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Abstract: Immunotherapy has been a breakthrough in cancer treatment, yet only a subgroup of
patients responds to these novel drugs. Parameters such as cytotoxic T-cell infiltration into the tumor
have been proposed for the early evaluation and prediction of therapeutic response, demanded
for non-invasive, sensitive and longitudinal imaging. We have evaluated the feasibility of X-ray
fluorescence imaging (XFI) to track immune cells and thus monitor the immune response. For
that, we have performed Monte Carlo simulations using a mouse voxel model. Spherical targets,
enriched with gold or palladium fluorescence agents, were positioned within the model and imaged
using a monochromatic photon beam of 53 or 85 keV. Based on our simulation results, XFI may
detect as few as 730 to 2400 T cells labelled with 195 pg gold each when imaging subcutaneous
tumors in mice, with a spatial resolution of 1 mm. However, the detection threshold is influenced by
the depth of the tumor as surrounding tissue increases scattering and absorption, especially when
utilizing palladium imaging agents with low-energy characteristic fluorescence photons. Further
evaluation and conduction of in vivo animal experiments will be required to validate and advance
these promising results.

Keywords: XFI; X-ray fluorescence imaging; T cell; immunotherapy; nanoparticles; gold; palla-
dium; simulation

1. Introduction

Over the past decades the field of cancer therapy has seen major breakthroughs by
the implementation of novel therapeutic approaches. Most prominently, the idea of not
targeting tumor cells directly but rather harnessing the body’s immune response has
revolutionized the way neoplastic diseases are looked upon [1]. While this concept itself
is not particularly new, it has been majorly restrained by malignant cells’ capabilities
of evading immune response. This immune evasion is based on multiple mechanisms,
mostly either inhibiting effector cells or disguising themselves by downregulating surface
proteins [2]. Three major approaches regarding immunotherapy have been pursued,
namely cancer vaccines [3], adoptive T cell transfer [4] and checkpoint inhibition [5]. The
latter, working through inhibiting the activation of cytotoxic T lymphocyte-associated
protein 4 (CTLA-4) or programmed cell death protein 1 (PD-1), T cell membrane proteins
suppressing immune response, have shown unprecedented anti-tumor response in clinical
trials [6,7], but only in a subgroup of patients. With a multitude of immune checkpoint
inhibitors entering the market and multimodal therapeutic concepts being introduced,
early evaluation and even prediction of treatment response is indispensable to improve
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the patients’ outcome [8]. Nevertheless, traditional methods of assessing tumor response
mostly relying on change in tumor size were shown to be inadequate in this context due to
the presence of atypical tumor responses [9]. As one of multiple markers being proposed,
cytotoxic T cells (CTL) infiltrating the tumor were discovered to correlate with tumor
response under these novel therapeutics and could thus be used to quickly assess and
monitor the immune reaction [10]. While early investigations of T-cell distribution were
limited to highly invasive biopsies not suited for routine clinical implementation [11], the
emergence of molecular imaging has paved the way for non-invasive monitoring of cellular
targets [12]. Four imaging modalities have been of particular interest for observing CTLs
in the context of immunotherapy, either imaging injected cells or the endogenous T-cell
population. The majority of the research groups apply PET and SPECT imaging due to their
high sensitivity. However, as a significant efflux of radionucleotides has been observed
when directly labelling T cells, the majority of PET studies has subsequently utilized
radioactively labelled CD8 antibody fragments [13], with the first human trials being
conducted [14]. Nevertheless, imaging of in vitro-labelled, injected T cells has also been
studied using magnetic resonance imaging (MRI) [15], computed tomography (CT) [16]
and bioluminescence imaging (BLI) [17]. Whereas all four approaches show promising
results in either sensitivity or spatial resolution and some even allow for longitudinal
imaging, none has been able to combine all aspects, with each modality having its specific
drawbacks. Due to this reason, neither approach has been implemented in a clinical setting
as of yet, albeit being urgently needed. Thus, we want to introduce a further imaging
modality—X-ray fluorescence imaging (XFI)—and discuss the expected limits.

Ever since their discovery in 1895 [18], X-rays have been extensively studied as a
way to non-invasively visualize body structures and processes. However, the possible
applications of medical X-rays are far beyond the scope of established attenuation-based
imaging [19]. When a photon in the X-ray energy range collides with matter, multiple
interactions with the atom are possible. Regarding XFI, two effects are of major im-
portance, namely the photoelectric effect and Compton scattering. Photons above an
element-dependent energy (the so-called “absorption-edge”) have the ability to ionize
atoms by removing an electron from one of their shells [20]. While the primary photon
is absorbed in this process, the resulting empty position in the atom’s shell is filled by an
outer shell electron, releasing energy isotropically in the form of a secondary photon. Such
emissions of high energy are called X-ray fluorescence (like an “X-ray echo”) and have
a characteristic energy based on the interacting atomic element. Materials with a higher
atomic number Z provide higher photon emission energies [21], increasing the probability
of traversing even larger targets [19]. However, detected fluorescence signal derived from
these interactions is impeded by other photons, mainly originating from multiple Compton
scattering, which is dependent on the target size but even applies to objects as small as
a mouse. Compton scattering similarly describes the excitation of an electron through
photon–atom interactions, without absorbing the primary photon but rather diverting its
path. During this process, the photon loses a fraction of its energy by passing it on to an
electron, depending on its energy prior to scattering and the scattering angle.

The challenge for XFI lies in differentiating the fluorescence signal from detected
background photons. As multiple Compton scattering results in a shift of the incident
photon energy down into the fluorescence signal region, the detection of fluorescence sig-
nals of medically feasible tracer concentrations in large targets becomes nearly impossible.
However, the intrinsic problem of high Compton background has been partially overcome
through the so-called spatial filtering as described in previous work by our group [22],
showing the principal feasibility of XFI even for human-sized objects.

In contrast to established imaging modalities, XFI has the potential to provide both
high sensitivity and excellent spatial resolution while simultaneously allowing for serial
imaging to monitor targets longitudinally.

For the visualization of certain structures, specific materials with known fluorescence
photon energies are used as imaging agents, commonly delivered in the form of molecular
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tracers or metallic nanoparticles (NPs). Nanoparticles are chosen because of their high
customizability regarding size, shape and surface characteristics as well as possible func-
tionalization, each influencing cell labelling efficiency [23,24]. NPs have been extensively
studied in the context of immunotherapy, not only for imaging cellular targets [25] but
also as an approach of treatment [26] and a way to specifically deliver drugs [27]. While
NPs are passively accumulated in tumors due to enhanced permeability and retention
(EPR) effects [28], more specific targeting is required when utilizing them in diagnostics
and therapy. This can be achieved by functionalizing them through coating, change of
surface structures or binding to ligands, depending on the target to be investigated [29].

Most prominently, gold nanoparticles (GNP) have been thoroughly evaluated due
to their high atomic number Z (Z = 79) resulting in high X-ray absorption levels, making
them well suited as a CT contrast agent [30]. GNPs have gained high popularity due to
their simplicity in production and excellent customizability as well as being regarded to
be of little toxicity [31]. Immune cell labelling with GNPs is usually performed ex vivo,
such that only injected cells can be monitored. While cellular uptake was evaluated for
a multitude of immune cells such as macrophages, monocytes and dendritic cells, T-cell
labelling has rarely been performed [30]. Whereas in first studies utilizing GNPs for T-cell
imaging, nanoparticles were used to deliver radionucleotides for PET imaging rather than
imaging GNPs themselves [32], imaging of GNP-labelled T cells using CT was shown
to be feasible [16,33]. Furthermore, the effects of GNP size, labelling duration and Au
concentration on cell viability and labelling efficiency were investigated by Meir et al.,
achieving up to 195 pg gold per cell [23,34].

Another element that is of particular interest in cancer research is palladium nanopar-
ticles (PdNPs). Whereas T-cell labelling has, to our knowledge, not been performed as
of yet, PdNPs have been extensively researched in the context of tumor therapy, imag-
ing and drug delivery [35]. However, there are concerns about potential toxicological
and immunomodulatory effects in applications of PdNPs; hence, further investigation is
needed [36]. While PdNPs have been deployed in various imaging modalities including
photoacoustic imaging, SPECT and MRI are nonetheless not ideally suited for CT imaging
in large objects due to the comparatively low atomic number (Z = 46) of palladium [37].
However, hybrid NPs consisting of gold-coated PdNPs have been successfully utilized
in CT imaging. Regarding XFI, a reduction in tissue penetration depth is to be expected,
yet it can be compensated through differing background characteristics in comparison to
GNPs, as discussed in our work. Whereas gold nanoparticles have been frequently used in
X-ray fluorescence studies [22,38,39], palladium is not commonly considered as an X-ray
fluorescence agent.

In this work, we thus investigate the feasibility of imaging GNPs and, as a com-
plementary approach, also PdNPs using XFI in the context of immunotherapy. For this
purpose, we conducted multiple simulations using the software toolkit Geant4 v.10.5.1 [40],
implementing a tumor-bearing mouse voxel model [41] irradiated by a monochromatic
X-ray beam. The tumors were placed either subcutaneously, in the kidney, or in the center
of the abdomen and enriched with gold or palladium nanoparticles. The software Geant4
is designed to simulate interactions of particles passing through matter using Monte Carlo
methods [42,43]. Geant4-based simulations were shown to be consistent with first ex
vivo and in situ experiments in previous work of our group [22,44,45] and can thus be
used to explore diverse applications of XFI without the need of extensive animal research.
As a result of our simulations, we intend to illuminate both prospects and challenges of
implementing X-ray fluorescence in the highly topical area of cancer research to lay the
foundation for future in vivo experiments.

2. Results
2.1. Subcutaneous Targets

In a first series of simulations, we mimicked imaging conditions found in several
small animal imaging studies, in particular referencing a study by Meir et al. [16] utilizing
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GNP-labelled cytotoxic T cells for CT imaging. A tumor of 5.5 mm in diameter was placed
at a subcutaneous position on the dorsolateral abdomen of the mouse voxel model, as
many small animal studies investigating tumor imaging make use of artificially grown
subcutaneous tumors for convenient handling. In our study, the beam enters the mouse
either through the front, the back, or at a 45◦ angle to minimize tissue along the beam. This
is achieved by rotating and repositioning the mouse, thereby influencing the amount of
tissue the photons have to pass prior to and after hitting the target; however, the same
effect can be achieved by repositioning of the X-ray source and detectors.

In each of the three scenarios, the significance Z was observed to be highly influenced
by the detector angle. While fluorescence photons show isotropic emission, background
photons predominantly composed of multiple Compton scattering are considerably in-
fluenced by the detector position. While Kα significance, with a signal region below the
initial Compton peak, is increasingly impaired at higher detector angles through rising
background, Kβ significance does thrive with Compton energy being shifted below its
signal range, as displayed in Figure 1. Moreover, the target position within the mouse has
to be considered because of the influence of additional tissue between target and detector,
increasing the probability of additional scattering to occur, which further reduces photon
energy. When rotating the phantom to keep the tissue depth along the beam propagation
axis as low as possible, the significance is further improved through an overall reduction
of the Compton background. In this scenario, Kα-fluorescence yields substantially higher
significance values than Kβ as the Compton background is less shifted towards the Kα

region. In addition, L-shell fluorescence was examined, which will not be further discussed
because of consistently performing below K-fluorescence regions. For all scenarios and
signal regions, it can be observed that the significance values for gold do scale with the
agent concentration, as can be seen in Figure 2. The detection thresholds for Au imaging
were extrapolated to be 0.1 mg/mL for the front and back scenario and between 0.1 to
0.033 mg/mL for optimized rotation.

Figure 1. Au fluorescence significance and photon counts as simulated for an agent concentration of 1mg/mL. (a) Signifi-
cance values for both Kα and Kβ plotted for each of the 9 detector angles. (b) Box chart displaying the detected photon
counts for both Kα and Kβ fluorescence photons and background photons at the different detector angles.

As can be seen in Figure 2, the Pd simulations conducted herein show superior
significance across all scenarios when compared to equally enriched Au targets. However,
signal intensity is substantially limited by the penetration depth of fluorescence photons
emitted by Pd atoms, as can be assessed for detector angles in which the fluorescence
photons have to pass the mouse’s body. When lifting these restrictions through phantom
rotation, the best significance can be achieved with the detectors orthogonal (90◦) to the
beam direction where Compton scattering is suppressed. Derived from the dilution series,
the detection threshold for Pd is estimated to be around 5 µg Pd/mL for front/back beam
direction, and <3.3 µg Pd/mL for optimized rotation. The effect of Pd fluorescence being
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able to achieve noticeably higher significance than their Au equivalents is most prominent
when the tissue thickness is as small as possible.

Figure 2. Significance comparison for a subcutaneous target at (1) optimized rotation, (2) beam
hitting the mouse from the front or (3) beam entering the mouse from the back. Gold fluorescence
significances are displayed in red, palladium fluorescence significances in blue.

2.2. Kidney and Central Target

It was further evaluated whether this imaging technique is feasible for deep tumor
imaging in small animals. This challenge was addressed by both simulating a spherical
kidney lesion of 5.5 mm diameter as well as exploring the worst-case scenario, namely a
similar-sized lesion in the center of the mouse with surrounding tissue of approximately
12–15 mm.

It is observed that kidney and central targets perform similarly, with the tendency of
the central target position being slightly inferior. A limitation of Kα significance can be seen
due to the shift in Compton background described before, thus lowering the maximum
significance that can be achieved in these scenarios compared with previous simulations.
However, when only one of both signal regions is to be examined, Kα remains the signal
region of choice. Angular dependence is critical, with the same behavior of Kα and Kβ

fluorescence significance as described before. The resulting Au detection threshold for both
scenarios is estimated to be between 0.33 and 0.1 mg/mL.

When utilizing Pd as an imaging agent, significance in deeper targets noticeably de-
creases in comparison to subcutaneous scenarios. Nevertheless, as is displayed in Figure 3,
Pd does still offer higher significance than Au when comparing similar concentrations,
with an observed detection limit of around 0.01 mg/mL, ergo performing at least one order
of magnitude better. This is due to the different background behavior in the simulated
X-ray spectra: the background in the Kα Pd-signal region is much less than in the Kβ-
region of Au. Angular dependencies are once again mostly influenced by the thickness of
surrounding tissue, performing worst for orthogonal detector positions.
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Figure 3. Comparison of a subcutaneous, a kidney and a centered target regarding Au-fluorescence
(red) and Pd-fluorescence (blue) significances.

2.3. Influence of Target Size

In further simulations utilizing the same center target scenario, the target diameter
was varied between sizes of 10, 5, 2.5, and 1.25 mm. For better comparability, the simulated
agent concentrations were adjusted such that the amount of fluorescence marker within
the beam volume is nearly consistent for different target sizes.

The agent mass is the determining factor for the fluorescence yield; hence, the signal
strength and significance Z, as scenarios differing in target size and concentration, but con-
taining the same amount of agent mass, achieve similar results (see Figure 4). Nevertheless,
it is noticed that the calculated significance does also scale with target size, albeit to a much
lesser extent, as larger targets do perform slightly better than smaller ones containing the
same agent mass, presumably due to the decrease of surrounding tissue. However, when
looking upon the smallest target diameter, a steep decrease in significance is present, with
two effects most likely contributing to this finding. On the one side, changing the shape of
the beam-target intersection from cylindrical in larger targets to spherical in targets with
a size approaching the beam diameter does influence the amount of fluorescence marker
contributing to the observed signal. On the other hand, imperfections of beam alignment
only detectable for small targets cannot be excluded.

2.4. Dose

Furthermore, we evaluated the deposited dose utilizing a dose tracker specified in the
methods section (see Figure 5). The dose for an ideally positioned tumor is estimated to
be 25.5 mGy within the tumor and 0.1 mGy of full body dose for a single beam position.
When imaging a centrally placed target 5 mm in diameter, we found the organ dose to
be 28.38 mGy for Au imaging and 24.45 mGy for Pd imaging with respective full body
doses of 0.34 mGy (Au) and 0.33 mGy (Pd) for a single beam position. A planar scan of
this 5 mm target would require 25 scan positions utilizing a 1 mm beam; thus, the full
body dose for a scan is estimated to be 8.5 mGy (Au) and 8.25 mGy (Pd). As the tumor
location may not always be known a priori, we also extrapolated the dose applied through
a whole-body scan. When an entire mouse is scanned by a photon beam, the full-body
dose roughly approaches the local dose seen within the beam volume. Applying this
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rationale, we estimate the full body dose to be between 250 and 350 mGy at 53 keV and 300
to 400 mGy for 85 keV.

Figure 4. Significance Z at varying agent concentration and target size with Au-fluorescence (a) and
Pd-fluorescence (b).

Figure 5. Dose deposition when imaging Au-labelled subcutaneous (a–c) and central (b–d) targets.
(a,b) Organ doses and full body dose. (c,d) Transversal slice of the mouse voxel model showing the
local dose at beam level. The target is highlighted by a green circle.
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3. Discussion

Based on the determined agent concentration detection limits, possible cell detection
thresholds can now be estimated. As reported in the literature, 195 pg/cell Au T-cell
labelling is feasible [34], whereas for Pd labelling, no reference could be found. Therefore,
only the cellular detection threshold of Au is calculated, assuming a homogenous distri-
bution of cells within the tumor. Based on our simulations of a 5.5 mm diameter tumor,
the detection threshold for a subcutaneous target is estimated to be between 1.5 × 104

and 4.5 × 104 cells/mL (Au) for a best-case scenario and 4.5 × 104 cells/mL (Au) without
optimized rotation. When simulating a kidney and centered lesion, detection thresholds
are extrapolated to be between 4.5 × 104 and 1.5 × 105 cells (Au).

When only considering the tumor volume intersecting with the 1 mm2 beam, it
can be estimated that as little as 730 to 2400 T cells can be detected in a subcutaneous
target when using gold as a fluorescence marker. For both the kidney and central target,
these values increase to 2200 to 7250 cells. As shown by our simulations, the absolute
mass of fluorescence marker, correlating with the number of cells within the beam, is of
supreme importance. At the same time, the volume in which these cells are distributed
is of minor relevance. This fact can be explained with the intrinsic strength of XFI, as
the spatial resolution that can be achieved is solely limited by the beam diameter. Hence,
according to our simulation study, XFI is able to detect lesions in the sub-millimeter
range for scenarios in which a high cell concentration is present, with comparable spatial
resolution to computed tomography and MRI, vastly surpassing the resolution achieved
by PET and SPECT imaging. While this opens up promising possibilities in molecular
imaging as synchrotrons are able to generate photon beams of only a few µm in diameter or
even less, the size of the beam does inversely affect image acquisition times when scanning
objects and more scanning positions result in increased radiation dose; thus, it cannot be
shrunk ad libitum. However, when only scanning small objects and using high photon flux
X-ray sources, this drawback is of minor importance.

Based on the fundamental research performed by Tumeh et al. [46], investigating the
CD8+ T-cell infiltration in melanoma patients receiving immunotherapy through serial
biopsies, we extrapolated the difference in T-cell abundance between responding and non-
responding patients to estimate the required cell labelling efficiency needed for detection
through XFI. With the data given in Figure 3 of [46], we estimate the difference of the groups
to be between 1500 and 2500 CD8+ T cells per mm2, equaling 5.8–12.5 × 104 cells/mm3 or
3–6.5 × 107 cells in a 1 cm diameter circular tumor, assuming homogenous cell distribution.
Subsequently, we calculate the required labelling efficiency to be between 0.286 and 0.044 pg
Au/T cell as well as between 0.009 and 0.004 pg Pd/T cell. In a subcutaneous target, these
values increase to between 0.945 and 0.133 pg Au/cell and between 0.029 and 0.013 pg
Pd/cell, highlighting the potential benefit of utilizing Pd as an imaging agent due to
its reduced requirements on labelling efficiency. Moreover, while these estimations only
include one tumor entity and endogenous T cells; they suggest that the labelling values lie
well within currently achievable Au labelling efficiencies of up to 195 pg/cell.

Furthermore, when comparing our results with established imaging modalities, the
solid angle covered by the detector has to be considered. Herein, a single detector with
a detection area of 25 mm2 (Au) or 50 mm2 (Pd) and a detector to target distance of 6 to
6.5 cm is used, thus only covering approximately 0.06% (Au) and 0.11% (Pd) of the full
(4 π) solid angle. In comparison, modern PET, SPECT or CT detectors do feature much
higher coverage, even investigating full body scanners [47]. Nevertheless, based on the
observed anisotropy of the Compton background, covering the entire solid angle would
not necessarily be the ideal solution for all scenarios. A detector covering 30–40% of the
solid angle would be ideal for human sized targets, when targeting the Kα signal region of
gold fluorescent agents [48], as it was previously investigated by our group.

Based on these considerations, we can assess our sensitivity data in the context of
current literature regarding other imaging modalities. As mentioned above, our setup
was designed such that it can provide results comparable with other studies monitoring
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T-cell distribution. Research performed by Meir et al. utilizing gold nanoparticles as a CT
contrast agent [16] was of particular interest because the GNP-labelled cells could also be
imaged using XFI. The group reported successful monitoring of injected T cell abundance
in a tumor containing 8 × 104 to 4.6 × 105 T cells. However, no detection threshold is
provided for this particular study.

Whereas this approach of injected T cells directly labelled with nanoparticles has been
proven feasible, labelling endogenous cells with antibodies or antibody fragments, as has
been performed in PET imaging [14], is yet to be investigated. The PET sensitivity levels
that have been achieved utilizing radionucleotide-labelled anti CD8+ antibody fragments
range from 2 × 104 CD8+ T cells per milligram in lymphoid organs [13] to 1.6–4 × 106 CD8+
lymphocytes in a tumor volume of ~480 mm3 [49], equaling 3.3–8.3 × 106 cells/mL. Based
on this data, it is to be assumed that XFI could deliver comparable detection thresholds,
while simultaneously providing substantially higher spatial resolution. However, even
though binding of GNPs to antibodies has been conducted in literature [50], there is a lack
of studies regarding T-cell labelling using GNP-conjugated antibodies.

Direct ex vivo cell labelling of T cells has been examined in MRI studies utilizing
superparamagnetic iron oxide [15,51], showing sensitivity levels of <3 labelled cells/voxel
in vivo [51], with the voxel size being 75 µm × 75 µm × 500 µm, equaling <1 × 106 cells/mL.
However, all these publications suffered from imaging only being feasible within 48–72 h
post injection, due to the fast biodegradability seen in SPIO labelling [52]. The same
limitations apply for PET and SPECT imaging due to the inevitable tradeoffs made for
radionuclide halftime, balancing longitudinal imaging against potential reductions in cell
viability of radiosensitive lymphocytes [53]. In contrast, XFI is ideally suited for longitu-
dinal imaging, experiencing no intrinsic decrease in signal over time. While longitudinal
studies for other cell types labelled with GNPs show that imaging is feasible for at least
4 weeks [54], this number may vary for different types of cells due to variations in ef-
flux, proliferation and cell longevity. As a fourth approach, optical imaging of T cells has
achieved promising sensitivities of up to 104 cells [17]; however, the translation into a
clinical setting has proven difficult due to strong limitations in the tissue penetration depth
as well as the complexity of cell preparation due to the required genetic cell modifications
being necessary. The issue of limitations in penetration depth in XFI has been discussed
in this work, endorsing previous research by showing a substantial dependance on the
fluorescent agent. While palladium is limited to small animal imaging studies or the exami-
nation of superficial lesions due to its low energetic fluorescence photons, gold fluorescence
in the Kα and Kβ region was shown to be feasible in human-sized objects in previous
investigations by our group [48,55]. However, most of these setups rely on a brilliant,
monochromatic pencil beam X-ray source providing a high photon flux, features currently
only achieved by synchrotron facilities, too large and too expensive for a clinical imple-
mentation. Aiming at narrowing the gap between traditional X-ray tubes and synchrotron
facilities, inverse Compton X-ray sources (ICS) have been thoroughly studied over the
last decades [56]. While offering quasi-monochromatic photon beams and a significantly
increased photon flux in an affordable and compact size, they are often limited to lower
energies [57]. To overcome these limits, our group also works on ultra-compact laser-driven
Thomson X-ray sources [58], an approach envisaged for clinical use in the future.

Other approaches of achieving X-ray fluorescence imaging in a compact setup using
a high-energy polychromatic X-ray tube, either as a cone or a pencil beam, have been
surveyed to image tumor bearing mice [38,39,59]. In contrast to setups utilizing a pencil
beam, the position of fluorescent agents in cone-beam imaging is determined using pinhole
collimation, theoretically offering faster scanning times when using parallel signal attenua-
tion in a detector array [38]. However, as such a setup that can provide a sufficient flux and
narrow energy spectrum is not yet available, those methods currently suffer from the same
limitations of long measurement times and a higher dose as presented in our approach.
Nevertheless, great sensitivity has been achieved, even reaching synchrotron-like detec-
tion thresholds of 0.007 mg Au/mL; however, for ex vivo imaging of small targets [60],
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whereby using high radiation dose not suited for in vivo imaging. These drawbacks could
be vastly improved in a study by Larsson et al. [39], pointing out the advantages of a pencil
beam driven approach and indicating clinical applicability for molecular imaging in the
sub-millimeter range for small targets.

The estimated full-body dose in the present study ranges from 0.1 to 0.34 mGy for a
single beam position to 250 to 400 mGy for a whole-body scan. These doses lie markedly
below the median lethal dose of 9.25 Gy after 30 days described for mice in the literature [61].
Furthermore, studies indicate that mice exposed with around 300 mGy can repair the
damages within hours after exposure [62]. However, through improvements in labelling
efficiency and detector size, the dose of our approach may be vastly reduced. Moreover,
it should be feasible to initially locate primary and larger metastatic tumor sites by other
imaging methods such as CT or MRI scans, which would then facilitate targeted XFl
analysis of those specific locations.

While passive GNP attenuation in tumors has been thoroughly investigated, no study
specifically targeting T cells through X-ray fluorescence has been reported as of yet, to
the best of our knowledge. However, the findings presented here indicate that X-ray
fluorescence imaging can be of great value in future applications of molecular imaging,
specifically cell tracking. Providing similar sensitivity to established functional imaging
modalities such as PET and SPECT imaging while at the same time achieving spatial
resolutions usually only seen for morphological imaging in MRI and CT, XFI is ideally
suited for the application of monitoring the intratumoral cell abundance. Moreover, a
huge benefit over radioisotope-based approaches lies in improved longitudinal evaluation
through serial imaging.

While our findings indicate a promising future for X-ray fluorescence-based imaging,
its scope is a feasibility pre-study without animal research, but will be of help for test animal
proposals. Hence, we believe that this pre-study paves the way for future XFI-based cell
tracking research. When additional research in all areas of XFI, ranging from X-ray sources
to novel labelling techniques to detector improvements, adds to the already promising
capabilities of this method and allow for clinical implementation, it may play a decisive
role in tumor imaging and a variety of other applications.

4. Materials and Methods
4.1. Geant4

The setup used herein consists of 3 major elements: the mouse model, detectors and
additional elements modelling a beam line at PETRA3 at DESY [63]. The general setup is
illustrated in Figure 6.

Figure 6. Illustration of the simulation setup as seen from above. (a) Rotational mouse voxel model
enclosed in a plexiglass tube; (b) stage inlay + stage plate; (c) front plate.
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4.1.1. Mouse Model

We utilized a segmented 3D-voxel model published and described by Dogdas et al. [41],
derived through co-registration of CT and cryosection mouse data, dividing a 28 g nude
male mouse into 78.4 × 106 cubes. Each voxel is assigned to structures/organs with defined
chemical composition and properties such as density. This material data for both the mouse
voxels as well as for other objects was derived from the integrated Geant4 database. The
mouse model is available free of charge and can be downloaded at the website of the
Biomedical Imaging Group at the University of Southern California [64]. The model was
implemented using half the maximum resolution, with 104 × 496 × 190 = 9,800,960 cubic
voxels and a voxel size of 0.2 mm. The mouse position was adjusted based on the target
position, such that the target always remained at the center of the setup.

4.1.2. Detectors

A total of 9 detectors were added horizontally at the target height, ranging from 10 to
170 degrees with respect to the beam direction with a spacing of 20 degrees, thus covering
the entire semicircle. The detector-to-target distance was 6 cm in a subcutaneous scenario
and 6.5 cm in a kidney and center scenario to avoid geometric interferences between the
detectors and the tube.

For the simulations targeting Pd, a GEANT4 implementation of an Amptek silicon
drift diode detector was modeled (70 mm2 FAST SDD®; Amptek Inc., Bedford, MA, USA).
This detector offers an active detector area of 70 mm2 collimated to 50 mm2 with a silicon
sensor thickness of 500 µm, providing a superior energy resolution to planar detectors [65].
The energy resolution in the region of Pd K-shell fluorescence is on the order of 120 eV
(rms). However, for higher energy X-rays, the active area made of silicon does not offer
enough stopping power; thus, Amptek only recommends detector usage for energies up to
30 keV [66].

For gold simulations, a Cadmium-Telluride Detector by Amptek (XR-100CdTe; Amptek
Inc., Bedford, MA, USA) was implemented with an active region of 25 mm2 and 1 mm
thickness. CdTe detectors offer a higher quantum efficiency, with the downside of a lower
energy resolution of 530 eV (rms) at 14.4 keV [67]. For both detector types, multiple
detector-specific effects are considered which influence their performance [68].

4.1.3. Additional Geometry

The mouse model was embedded in a plexiglass tube of 2 mm thickness and of an
outer diameter of 30 mm. Moreover, a vague display of a typical beamline setup was
added, consisting of an aluminum stage mounting plate. In its center, an inlay made of
iron is placed to reduce scattering contributions. A stainless-steel front plate is added to
block scattering of air molecules along the beam path.

4.2. Parameters
4.2.1. Target Position

Three distinctive positions of a spherical target were simulated through specify-
ing its center and adding agent material to each voxel containing soft tissue (density
ρ = 1035 mg/mL) within a defined radius. In the case of the tumor protruding the model
(subcutaneous position), an additional 0.5 mm thick layer of soft tissue was added to
mimic skin.

4.2.2. Agent Concentration

The agent material was chosen to be either gold or palladium. A dilution series with an
agent concentration of (1, 0.33, 0.1, 0.033, 0.01, 0.0033) mg/mL inside the simulated tumor
volume was performed in each scenario to cover a broad range of concentrations. For the
variation of the target size, a different dilution series was chosen to improve comparability
between data points (1, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015675, 0.0078375) mg/mL, as the
target diameter was also altered by a factor of 2.
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4.2.3. Beam

A monoenergetic photon X-ray beam of 0.5 mm radius, horizontally polarized relative
to the lab frame and containing a total photon number of 1010, was used to keep the applied
dose low while maintaining sufficient signal intensity. Optimum beam energy and detector
type depend on the agent material as a tradeoff between signal intensity and background
behavior, as seen in previous work of our group examining ideal beam energy [48]. In
the case of Au, a beam energy of 85 keV was chosen, and for palladium we have selected
53 keV.

4.3. Simulation and Analysis
4.3.1. Histogram Generation and Analysis

The entire spectrum is not evaluated but only predefined signal regions around the
distinct fluorescence peaks. The width of these regions is defined as (EFluo − 3σ; EFluo + 3σ),
with well-known fluorescence line energies EFluo specific for the target material [21] and
the standard deviation σ equivalent to the energy resolution at EFluo depending on the
used detector model [66,67]. Due to limitations in detector resolution as of today, certain
fluorescence peaks being close together such as Pd Kα1 and Kα2 cannot be effectively
discriminated and are therefore analyzed as one peak.

Within these defined signal regions, the significance of a fluorescence signal can be
calculated by analyzing both signal and background photons and performing a one-tailed
hypothesis test. The null hypothesis H0 is defined as the non-existence of fluorescence
photons in an observed spectrum, stating that the observed behavior is entirely explainable
through background characteristics [48]. As it is also discussed in [48], the total number
of photons counted when adding a fluorescent agent is not expected to be less than for
Compton background alone; thus, a one-tailed test can be performed. The resulting p-value
states the probability that an effect; herein, an increase in photon counts, is observed, albeit
H0 being true. However, as small p-values are inconvenient to handle, it is converted to
the significance Z, expressed as the number of standard deviations σ, stating by which
probability the null hypothesis H0 is to be discarded. It can be approximated using:

Z ≈

(
nobserved − nexpected

)
√(

nexpected

) =
Nsignal√

Nbackground

, (1)

with Nsignal as the number of observed fluorescence photons and Nbackground as the detected
background photons [55]. In the context of this research, a significant signal is defined as
Z ≥ 5σ, often considered as the significance required for discovery in particle physics [69],
as previous experiments conducted by our group indicate that this value is sufficient for the
detection of simulated fluorescence in experiments, indicating that even Z ≥ 3σ could be
satisfactory [48,55]. Z ≥ 5σ is equivalent to a type 1 error probability of p ≤ 2.867 × 10−5%.

4.3.2. Dose

A dose tracker was implemented in our simulations, storing the deposited energy for
all voxels of the mouse model. Therefore, we are able to determine the dose for each organ
segmented in the model as well as for each material individually.
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