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Abstract: An enzyme of the mammalian amino-sugar metabolism pathway, N-acetylglucosamine
kinase (NAGK), that synthesizes N-acetylglucosamine (GlcNAc)-6-phosphate, is reported to pro-
mote dynein functions during mitosis, axonal and dendritic growth, cell migration, and selective
autophagy, which all are unrelated to its enzyme activity. As non-enzymatic structural functions
can be altered by genetic variation, we made an effort in this study aimed at deciphering the patho-
logical effect of nonsynonymous single-nucleotide polymorphisms (nsSNPs) in NAGK gene. An
integrated computational approach, including molecular dynamics (MD) simulation and protein–
protein docking simulation, was used to identify the damaging nsSNPs and their detailed structural
and functional consequences. The analysis revealed the four most damaging variants (G11R, G32R,
G120E, and A156D), which are highly conserved and functional, positioned in both small (G11R and
G32R) and large (G120E and A156D) domains of NAGK. G11R is located in the ATP binding region,
while variants present in the large domain (G120E and A156D) were found to induce substantial
alterations in the structural organizations of both domains, including the ATP and substrate binding
sites. Furthermore, all variants were found to reduce binding energy between NAGK and dynein
subunit DYNLRB1, as revealed by protein–protein docking and MM-GBSA binding energy calcula-
tion supporting their deleteriousness on non-canonical function. We hope these findings will direct
future studies to gain more insight into the role of these variants in the loss of NAGK function and
their role in neurodevelopmental disorders.

Keywords: NAGK; nsSNPs; polymorphism; molecular dynamics simulation; in silico

1. Introduction

N-acetylglucosamine kinase (GlcNAc kinase or NAGK; E.C. 2.7.1.59) is a major enzyme
from the sugar-kinase/Hsp70/actin superfamily, which is involved in the conversion
of GlcNAc (N-acetylglucosamine) to GlcNAc-6-phosphate, a catalytic event present in
amino sugar metabolism [1]. This metabolic pathway produces UDP-GlcNAc, which is
the major substrate for the enzymes involved in protein N- and O-glycosylation and a
substrate for sialic acid biosynthesis [2]. Since these post-translational modifications, N-
and O-glycosylation, regulate a wide range of cellular processes, including various stress
responses, transcription, and translation [3–5], NAGK plays a significant role in diverse cell
signaling. Apart from that, our laboratory reported enzyme -independent functions, i.e.,
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structural roles of NAGK, which was first identified when NAGK distribution was found
differentially in different types of brain cells, including high expression in neurons and low
expression in astrocytes and oligodendrocytes [6,7]. Structurally, NAGK is composed of
11 β-strands and 10 α-helices that are folded into an N-terminal small domain (1 to 117)
and a C-terminal large domain (D118 to L307 and A335 to S344), arranged like a “V” shape.
The active site of the enzyme is surrounded by the side of the β-sheet of a large domain
with small domain helix α3 and divided as substrate and ATP binding sites. The primary
substrate of NAGK, GlcNAc, binds in the substrate binding site, including small domain
residues N36, S76 to D79, and D107, and also extends in the loop domain of T127 to N130 and
G145 to D152. On the other hand, the conserved motifs in the small domain, including G9 to
L19 of the PHOSPHATE1 motif, which forms β-turn, are involved in phosphate binding.
The residues in the large domain, including V269 to L275, which are also known as the
ADENOSINE motif, make interactions with the adenine base of the ATP [8–10].

It has been found that NAGK is involved in different stages of neuronal development,
including dendritic arborization and axonal outgrowth, and this effect was unchanged
even in the overexpressing kinase-deficient mutant NAGKs [11]. Mechanistic studies
revealed the structural roles of NAGK, where the protein interacts with dynein light chain
roadblock 1 (DYNLRB1) in dynein complex and promotes dynein functions in cellular
growth [1], dendrites [6,7] and axon development [12], neuronal migration [13], and
selective autophagy [14]. These observations suggest both enzymatic and non-enzymatic
importance of NAGK in neuron and brain development. However, both of these functions
can be altered by genetic variation, and therefore, in this study, we aimed to decipher the
damaging effect of nonsynonymous single-nucleotide polymorphisms (nsSNPs) in the
structural consequence of NAGK.

Single nucleotide polymorphisms (SNPs) are the most predominant types of genetic
variation in humans, linked with various complex genetic and Mendelian disorders [12,13],
and commonly occur in both coding and non-coding parts of a genomic region. The
nsSNPs, which occurred in the coding region and caused amino acid substitutions, are the
most responsible for phenotypic change and are associated with many genetic diseases due
to their effect on protein structure, charge, solubility, stability, and function [15,16]. In light
of this fact, it is expected that the presence of nsSNPs in NAGK might have a considerable
impact on both canonical and non-canonical functions; however, analyzing the impact of
a large number of nsSNPs using an experimental approach is more time consuming and
expensive [17,18]. Therefore, we investigate the possible damaging effects of nsSNPs in
NAGK structural dynamics using bioinformatics and molecular simulation approaches.
Integration of bioinformatics tools in the large number nsSNP analysis is a cost-effective
approach, and together with molecular dynamics simulation, it provides detailed insight
on the structural consequence [19].

In this study, we identified four potential deleterious SNPs in the NAGK gene (G11R,
G32R, G120E, and A156D), disrupting the structural and dynamic integrity of the protein
structure. All of these variants are found to influence the structural organization of the
catalytic site and reduced binding energy of NAGK and DYNLRB1, supporting their
deleteriousness on both canonical and non-canonical functions of NAGK.

2. Results
2.1. Identification of Deleterious nsSNP

According to the dbSNP database, a total of 3596 SNPs were available for NAGK.
Among those, 67.94% of SNPs were located in the intronic region, followed by 17.52%
in the non-coding transcript, 9.82% missense, and 4.37% were synonymous with a 0.19%
in-frame deletion, 0.11% initiator codon, and 0.06% in-frame insertion (Figure 1A). Con-
cerning the vital role of missense variants on in vivo protein functions in various complex
diseases [20,21], the present study only considered the missense SNPs to study their effects
on NAGK structural dynamics.



Int. J. Mol. Sci. 2021, 22, 8048 3 of 21

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 24 
 

 

diseases [20,21], the present study only considered the missense SNPs to study their ef-
fects on NAGK structural dynamics. 

 
Figure 1. In silico-based identification of deleterious SNPs in the NAGK gene. (A) A pie chart high-
lighting the various types of SNPs in NAGK. (B) Bar plot describes the total number of missense 
SNPs and predicted deleterious SNPs by various algorithms. (C) Heatmap illustrating the pairwise 
correlation of predictions between various computational algorithms. The degree of correlation is 
highlighted by a color-coded map from red to white to blue; red indicates a positive correlation, 
white means neutral, and a negative correlation is denoted by blue color. 

A total of twelve deleterious predicting algorithms (Table S1, Supplementary File 2), 
which use either sequence or combined sequence and structure-based approach, were 
used to identify the most damaging ones from the retrieved 353 missense SNPs. Among 
these 12 used algorithms, the combined annotation-dependent depletion (CADD) algo-
rithm recognized the highest number of deleterious SNPs (n = 251), whereas the lowest 
number of deleterious SNPs was identified by PhD-SNP (Figure 1B). Furthermore, the 
predictions of all algorithms were found to correlate significantly with each other inde-
pendently, while I-mutant3.0 showed a slight negative correlation with MutationAsses-
sor. Since each algorithm uses different parameters for SNP assessment, SNPs that re-
trieved more positive responses in different SNP algorithms are more likely to be delete-
rious [22,23]. Therefore, SNPs that were considered deleterious by at least ten different in 
silico algorithms were classified as high-risk nsSNPs in this study. The seven SNPs, 
rs762410705 (L68P), rs762422416 (G120E), rs773587630 (G11R), rs1235100397 (A156D), 

Figure 1. In silico-based identification of deleterious SNPs in the NAGK gene. (A) A pie chart highlighting the various types
of SNPs in NAGK. (B) Bar plot describes the total number of missense SNPs and predicted deleterious SNPs by various
algorithms. (C) Heatmap illustrating the pairwise correlation of predictions between various computational algorithms.
The degree of correlation is highlighted by a color-coded map from red to white to blue; red indicates a positive correlation,
white means neutral, and a negative correlation is denoted by blue color.

A total of twelve deleterious predicting algorithms (Table S1, Supplementary File 2),
which use either sequence or combined sequence and structure-based approach, were used
to identify the most damaging ones from the retrieved 353 missense SNPs. Among these
12 used algorithms, the combined annotation-dependent depletion (CADD) algorithm
recognized the highest number of deleterious SNPs (n = 251), whereas the lowest number
of deleterious SNPs was identified by PhD-SNP (Figure 1B). Furthermore, the predictions
of all algorithms were found to correlate significantly with each other independently, while
I-mutant3.0 showed a slight negative correlation with MutationAssessor. Since each algo-
rithm uses different parameters for SNP assessment, SNPs that retrieved more positive
responses in different SNP algorithms are more likely to be deleterious [22,23]. There-
fore, SNPs that were considered deleterious by at least ten different in silico algorithms
were classified as high-risk nsSNPs in this study. The seven SNPs, rs762410705 (L68P),
rs762422416 (G120E), rs773587630 (G11R), rs1235100397 (A156D), rs777835055 (A115D),
rs1182635746 (G32R), and rs1190188472 (A160E), were identified as deleterious (Table S2,
Supplementary File 2) by at least ten algorithms and these were considered as high-risk
nsSNPs, and hence subjected to further analysis.
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2.2. Conservation Analysis

Generally, residues, which are critical for protein stability, biomolecular interactions,
and functions, are more usually conserved than others [22]. Therefore, SNPs in the con-
served area are likely to be more pathogenic than those present in the variable region,
disrupting structural stability, protein–protein interaction [24], and catalytic activity [25,26].
Since the NAGK non-canonical function mostly depends on diverse biomolecular in-
teractions [1,6,7,12–14], we analyze the degree of amino acid conservation of NAGK to
investigate further the possible impacts of high-risk SNPs based on evolutionary informa-
tion. The ConSurf web server was used to predict the evolutionary conservation profile of
NAGK, which is shown in Figure S1 (Supplementary File 2).

According to the conservancy analysis, only four high-risk SNPs were found to be lo-
cated in the highly conserved area: rs773587630 (G11R), rs1182635746 (G32R), rs762422416
(G120E), and rs1235100397 (A156D). Specifically, G11 and G32 residues are highly conserved
and functional (Figure 2B(a,b)), while G120 and A156 residues are structural, highly con-
served, and buried (Figure 2B(c,d)). Since these four SNPs (G11R, G32R, G120E, and A156D)
are functionally conserved, they are likely to be more deleterious to the NAGK structure
and function (Figure 2A), and hence their structural impacts are analyzed specifically
through MD simulations.
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2.3. Molecular Dynamics (MD) Simulation

To analyze the phenotypic consequence of the identified deleterious SNPs, NAGK
conformational dynamics were visualized by conducting molecular dynamics simulation
for 300 ns considering its wild and variant types. The simulation stabilities for all sys-
tems were characterized by RMSD analysis, representing that all systems achieved initial
equilibrations after 75 ns and were maintained till the end. The wild-type showed a high
deviation of RMSD (~4 Å) during the initial stage of the simulation (~50 ns); however, it
retained stability afterwards, which remained until the end of the simulation (Figure S2A,
Supplementary File 2). The G32R variant displayed RMSD pattern similar to the wild-type
while showed slight deviations over the period (Figure S2C, Supplementary File 2). The rest
of the mutants, G11R, G120E, and A156D, showed an increased RMSD deviation compared
to the wild-type, and the fluctuation level reached near 4 Å in several timesteps in the
total simulation (Figure S2B,D,E, Supplementary File 2). Since the last 125 ns of wild-type
simulation (after 175 ns) showed a stable equilibration, the trajectories retained in this
time length were considered for further analysis, which is also considered for all variants
(Figure S2, Supplementary File 2).

The adequacy of the conformational sampling of the sub-trajectories (the last 125 ns
trajectories) was confirmed by cosine content analysis of the first three principal compo-
nents. The analysis indicates that the conformational samplings in the sub-trajectories are
convergence, as all cosine content values of the principal components for this time window
are lower than 0.7 (Table S3, Supplementary File 2) [27], where higher than indicated value
represents insufficiency conformational sampling.

2.3.1. Effects of Variants on Conformational Dynamics

To analyze the NAGK conformational stability, the RMSD value of the sub-trajectories
was again calculated as an indication of overall protein stability. The RMSD value, as
compared to wild-type, was found higher in G120E and A156D than G11R (Figure S2F,
Supplementary File 2). The RMSD values of G11R were also significantly higher than
the wild-type, reflecting that all variants induced a higher structural deviation and thus
flexibility. To further confirm this observation, radius gyration (Rg), another indicator of
protein flexibility that indicates total protein compactness, was calculated and represented
in Figure 3. The results also confirmed the substantial conformational changes in variant
structures due to the high structural flexibilities. Compared to the wild-type, G11R showed
a significant increase in Rg value during the last 125 ns of the simulation (Figure 3A(a))
and resulted in Rg distribution shifting right to the Rg of wild-type (Figure 3A(b)). Similar
trends of Rg distribution were also observed in G32R and A156D mutants (Figure 3B,D),
where A156D showed higher fluctuations in Rg than G32R during the last 125 ns. Instead,
G120E showed a minor increase in the total Rg of the protein (Figure 3C), and the distribu-
tion was overlapped with the occurrence frequencies of wild-type, although the difference
was statistically significant (Figure 3C(c)). Both RMSD and Rg analysis collectively suggest
that all variants have higher structural flexibility than the native form, affecting overall
protein stability.

Since the RMSD and Rg analysis indicated substantial structural changes in variant
type structures, the total solvent accessible surface area (SASA) of all variants was cal-
culated and compared with wild-type. The SASA indicates solvent accessibility, where
a decrease in SASA describes the shrunken structure. At the same time, a high value
denotes protein flexibility suggesting that the hydrophobic core of the protein appeared
to be exposed in the aqueous surrounding due to the loss of hydrophobic interactions
among nonpolar residue clusters [28]. As shown in Figure 4A,C, both G11R and G120E
induced total SASA of the protein than the wild-type, and G11R showed higher deviation
than the G120E. The SASA distribution of G11R shifted to the right than the wild-type and
showed a high distribution between 160 to 163 nm2 (Figure 4A(b)). G120E represented
high distribution in the range of 156 to 157 nm2, whereas the wild-type had a high distribu-
tion ranging from 156 to 158 nm2 (Figure 4C(b)). Conversely, A156D and G32R showed a
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reduced SASA value compared to the wild-type, in which A156D had a high distribution
around 150 nm2 (Figure 4D(b)), while G32R raised SASA around 154 nm2 (Figure 4B(b)).
The SASA analysis, together with RMSD and Rg calculations, thus summarizes that these
variants caused the changes in overall protein dimension, which might lead to misfolded
protein conformation and thus affect protein–protein interactions.
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Figure 4. Analysis of total solvent accessible surface area (SASA) of the protein inferring the changes in the NAGK
conformational stabilities. SASA value of G11R (A), G32R (B), G120E (C), and A156D (D) variants versus wild-type NAGK,
where, in all cases, (a) represents time-dependent changes during the simulation, while (b) and (c) describe probability
density and mean difference in the SASA distribution, based on the last 125 ns trajectories. The annotations used in A(c),
B(c), C(c), and D(c) represent statistical significance, denoting *** p < 0.0001. Two-tailed, equal-sample variance Student’s
t-tests were used to calculate the p values.

2.3.2. Effects of Variants on Protein Dynamics

To recognize the effect of variants in the local flexibility of the protein, we calculated
the root mean square fluctuations (RMSF) value of NAGK in both wild-type and variants,
which indicates that amino acid substitution increased residual flexibility. As represented
in RMSF analysis (Figure 5), it was revealed that all variants caused different fluctuations
in the large domain-containing residues of the protein (including M150 to S275), where
the residues in the NAGK small domain were seen to have a high fluctuation only in
A156D (Figure 5B(d)). In the substrate binding site (Figure 5A), all variants changed the
residual fluctuation in the loop domain, ranging from G145 to D152, where the degree of
fluctuation was severe in G120E (Figure 5B(c)). G120E also induced high fluctuation in the
residues of S76 to D79 of the substrate binding site, and this change was similarly found
in A156D. In the case of G120E and A156D, the residue D107 was seen to fluctuate more
than the wild-type, which was evidenced in the hydrogen bonding with GlcNAc (substrate
of NAGK) and accepting proton during the nucleophilic attack on the γ-phosphate of
ATP [11].
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Figure 5. Alteration of residual flexibility in NAGK variants. (A) Map representing domains and motifs presents in NAGK
involved in substrates and ATP binding. (B) The root mean square fluctuation (RMSF) plots highlighting the variations in
structural flexibility between G11R (a), G32R (b), G120E (c), and A156D (d), compared to the wild-type. (C) The degree
of flexibility is represented by the tube view of NAGK structure in various types with B-factor calculated from the RMSF
analysis. The area having a high B-factor is shown as a broader tube with red shades, while a narrow tube with white shade
means the regions have a low B-factor.

Similarly, N36 showed a high fluctuation in the case of A156D and other residues
(H37 to I40), along with high fluctuations in G11R and G32R compared to the wild-type
(Figure 5B(a,b)). The ATP binding site, containing conserved motifs such as ADENOSINE
(residues, V269 to L275), was seen to have more fluctuation in A156D and G11R than the
wild-type. In addition, residues in the region L250 to V269 and S275 to S300 showed reduced
fluctuations in G120E and G32R. The residual fluctuations in the PHOSPHATE2 motif
also deviated more in G120E and A156D; however, residual fluctuations in the hinge
region remained unaffected. Additionally, G120E and A156D showed high RMSF values
(Figure 5C,D) in the residues of D79 to R85 near the substrate binding site (S76 to D79).

As RMSF highlighted the variants induced conformational changes in both substrate
and ATP binding sites, we incorporated the dynamic cross-correlation map (DCCM) analy-
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sis to understand their effects on NAGK correlative motion. Figure 6A shows a color-coded
DCCM for all systems, illustrating that variants induced a distinct change in the correlative
motion of NAGK (Figure 6B). When the correlated motion is compared between wild-type
and G11R, it is revealed that G11R increased both correlated and anti-correlated motions
in NAGK. A substantial increase in the positive correlation was observed between the
residues A2 to L71 and P67 to I104, while anti-correlated motion occurred between the
residues E240 to T303 and F302 to D330. In addition, a positive correlation was found in the
region between the region G32 to V46 and A295 to T303, and also between G77 to R94 and A295

to T303. Conversely, a considerable induction of anti-correlated motion was observed be-
tween the residues A2 to L71 and E153 to N234, and this region (E153 to G243) was also found
to show a negative correlation with the residues of L73 to G110. Furthermore, G11R was also
seen to induce anti-correlated motion between I159 to Y205 and L242 to H325. Similar trends
in the anti-correlated motion were also found in G32R and A156D, specifically in the region
between the residues A2 to L71 and E153 to G243 as well as the correlative motion between
the region of residues A2 to L71 and P67 to I104. Unlike G32R and A156D, G120E showed
reduced correlative and anti-correlated motions in these regions. Nevertheless, it showed
mixed motion between the residues A2 to L71 and I253 to S344. A156D showed an increased
anti-correlated motion in the region between the residues V46 to T105 and D118 to D152, and
correlative motion between the region T105 to G142 and L267 to I336. The dynamic insight
gained from DCCM analysis further supports that variants caused correlative motions in
the substrate binding site and in the active site residues, specifically PHOSPHATE and
ADENOSINE motif.

Again, to expose the changes in protein dynamics, we conducted principal component
analysis (PCA), representing most of the dominant motions during the simulations [17,29].
Remarkably, all variants were found to have more variances than that of the wild-type,
such as G11R, G32R, G120E, and A156D with variances of 60.9%, 53.9%, 53.9%, and 58.8%,
respectively, in the first three PCs, whereas wild-type has a variance of 43.2%. All variants
also produced different patterns in the directional movement of NAGK, as highlighted
by root mean square inner product (RMSIP) analysis (Figure S3, Supplementary File 2),
that predict similarities between the subspaces of wild-type and variants trajectories by
comparing covariance matrices. A perfect similarity is indicated by RMSIP value 1, while
0 means the similarities between the matrices are orthogonal. When compared to the
wild-type, all variants showed a minimal RMSIP value, lower than 0.5, which suggests that
structural dynamics between the wild-type and variants are hardly identical, meaning that
variants induced a loss of cumulative movements [30,31].

To compare the provable conjoined movements, eigenvectors (EV) of the first three
PCs were drawn in a two-dimensional plot, indicating conformational distribution states
by color-coded dot representation, described briefly in Figure S4. As shown in Figure S4A
(Supplementary File 2), the conformational distribution in the wild-type on the projection
of PC 1/3 and 2/3 was more distinct, which indicates a substantial energy barrier [32]. How-
ever, all variants expect G120E showed overlap in PC subspaces, suggesting a loss of peri-
odic conformational shifting due to the lack of an energy barrier. However, G120E showed
high conformational distribution in intermediate states and produced energetically fewer
stable states (scattered blue region) than the wild-type (Figure S4D, Supplementary File 2).
This observation confirmed that G120E increased fluctuations in NAGK domains and
suggested a loss of coordinated motions [33].

The residual mobility in NAGK variants, which was highlighted by PC1, is visualized
in Figure 7 and compared with wild-type. PC1 plot showed that variants including G11R,
G32R, G120E, and A156D induced high residual mobility in the substrate binding site
including the region G145 to D152, where high induction was observed in G120E (Figure 7C).
G11R showed reduced mobility in the region of substrate binding site (residues S76 to
D79), but induced mobility in the ADENOSINE binding motif of the ATP binding site
(Figure 7A,E). On the other hand, G120E showed reduced mobility in the PHOSPHATE1
motif, while increased residual mobility in the hinge regions of residues D118 to G119 and
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L307 to R308 and beside the adenosine binding motif (residues, L250 to V269). A156D also
produced high mobility in all hinge regions as well as in PHOSPHATE2 and adenosine
motifs in the ATP binding regions (Figure 7D). Both variants, G120E and A156D, reduced
flexibilities in the region of residues, M188 to R206, where G120E also reduced residual
mobility in T35 to N50 as well as changed the degree of mobility in G78 to F95. However,
A156D in this region (D79 to L87) reduced residual mobility.
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2.3.3. Variants Alters NAGK Secondary Structural Organization

To measure the effect of variants in the NAGK secondary structural organization, we
used the Define Secondary Structure of Proteins (DSSP) algorithm on wild-type and variant
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simulation trajectories to analyze the changes in NAGK secondary structure elements
(Figures S5 and S6, Supplementary File 2). As shown in Figure S5B, G11R induced more
bend and B-sheet conformation in the PHOSPHATE1 loop than the wild-type (Figure S5A).
In addition, G11R introduced more turn conformation in the residues H148 to S155, where at
this region, wild-type showed more bending conformation. Furthermore, G11R introduced
more bend conformation in the residues F208 to R212 and decreased A-helix conformation. In
the C-terminal region (D330 to S340), G11R produced more bend and coil conformation and
reduced A-helix formation during the simulation. A similar trend of the A-helix formation
was also revealed in the C-terminal region (D330 to S340) of the G32R variant (Figure S5C),
and G32R also introduced more B-sheet and bend conformation in the phosphate1 loop.
In addition, G32R caused more turn conformation in the residues of L75 to I87 instead of
coil formation. In contrast, G120E altered conformational stability more than the wild-type,
reducing the proportion of helix and B-sheet occupancies. G120E showed a substantial
reduction in the B-sheet formation in residues G120 to A160, while induced more turn
conformation. Moreover, in the region L75 to E100, G120E increased the formation 3-
helix and turn conformation by disrupting A-helix formation (Figure S5D). In the C-
terminal region (L250 to G270), G120E reduced 3-helix formation; instead, it introduced turn
conformation. A156D reduced A-helix formation in the NAGK large domain (Figure S5E),
especially in the region of residues E240 to S344. Like G120E, A156D also reduced 3-helix
formation in residues L250 to G270, and also A-helix in D330 to S340 while inducing 3-helix
formation in this region. An induction of turn and 3-helix formations were also observed
in the residues H148 to S155 in the case of A156D (Figure S6).

2.4. Impacts on Non-Canonical Functions

Our previous report evidenced the physical interaction of NAGK in the dynein com-
plex, where it interacts with DYNLRB1 by its small domain and promotes dynein-mediated
functions [11,13,14,34]. To analyze the effect of identified NAGK variants in dynein as-
sociation (Figure 8A), we analyze the binding energy between NAGK and DYNLRB1in
both wild-type and variants (Figure 8B). Resultantly, all variants showed a reduction
in the binding energy of the NAGK-DYNLRB1 complex as a result of the amino acid
change (Table S4, Supplementary File 2). The binding energy variation between wild-type
and variants was calculated, which represents that binding energy between these two
proteins is reduced to >8% in all variants (Figure 8B). Among all the variants, A156D
and G32R highly decreased the binding energy to >30%, having a binding energy of
−40.86 kcal/mol and −41.21kcal/mol, respectively, whereas the wild-type showed bind-
ing energy of −59.45 kcal/mol. On the other hand, G11R and G120E also showed less
binding energy than the wild-type, which is −53.97 kcal/mol and −47.36 kcal/mol, respec-
tively. Figure 8C represents the deleterious effect of variants in protein–protein interaction,
which showed that variants reduced the total binding free energy contributed by hot-spots,
especially K59AGVDPLVPLR69 [13,14]. In wild-type, the R69 residue showed total con-
tributing binding energy of −5.58 kcal/mol, which, however, reduced in G11R, G32R,
G120E, and A156D to −2.17, 0.34, 0.72, and −1.86 kcal/mol, respectively (Figure 8C).
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3. Discussion

In this study, a series of analyses have been incorporated to understand the changes
in NAGK structural and conformational dynamics caused by missense variants identified
by various bioinformatics tools. Previous studies on NAGK crystal structure suggested
that NAGK confers large conformational changes during the catalytic process, like other
proteins from kinase/Hsp70/actin superfamily, allowing the small and large domains to
be closely connected with substrates. However, this dynamic change is not only critical for
substrates selectivity but also for its structural functions, which encouraged us to examine
the dynamic nature of NAGK in the presence of deleterious variants.

To identify the potential deleterious missense SNPs, we used different bioinformatics
tools with various features and parameters to minimize the prediction errors and maximize
the reliability and accuracy of the prediction [15,35]. Thus, by incorporating 11 bioin-
formatics tools, consisting of 12 algorithms, we identified seven high-risk SNPs among
the 353 missense SNPs, of which were agreed by at least 10 algorithms and thus can be
considered reliable for further analysis [15,16].

Accumulating studies in functional genomics evidenced the fundamental roles of
evolutionary information in detecting the disease-causing mutations [36,37]. Thus, for
rational prioritizing the identified high-risk SNPs, we considered the evolutionary conser-
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vation of NAGK, which was performed in the ConSurf server. As highlighted in Figure S1,
four potential variants, G11R, G32R, G120E, and A156D, are highly damaging because
their positions are located in highly conserved areas. Interestingly, G11R is located in the
PHOSPHATE1 motif of the ATP binding site of the small domain, and it was illustrated
earlier that G11 makes direct interaction with the ATP-Mg2+ and coordinates nucleophilic
attack of the γ–phosphate group [38]. Thus, the replacement of neutral residue (Glycine)
with highly positive charged residue (Arginine) in G11R would certainly disrupt binding
positively charged atoms in ATP.

On the other hand, various analyses from MD simulation, such as RMSD and Rg
analysis, revealed the structural changes in NAGK in both wild-type and variant form,
concluding that variants induced a substantial increase in structural flexibility. In support
of this finding, SASA analysis added that the high flexibility induced by all variants,
except G120E, may lead to expanding solvent-exposed area, resulting in protein misfolding
and being deemed responsible for loss of function. A decreased SASA value, which was
observed for G120E, suggested decreasing total protein solubility, which can also be a
negative factor of protein–protein interactions [39].

All of the variants also showed different correlative motions compared to wild-type
NAGK. The correlation analyses show a high anti-correlation between the domains induced
in the variants, indicating global conformational changes so that the domains of the NAGK
are pushed away from each other. Furthermore, the conformational ensembles of wild-type
structure in PCA analysis were clustered into two distinct metastable states divided by
a substantial energy barrier. These distinct clusters might provide an essential aspect
of the control mechanism and suggest that NAGK performs periodic conformational
shifting to reorient its terminal domains. As previous study evidenced, substrate-binding
in NAGK differs depending on domain movement, from open to close formation, where
the closed configuration ensures the tight binding of substrates [8]. Hence, DCCM and
PCA collectively evidenced that variants changed essential correlated and coordinated
movements, which eventually leads to loss of function.

The loss of structural stability and function is correlated with increased motion, which
is either in the active or functional interacting site, and caused substantial changes in
the secondary structural organization in such a way that it impairs the potential ligands
bindings [40]. The results from RMSF, DCCM, PCA, and DSSP analyses provide evidence
for disrupted structural activity in all variants, particularly around the active sites, which
is thus believed to be associated with the loss of ligand bindings. In G11R, the variants
showed substantial structural changes near the active site and induced high correlative
motions, indicating the influence of G11R on the NAGK structural function, which is
also supported by MM-GBSA analysis. G32R, on the other hand, is also located in the
small domain and was demonstrated to induce flexibility in the substrate binding site
(Figure 5A). Indeed, G32R caused substantial 3-helix formation instead of loop conforma-
tion of substrate binding site, specifically in G145 to D152 (Figure S6C, Supplementary File
2). This indicates that G32R disrupts the plasticity of the substrate binding site, which
might affect the substrate binding and substrate selectivity. In addition, G32R was also
shown to induce both correlative and random motion (Figure 6B) and reduced substantial
binding energy in protein–protein interaction (Figure 8B), indicating a damaging impact
on NAGK structurally related functions.

Variants in the large domain, G120E and A156D, albeit not present in the small domain,
modulate structural integrity of both small and large domains, where G120E reduced both
B-sheet and helix formation in most of the region of the NAGK structure (Figure S5).
G120E markedly reduced A-helix formation in the PHOSPHATE2 and ADENOSINE
motifs, indicating that the damaging effect of G120E in the ATP binding (Figure S6D,
Supplementary File 2). Furthermore, G120E induced higher flexibility in the loop region
of the substrate binding site and reduced the correlative domain motion, suggesting that
G120E may affect NAGK substrate selectivity. A156D induced more correlative motions
than the other variants and induced changes in the helix conformation in the residues
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E240 to S344 containing the ADENOSINE motif (Figure S6E, Supplementary File 2). This
observation further indicates the damaging roles of A156D in both canonical and non-
canonical functions of NAGK.

4. Materials and Methods
4.1. Data Collection and Identification of Deleterious SNPs

The National Center for Biological Information (NCBI) SNP database (dbSNP) pro-
vides detailed information about the single nucleotide variations of any gene sequence,
and this database was used for collecting relevant NAGK gene variations along with
their respective rs IDs. A total of eleven in silico damaging SNP prediction tools were
used for the identification of the most damaging SNP prediction, which are sorting in-
tolerant from tolerant (SIFT), polymorphism phenotyping v2 (Polyphen-2), Combined
Annotation-Dependent Depletion (CADD), Consensus deleteriousness score of missense
mutations (Condel), M-CAP, MutPred, MutationAssessor, protein variation effect analyzer
(PROVEAN), predictor of human deleterious single nucleotide polymorphisms (Phd-SNP),
I-Mutant3.0, and SNAP2. Here, the prediction method by the SIFT tool is based on the PSI-
Blast algorithm [41], which includes sequence homology and physical properties of amino
acids [42] for determining the tolerated or desecrated substitution in every site of the se-
quence [43]. PolyPhen-2 uses probabilistic classifier to analyze the functional significance of
an allele change and the mutation effect by Naïve Bayes algorithm [44,45]. PolyPhen-2 pre-
diction also depends on the number of sequences, phylogenetic, and structural properties
characterizing the substitution [46]. In the present study, two models of polyphen-2 were
used, HumDiv and HumVar, where HumVar identifies extreme phenotypes while HumDiv
classifies less damaging SNPs using position-specific independent counts [47]. CADD is
an integrative annotation tool that can score human single nucleotide variants and short
insertions and deletions based on more than 60 genomic features [48] and can effectively
prioritize causal variants in genetic analyses, particularly highly penetrant contributors
to severe Mendelian disorders [48]. Condel evaluates the probability of missense single
nucleotide variants (SNVs) deleterious. It computes a weighted average of the scores of
SIFT, PolyPhen-2, MutationAssessor, and FatHMM [49,50]. M-Cap is a clinical pathogenic-
ity classifying tool that correctly dismisses 60% of rare missense variants of uncertain
significance in a typical genome at 95% sensitivity [51]. The MutPred tool using random
forest classifier can categorize an amino acid substitution as either deleterious/disease-
associated or neutral, based on three classes of attributes, the evolutionary conservation of
the protein sequence, the protein structure and dynamics, and can determine the changes
in atomic and molecular level induced by the amino acid substitution [52,53]. Prediction of
the functional effect of a mutation was investigated by MutationAssessor [54], depending
on sequence conservation, using multiple sequence alignments [53,55]. PROVEAN [56]
is a sequence-based prediction tool that estimates the effect of protein sequence variation
on protein function [42,57]. The effect of damaging nsSNPs was determined in the protein
sequence by applying delta alignment scores based on variant version and reference of
the protein sequence [57]. Phd-SNP [58] software was also used to investigate the effect
of mutation on protein function [59]. From the neutral protein, it segregate SNPs related
to Mendelian and complex diseases by using evolutionary information [58]. I-mutant3.0
predictor uses Support Vector Machine (SVM) algorithm, which can estimate the stability
change, donated by ∆∆G value (kcal/mol), upon single-site mutation based on a protein
structure or sequence [60]. The DDG (kcal/mol) value and RI value (reliability index)
of mutant are calculated by I-mutant3.0. SNAP2 is based on a learning device method
known as neural network, utilizing the information of automatically created multiple
sequence alignment and some structural features for prediction of mutation impact on
protein function [61,62].
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4.2. Conservation Analysis

To perform the conservation analysis of the native NAGK gene, the Consurf web tool
was used [26]. This web tool analyses the evolutionary pattern of amino acid or nucleic
acids (DNA/RNA) of the macromolecule substitutions among homologous sequences
to reveal regions that are important for structure and/or function [63,64]. The Bayesian
calculation method was used to calculate the conservation scores from the protein sequence.
We considered those nsSNPs of NAGK that were found in the highly conserved region for
further analyses. A score from 1 to 4 was considered as a variable, whereas scores between
5 and 6, and 7 to 9 were considered as intermediate and conserved, respectively.

4.3. Molecular Dynamics (MD) Simulation
4.3.1. Preparation of Simulation System

To perform molecular dynamics simulation, the three-dimensional crystal structure
of NAGK was first retrieved from the protein data bank (PDB ID: 2CH6) and prepared
the following energy minimization procedure with Optimized Potential for Liquid Sim-
ulations (version 3e), as described earlier [13,14,16,65–67]. After preparing the structure,
Schrödinger 2017-1 (Schrödinger, LLC, New York, NY, USA, 2017) was used to include
respective variants (G11R, G32R, G120E, and A156D) in the structure by using mutant
residue script. We further energy minimized the structures (wild-type and variants) using
MD refine script of YASARA Dynamics software (YASARA Biosciences GmBH, Vienna,
Austria), which follows a short MD simulation for 0.5 ns using the YAMBER3 force field [68].
Other aspects of this short simulation were described earlier [15,65,69]. The lowest energy
conformer from the MD ensemble was used for further analysis.

MD simulation was performed by YASARA Dynamics software by using Assisted
Model Building with Energy Refinement (AMBER 14) force field [70,71], as previously
described [17,72–74]. In the beginning, structure, variants, and native were cleaned and the
hydrogen bond network was optimized. A cubic simulation cell was generated, which was
10 Å more extended than the protein on each side. The transferable intermolecular poten-
tial3 points (TIP3P) water model was used for solvating the system [75]. The protonation
state of each amino acid was maintained correctly with a combination of the H-bonding
network optimization and SCWRL algorithm [76]. The acid dissociation constant value
(pKa) for amino acids was also calculated using Ewald summation [77]. NaCl ions were
added with a physiological concentration of 0.9% (0.15 M NaCl), with additional counter
ions (Na+ or Cl-) to neutralize the cell. Following the simulated annealing method, the
system was energy minimized using the steepest gradient approach (5000 cycles). At
physiological conditions of (T = 298 K, pH = 7.4, 0.9% NaCl) [78], MD simulation was
performed for 300 ns, using particle-mesh Ewald (PME) method to explain the long-range
electrostatic interactions at a cut off distance of 8 Å [79]. During the simulation, constant
pressure and Berendsen thermostat were maintained, and a multiple timestep algorithm
was used to set a time step interval of 2.00 fs [80,81]. Each simulation trajectory with
50 ps time interval was acquired and analyzed by various evaluative measures viz. RMSD,
RMSF, Rg, and SASA of protein backbone using default script of YASARA [82] and VMD
software (Version 1.9.3, 2016, Theoretical and Computational Biophysics Group, Urbana,
IL, USA) [83–85]. The secondary structure elements of all simulated trajectories were
calculated by DSSP software (EMBL, Heidelberg, Germany) [86,87]. In addition, DCCM
and PCA analyses were performed by the Bio3D [88] package integrated with R program.
The DCCM analysis is a popular method for analyzing the trajectories to explore the inner
protein dynamics [89], providing detailed insight on the correlative motion of protein.
On the other hand, PCA shows the dominant collective motions of biological systems by
reducing the dimensionality of large ensembles [66]. The mathematical of DCCM and PCA
have been described previously [15,16,65,69].

The first 3 principal components were used to calculate the cosine content, which indi-
cates the statistical significance of convergence of the trajectories, which was accomplished
using the essential dynamics program of GROMACS simulation package. Here, a cosine
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value lower than 0.7 is considered a good convergence, while values close to 1 indicate that
the simulation is not converged [90]. To analyze the similarity between two sets of modes
obtained from different principal components (wild-type or variant), the root-mean-square
inner product (RMSIP) was calculated by using Bio3D [91]. The root-mean-square inner
product (RMSIP) over the first ten eigenvectors of the Cα atoms, the value varies from 0 to1,
where 0 means the similarity is orthogonal while 1 indicates identical directionality [27,92].

4.3.2. Protein–Protein Docking and MM-GBSA Calculation

To predict the interacting model of NAGK–DYNLRB1 (PDB ID: 2HZ5, Chain B),
protein–protein docking was performed in the SwarmDock server [93], which preserves
protein flexibility during the docking calculation [94]. After that, mutant residue script
from Schrödinger 2017-1 software was used again to introduce respective variants (G11R,
G32R, G120E, A156D) in the NAGK structure of the docked complex. To refine the mu-
tant NAGKwild/variant-DYNLRB1 complex, a short MD simulation (0.5 ns) was again per-
formed using the similar approach described earlier. The lowest energy conformer from
MD refine was used for binding energy calculation by MM-GBSA method using the
following equation:

∆Gbind = Gcom −
(

GProtein_rec + GProtein_lig

)
∆Gbind = ∆H − T∆S ≈ EMM + ∆Gsol − T∆S

Here, the change in total free energy between bound-state (Gcom) and unbound-state
systems (Gprotein_rec + Gprotein_lig) is defined by ∆Gbind. ∆Gbind can be described into three
additional terms: ∆EMM represents total gas-phase energy, which is the total of ∆Einternal,
∆Eelectrostatic, and ∆Evdw); ∆Gsol describes the total energy of polar (∆GGB) and nonpolar
(∆GSA) contributions to solvation; and the conformational entropy upon the binding is
described by T∆S.

Here, the calculation was performed by assigning Amber ff02 force field to the protein.
Here, Onufriev et al.’s GBOBC1 model [95] was used to measure the desolvation of polar
elements, where the dielectric constants were considered 80 for the solvent and 1 for
the solute. The LCPO algorithm [96] was used for the nonpolar elements desolvation,
considering the values 0.0072 and 0 for γ and b, respectively. In the calculation, entropies
were not considered due to low prediction accuracy [97]. All of the calculation was
performed in the HawkDock web server [98] and the complex preparation method is
described in detail elsewhere [99].

4.4. Statistical Analysis

In this study, correlation among different bioinformatics tools was predicted by SPSS
v19 software (IBM, Armonk, NY, USA). To find out the most significant combinations, t-tests
and single-factor ANOVA tests were applied. GraphPad Prism v 8.0 (GraphPad Software,
San Diego, CA, USA) software was used to analyze the MD trajectories statistically. To
compare the simulation results, p values of < 0.0001 were considered to be highly significant,
which were performed with two-tailed, equal-sample variance Student’s t-tests.

5. Conclusions

In summary, the identified NAGK missense variants, G11R, G32R, G120E, and A156D,
are potentially damaging to NAGK structure and function. All of these variants were seen
to disrupt the integrity of the catalytic site, induce high correlative motions, and reduce
the binding energy of NAGK to DYNLRB1, indicating their damaging effect on NAGK
general structural functions. Although further experimental verifications to assess the
effect of these variants in NAGK functions is recommended, this study provides a starting
point for further investigation of their associations in various brain developmental genetic
disorders. The knowledge gained from this study may be directly helpful in efforts toward
gene-based therapy and CRISPRs.
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