestations
of a common systemic immune imbalance between the damaged-activated epithelium and
immune cells.

As a result, improving our knowledge of microbiomes and their interactions with physical
and immunological barriers is important for diagnosis and treatment of numerous diseases.

In the following sections, how specific microbes play crucial roles in tailoring immune
cell functions in the oral cavity will be described after a brief introduction to the oral
immune system.

5. Antimicrobial Peptides

Antimicrobial peptides (AMPs), also called host defense peptides, exerting a cationic
nature, are part of the innate immune response. AMPs are considered as endogenously
produced antibiotics, and they act at an early stage against microbial invasion [64]. Over
45 distinct antimicrobial peptides (AMPs) have been identified in human saliva and gin-
gival crevicular fluid [65]. They are produced by the salivary glands and epithelial cells,
and they form a continuous layer on the mucosal surfaces [66–68]. These AMPs have been
reported to have distinct but overlapping roles in maintaining oral health and preventing
bacterial, fungal and viral adherence and infection [68,69]. Defensins, cathelicidins (LL-37),
calprotectins and histatins are the major AMPs detected in the oral cavity [70]. AMPs
participate in a preservative co-evolution with the microbiome, and they help to maintain a
balanced microbiota. Furthermore, apart from their antimicrobial activity, the AMPs have
been reported to participate in several other crucial roles in host tissues, such as wound
healing and cell proliferation, chemotactic for immune cells [71]. Recently, Salem et al. [72]
have shown the involvement of hBD-2 in the pathogenesis of oral lichen planus (OLP),
which is a common chronic mucocutaneous disorder with an immune mediated patho-
genesis, and suggested that this AMP could be combined with therapeutic interventions
in OLP.

The role of the AMPs is just beginning to be understood, with potential applications for
enhanced natural expression or as new therapeutic agents. In recent years, especially, the
interplay between the antimicrobial peptides and gut microbiota has been the main focus of
the studies in order to find new therapeutic strategies against various gut infections [73,74].

6. Oral Immune System

The mucosal immune system of the oral cavity is constantly exposed to tissue-specific
signals, including a rich community of commensal microbes and their metabolites, contin-
uous tissue damage from mastication, antigens from food and airborne particles, which
present potential challenges to the homeostasis of the oral mucosa [53,75]. Hence, the oral
mucosa and inherent mucosal immune system becomes very crucial for the protection
of the integrity of the internal environment. Communication between the epithelium
and innate and adaptive immune cells is fundamental for rapid recognition and effective
elimination of pathogens at the epithelial surface. Both the host immune system and
commensal microbiota can influence one another to maintain homeostasis. A dysbiosis in
the microbiota leads to a dysregulation of the local immune response at that site (Figure 4).
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Figure 4. Relation between the immune system and microbiota in the oral cavity.

The oral immune system is composed of three major compartments: the epithelial
layer, lamina propria and the mucosal-associated lymphoid tissue (MALT). The cells of the
innate immune system are located strategically at the host–microbiome interface. These
cells have the ability to sense microorganisms or their metabolic products, and they translate
the signals into host physiological responses to regulate the microbial ecology [76]. The
pattern recognition receptors (PRRs) which are predominantly expressed on immune cells,
identify the pathogen-associated molecular patterns (PAMPs) or molecules released by
damaged cells (damage-associated molecular patterns-DAMPs). The currently identified
PRR families are the Toll-like receptors (TLRs), C-type lectin receptors (CLRs), nucleotide-
binding oligomerization domain-like receptors (NLRs), retinoic acid-inducible gene-I-like
receptors (RLRs), and AIM2-like receptor (ALR). Upon PAMP recognition, PRRs, present
at the cell surface or intracellularly, signal to the host the presence of infection and trigger
proinflammatory and antimicrobial responses by activating a multitude of intracellular
signaling pathways. PRR-induced signal transduction pathways ultimately result in the
activation of gene expression and synthesis cytokines, chemokines, cell adhesion molecules
and immunoreceptors, which together coordinate the early host response to infection and
at the same time represent an important link to the adaptive immune response [77]. Innate
immunity plays a unique role in oral immunity, by triggering a crucial systemic response to
protect the host and maintain homeostasis. Furthermore, the innate defense is pivotal in the
activation and regulation of adaptive immunity. The cytokine interleukin (IL-7)-mediated
immune pathway is induced within hours following epithelial cell injury or activation of
PRRs [78]. Despite the fact that IL-17 is described as a T cell-secreted cytokine, much of
the IL-17 released during an inflammatory response has been shown to be produced by
the innate immune cells. The innate immune cell populations that are an early source of
IL-17 in response to stress, injury or pathogens are thought to reside in barrier tissues at
the interface of host and environment. The epithelial cells are thought to exert manifold
sentinel functions in perceiving pathogens and orchestrating the defense against them,
besides their role as a physical barrier [79].

Additionally, fibroblasts, endothelial cells, chondrocytes and adipocytes respond
to IL-17A by expressing antimicrobial proteins and peptides, and the proinflammatory
cytokines and chemokines are involved in acute-phase responses and tissue remodel-
ing [80]. IL-17 alone and in coordination with IL-22 was reported to induce the production
of b-defensins (HBD), regenerating (ReG) proteins, S100 proteins and cathelicidins [81].
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IL-17 also promotes epithelial cell secretion of chemokines for immune cell recruitment
when the mucosal barrier is disrupted. IL-17A is recognized as the master regulator of
host–microbiota interactions both in physiologic conditions and in immune-mediated
inflammatory diseases [82–84].

Moutsopoulos and his group have comprehensively investigated the role of the micro-
biota and its metabolites in induction of the local immune cells of the oral mucosal immune
system, focusing on the interleukin-17 (IL-17)/T helper 17 (TH17)-dependent pathways
that control the two major oral infectious diseases, periodontitis and candidiasis [85,86].
They have demonstrated in animal and human studies that the microbiota-triggered Th17
cells are the drivers of local immunopathology and therapeutic targets in oral mucosal dis-
eases. Furthermore, several groups have shown that the medication-related osteonecrosis
of the jaw (MRONJ), which is a side effect of bisphosphonate therapy, is also associated
with disfunction of the immune system, coupled with bacterial infection [87]. As a result,
the oral epithelium, which acts as a physical barrier can no longer maintain its role. Hence,
several strategies are being investigated to protect the oral mucosa from bisphosphonate ex-
posure [88,89]. Likewise, immunological changes occurring in pregnancy may also induce
a dysbiosis of the oral microbiota and contribute to increased inflammation of periodontal
tissues. Pregnant women with periodontal disease have been reported to be at increased
risk of adverse pregnancy outcomes, including preeclampsia, preterm delivery and low
birth weight [90,91]. However, how periodontitis may lead to adverse pregnancy outcomes
is not yet fully understood.

On the other hand, despite high bacterial colonization and frequent allergen contact,
acute inflammatory and allergic reactions are rarely seen in the oral mucosa [92]. It is
suggested that a very potent immune tolerance predominates this site to monitor and
control the interactions between host innate defense and microbiota [93].

7. Crosstalk between Immune System and Microbiota

As a consequence of the basic symbiotic way of life, microbiota and innate immunity
engage in an extensive bidirectional communication. While the immune system affects
and preserves the microenvironment for the microbiota, the host microbiota re-adjusts and
promotes the immune system to be tolerant toward the commensal and useful members
of the microbiota [94]. Both the microbiota and immune system also communicate for
necessary responses against the pathologic and harmful microorganisms. A very finely
regulated and highly coordinated interaction between the immune system and microbiota
is required to achieve both local and systemic homeostasis while preserving host biological
integrity. In this direction, symbiosis and dysbiosis are the two extremes of the complex
relationships between the oral microbial community and the immune responses to its
presence. Many multifactorial disorders are believed to be influenced and/or driven by
alteration of the intimate crosstalk between immune system and the microbiota [76].

In recent years, studies on microbiota metabolites and their interactions with the
immune system has also brought a new dimension to the understanding of host–microbiota
interactions. It is suggested that sensing of bacterial metabolites by the host is much
more informative about the state of microbial colonization than recognition of microbial
surface molecules, as metabolites provide information about the activity and function of
microorganisms, rather than their presence or absence [95].

8. Personalized Medicine

Recent advances in immunology, genetics, and microbiology have guided to a new
era in the continued efforts to better understand and treat oral diseases, moving ever
closer to predictive, preventive and personalized medicine (PPPM) [94,96]. PPPM is the
new integrative concept in the health care sector that enables to predict the individual
predisposition before onset of the disease, to provide targeted preventive measures and
create personalized treatment algorithms tailored to the person, with the aim to curb the
prevalence of both communicable and non-communicable diseases. In the era of person-



Int. J. Mol. Sci. 2021, 22, 7821 11 of 15

alized medicine, it is crucial that oral health is also integrated into this concept. Various
approaches have been suggested about how knowledge of the oral microbiome may be
utilized for personalized dentistry at the point of care [97]. Monitoring of microbiomic and
metabolomic changes during the transition from oral health to disease becomes important
in understanding which will help the healthcare to prevent the disease before it occurs. In
this regard, application of the knowledge of the human microbiome should aim at preserv-
ing the highly intra- and inter-individual diversity of the oral microbiota, while protecting
its loss. The application of personalized medicine in dentistry using a combination of
microbiomeand genomic information includes periodontal diseases, caries, oral cancer,
orofacial pain, etc. [98,99]. Personalized medicine has the potential to mitigate the chronic
and often destructive nature of these disorders by taking a more proactive approach to
disease diagnosis and therapy, rather than the currently applied reactive, wait-and-see
approach [100]. It is certainly imperative for the oral health community to be aware of the
opportunities and challenges in personalized medicine.

9. Conclusions

In general, there is a close relationship between general health/disease and oral mu-
cosal reactions. The oral mucosa functions as a barrier to protect the deeper tissues from
mechanical insults and to prevent the entry of pathogens as well as the exogenous harmful
substances in order to maintain the tissue integrity and homeostasis. It consists of physi-
cal (cell–cell and cell–extracellular matrix junctions, especially TJs), microbiological and
immune barriers. Understanding the functions of these barriers and interactions between
them in more detail has become vital for diagnosis, prevention and therapy of a plethora
of local and systemic diseases, including inflammatory and infectious, cancer, cardiovas-
cular, diabetes, etc. The microenvironment of oral barriers harbors over 700 species of
microorganisms, which are regulated through sophisticated signaling systems and driven
by host and environmental factors. Recent findings in immune system and microbiome
provides a new perspective to this field, enhancing our understanding of the intimate but
complicated crosstalk between the microbiome and the immune system. The reciprocal
interactions between the microbiota and immune system shape the mucosal homeostasis
or dysbiosis and ultimately health or disease. Furthermore, similar communal alterations
have also been demonstrated for the physical barriers in relation with microbiota-immune
system interaction. Therefore, it is important to consider the relations between the physical,
microbiological and immune barriers as a whole in order to understand the underlying
reason of a disorder or disease, for successful prophylactic and therapeutic approaches.
While there are still many unknowns and challenges in the elucidation of the interactions
in homeostasis and disease, rapid advances in this area are, indeed, very promising and
the new findings certainly provide new insights for future development of diagnostics and
therapeutics for personalized medicine as well as provision of prevention of the disease.

Supplementary Materials: Methodology of Freeze-Fracture Microscopy for the micrographs given
in Figures 2 and 3 are available online at https://www.mdpi.com/article/10.3390/ijms22157821/s1.
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