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Abstract: Unveiling the molecular features in the heart is essential for the study of heart diseases. 

Non-cardiomyocytes (nonCMs) play critical roles in providing structural and mechanical support 

to the working myocardium. There is an increasing amount of single-cell RNA-sequencing (scRNA-

seq) data characterizing the transcriptomic profiles of nonCM cells. However, no tool allows re-

searchers to easily access the information. Thus, in this study, we develop an open-access web por-

tal, ExpressHeart, to visualize scRNA-seq data of nonCMs from five laboratories encompassing 

three species. ExpressHeart enables comprehensive visualization of major cell types and subtypes 

in each study; visualizes gene expression in each cell type/subtype in various ways; and facilitates 

identifying cell-type-specific and species-specific marker genes. ExpressHeart also provides an in-

terface to directly combine information across datasets, for example, generating lists of high confi-

dence DEGs by taking the intersection across different datasets. Moreover, ExpressHeart performs 

comparisons across datasets. We show that some homolog genes (e.g., Mmp14 in mice and mmp14b 

in zebrafish) are expressed in different cell types between mice and zebrafish, suggesting different 

functions across species. We expect ExpressHeart to serve as a valuable portal for investigators, 

shedding light on the roles of genes on heart development in nonCM cells. 

Keywords: non-cardiomyocytes; single-cell RNA-sequencing; expressheart; R Shiny; visualization; 

differentially expressed genes; cross-species comparison 

 

1. Introduction 

Heart disease is a major cause of morbidity and mortality, leading to more than 8.8 

million deaths in 2019 (World Health Organization, 2019). A comprehensive interrogation 

and visualization of the cell composition in the heart and their corresponding functions 

will provide important clues to the development of therapeutic strategies for heart dis-

eases. Existing research has focused primarily on cardiomyocytes (CMs), to understand 

the underlying mechanisms of the cardiac response to heart failure [1–5]. However, the 

heart, as a heterogeneous organ, contains several other important cell types besides CMs, 

including fibroblasts, endothelial cells, and a wide variety of immune cells. Serving more 
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than bystanders of cardiac function, these non-cardiomyocytes (nonCMs) have been 

found to play critical roles in providing structural, mechanical, and electrophysiological 

support to the working myocardium [6,7]. However, our knowledge of the molecular fea-

tures of nonCMs remains limited. 

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool to dissect 

transcriptional profiles of complex tissues at single-cell resolution. Compared to tradi-

tional bulk RNA sequencing technologies, scRNA-seq identifies and characterizes sub-cell 

types/intermediate cellular states, even for rare cell types/cellular states with a limited 

number of cells. In recent years, increasingly, more studies have employed scRNA-seq or 

single-nucleus RNA-seq (snRNA-seq) to investigate the transcriptional features of the 

nonCM populations, broadening our knowledge on the molecular functions of the nonCM 

cells [8–20]. For example, Skelly et al. employing scRNA-seq, comprehensively character-

ized gene expression profiles of nonCMs in mouse hearts at a single-cell level, which pro-

vides a comprehensive view of the diversity and specific molecular features, as well as 

intercellular communication, for different nonCM cell types [9]. For another example, 

Wang et al. characterized the transcriptional landscape of three fibroblast subtypes in dif-

ferent functional states from adult murine hearts [18]. These three subtypes of fibroblast 

cells participate in cellular response, cytoskeleton organization, and immune response, 

respectively. McLellan et al. found that fibroblasts with Clip expressed, which they re-

ferred to as Fibroblast-Cilp, emerge as the most abundant fibroblast sub-population in re-

sponse to pathological remodeling of the heart [14]. Using snRNA-seq data, Nicin et al. 

showed age-dependent transcriptional dynamics in fibroblasts in pediatric patients with 

dilated cardiomyopathy [19]. These findings not only shed light on molecular signatures 

and cellular functions of nonCMs, but also provide valuable resources for future studies. 

However, although most published scRNA-seq data of nonCMs are publicly available, 

there is no existing platform allowing researchers to easily visualize or analyze these car-

diac-related datasets for nonCM cells. Moreover, the published scRNA-seq data encom-

pass different species (humans, mice, and zebrafish) and under different conditions (e.g., 

healthy heart or heart having experienced a myocardial infarction (MI)). Thus, integrating 

these datasets will allow joint analysis and visualization. For instance, across-dataset com-

parisons enabled by a centralized platform will provide an improved understanding of 

conservation across species and differentiation in molecular signatures underlying a cer-

tain biological process, which may shed light on the therapeutic transformation. However, 

such a platform is still missing in the field. 

Here, we present an open-access web service, ExpressHeart 

(http://shiny.bios.unc.edu/expressheart/), for visualizing or analyzing scRNA-seq da-

tasets of nonCMs of humans, mice, and zebrafish derived from five studies (detailed in 

Results Section 2.1). We expect ExpressHeart to serve as a valuable portal for investigators 

studying nonCMs, shedding light on the roles of genes on heart development in various 

nonCM cells. 

2. Results 

2.1. Overview of ExpressHeart 

The goal of our web portal ExpressHeart is to provide researchers a user-friendly 

platform to visualize and analyze cellular and molecular features of cardiac nonCMs us-

ing publicly available datasets (Figure 1A). ExpressHeart currently incorporates five 

scRNA-seq datasets from three species, namely, Human-Hocker-2021 (healthy) [17], 

Mouse-Wang-2021 (wildtype) [18], Mouse-Farhebi-2019 (control (mice undergoing surgi-

cal incision without ligation of the left anterior descending coronary artery) vs. MI) [11], 

Mouse-McLellan-2020 (untreated, sham- and angiotensin II (AngII)-treated mice) [14], 

and Zebrafish-Ma-2021 (uninjured (control) vs. injured zebrafish hearts) [21]. Ex-

pressHeart consists of eight main panels (Figure 1B). The “Home” panel introduces the 

web portal and the datasets included. Panels 2-6 correspond to pre-conducted analysis 
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results of the five datasets. In each panel, corresponding to each dataset, ExpressHeart 

shows uniform manifold approximation and projection (UMAP) [22] and t-distributed 

stochastic neighbor embedding (t-SNE) [23] visualizations for cells of all cell types, and 

displays the expression levels of the user’s genes of interest by violin plot, feature plot, 

and heatmap. Differentially expressed genes (DEGs) for major cell types/subtypes are 

listed in tables. In the “Cross-comparison’’ panel, we highlight the DEG query across da-

tasets, provide high confidence DEGs, and conduct cross-species comparisons among hu-

mans, mice, and zebrafish under normal conditions. In the “Download” panel, users can 

easily download all DEGs tables generated in the three analyses panels. Finally, the 

“Help” panel provides basic instructions to use this web portal. 

 

Figure 1. Overview of ExpressHeart. (A) Framework and (B) interface of ExpressHeart. Ex-

pressHeart contains five scRNA-seq or snRNA-seq datasets (middle of panel A). These datasets are 

named by the last name of the first author, species, and the year of the corresponding publication 

or data release. The conditions and numbers of cells/nuclei are also presented in each dataset. On 

the left of panel A, we show three types of visualization and/or analysis within each dataset, includ-

ing 2D visualization, gene plots via violin/feature/heatmap, and DEGs among cell types/subtypes. 

On the right of panel A, we show three types of visualization and/or analyses across different da-

tasets. We provide a module (“Cross-comparison”) for DEG query across all datasets, where we 

report high confidence DEGs across multiple datasets within the same species for major cell types 

and compare homolog gene distribution across different species. Panel B shows the interface of the 

web portal. Each dataset has its own analysis and visualization module, using the same names spec-

ified in panel A. “Cross-comparison” module corresponds to three sub-modules showed in the right 

of panel A. 
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2.2. Datasets in ExpressHeart 

ExpressHeart currently consists of five scRNA-seq datasets of nonCMs from three 

species, namely humans, mice, and zebrafish (Figure 1A; Table 1). Specifically, we have 

one human dataset, two mouse datasets, and one zebrafish dataset. Note, the Human-

Hocker-2021 are generated using snRNA-seq, whereas the rest are scRNA-seq. All five 

datasets were produced by the 10x Genomics Chromium platform. More details on the 

numbers of cells of each cell type and subtypes for each dataset can be found in Supple-

mentary Tables S1 and S2. 

Table 1. Datasets incorporated in ExpressHeart. All three datasets are generated from 10× Genomics Chromium. 

Dataset Species Technologies Condition Cells/Nuclei Genes Ref 

Human-Hocker-2021 Human snRNA-seq Healthy 8993 27,109 [17] 

Mouse-Wang-2021 Mouse scRNA-seq Wildtype 12,779 27,998 [18] 

Mouse-Farbehi-2019 Mouse scRNA-seq Control vs. MI 12,991 15,674 [11] 

Mouse-McLellan-2020 Mouse scRNA-seq Untreated, sham- and Ang II-treated 13,176 17,170 [14] 

Zebrafish-Ma-2021 Zebrafish scRNA-seq Control vs. Injury 25,972 35,117 [21] 

1. The Human-Hocker-2021 dataset comprises 8993 nonCM nuclei from the hearts of 

two healthy adult human donors. Nine cell types were identified, including fibro-

blasts, myofibroblasts, endothelial cells, pericytes, adipocytes, smooth muscle cells, 

nerve cells, and two groups of immune cells (macrophages and lymphocytes). 

2. The Mouse-Wang-2021 dataset consists of 12,779 cells from two adult mice, encom-

passing six major nonCMs cell types, namely fibroblasts, endothelial cells, pericytes, 

and three types of immune cells (macrophages, granulocytes, and lymphocytes). Of 

them, the three major cell types (fibroblasts, endothelial cells, and macrophages) are 

further clustered into three to five subtypes (Supplementary Table S2), with each sub-

type representing a distinct functional state. 

3. The Mouse-Farhebi-2019 dataset comprises of 12,991 nonCM cells from control and 

injured mouse hearts (3 and 7 days post-MI surgery), where 5658, 3825, and 3508 cells 

are from healthy, 3 days post-MI and 7 days post-MI hearts, respectively. Unbiased 

clustering identified 24 cell populations, including the major cell types, fibroblasts, 

endothelial cells, mural cells, and immune cells (macrophages, monocytes, dendritic 

cells, B cells, T cells, and natural killer (NK) cells). Similarly, there are multiple sub-

types identified for the major cell types. For example, four subtypes are identified in 

fibroblasts, three in endothelial cells, and eight in macrophages/monocytes (Supple-

mentary Table S2). 

4. The Mouse-McLellan-2020 dataset comprises of 13,176 nonCM cells from four un-

treated, four sham- and eight AngII-treated adult mice, where AngII-treatment could 

stimulate pathological remodeling of the heart. A total of 14 cell types were identi-

fied, including fibroblasts, epicardial cells, endothelial cells, lymphatic endothelial 

cells, endocardial cells, smooth muscle cells, pericytes, Schwann cells, proliferating 

mesenchymal cells, macrophages, dendritic-like cells, granulocytes, B cells, and 

T/NK cells. In addition, nine, three, four, and two subtypes were identified for cell 

types, fibroblasts, endothelial cells, macrophages, and smooth muscle cells, respec-

tively (Supplementary Table S2). 

5. The Zebrafish-Ma-2021 dataset consists of 25,972 cells from uninjured (control) and 

injured zebrafish hearts. The authors performed scRNA-seq on nonCMs isolated 

from the adult zebrafish hearts before and after injury to investigate cellular func-

tions of nonCMs during heart regeneration. The study generated transcriptome pro-

files for 6550, 9373, 7018, and 3031 cells before the injury, and at 2, 7, and 14 days 

post-injury, respectively. Nine clusters were identified in the uninjured hearts, 

namely, fibroblasts, endothelial cells, thrombocytes, and four types of immune cells 

(macrophages, neutrophils, resident mesenchymal cells, and lymphocytes). Analysis 
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was performed for each of the three major cell types, fibroblasts, endothelial cells, 

and macrophages, and further identified four, four, and five subtypes, respectively 

(Supplementary Table S2). 

2.3. Visualization via UMAP and tSNE 

ExpressHeart “2D Visualization” module provides visualizations for the cells from 

each dataset in a low dimensional space. Users can choose between UMAP and t-SNE, 

two widely used dimensional reduction and/or visualization methods, by selecting the 

corresponding checkbox at the left of the webpage (the left panel of Figure 2). In the plot, 

different cell types/clusters are shown in different colors (the right panel of Figure 2). Us-

ers can download the visualization figures simply by clicking the “Figure Download” but-

ton in the left panel (Figure 2). 

 

Figure 2. Interface of 2D visualization via UMAP/t-SNE for the Mouse-Wang-2021 dataset. On the left panel, users can 

choose different dimension reduction methods; the corresponding 2D UMAP/t-SNE plot is presented on the right. Each 

dot represents a cell/nucleus, and different colors correspond to different cell types. 

2.4. Visualization of Gene Expression Levels via Violin Plot, Feature Plot, and Heatmap 

Our ExpressHeart allows users to check the expression levels for their genes of inter-

est in three ways, providing important information from different perspectives to benefit 

investigators in the design and analysis of their studies, as well as in the interpretation of 

their results. First, ExpressHeart displays expression levels using violin plots, which allow 

users to easily compare the range and probability density of the expression of each gene 

across different cell types/subtypes. Users can type in the names of up to ten genes each 

time to generate the corresponding violin plot. We also allow users to select the cell 

types/subtypes of interest for the violin plot by simply checking the corresponding check-

boxes. For example, in Figure 3A, the expression of gene Tcf21 is shown by a violin plot 

across eight cell types/subtypes of the Mouse-Wang-2021 dataset. The generated plot can 

be downloaded by clicking the “Figure Download” button. 

Second, ExpressHeart enables Feature Plot for visualizing the expression of a certain 

gene on the UMAP or t-SNE plot, which provides a more comprehensive view of the dis-

tribution of gene expression across cell types. For the plot, the gene expression level is 

illustrated using a gradient of colors from blue to red, whereby blue corresponds to low 

expression value, and red denotes high expression value. As shown in Figure 3B, gene 

Tcf21 is shown to be exclusively highly expressed only in the three subtypes of fibroblast 
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in the adult mouse heart. For computational efficiency and speedy browsing experience, 

ExpressHeart only allows one gene each time for Feature Plot. 

Finally, the heatmap is one of the most widely used visualization strategies to show 

the magnitude of gene expression across cells, cell types, or samples. ExpressHeart also 

allows users to visualize and compare the expression levels of genes across cells from 

multiple cell types/subtypes using heatmap. Users can upload a list of genes of interest, 

and select the cell types to show in the heatmap by checking the corresponding check-

boxes. In the heatmap, each row represents a gene, and each column represents a cell. The 

order of rows in the output heatmaps is the same as the input gene list. Cells from the 

same cell type/subtype are grouped together. For more informative visualization, we add 

color bars at the very top to illustrate the cell type/subtype membership of each cell. We 

use the same coloring scheme as in UMAP/t-SNE visualization for consistency and easier 

comparison across various visualization results. Figure 3C shows a heatmap of 14 genes 

for cells from all the 15 subtypes in the Mouse-Wang-2021 dataset, with the cells ordered 

by cell type/subtype, from the leftmost 2109 cells of fibroblast subtype 1 (Fibroblast_1; 

marked as red at the top bar) to the rightmost 360 cells of lymphocytes (marked as purple 

at the top bar). We observe clear block structures in the heatmap, allowing us to easily 

identify genes differentially expressed across cell types. 

 

Figure 3. Interfaces of gene expression levels via (A) violin plot, (B) feature plot, and (C) heatmap. On the left panel of 

each interface, uses can specify a gene of interest for violin plot (A) or feature plot (B), or upload a text file containing a 

list of genes of interest for heatmap visualization (C). After clicking the “Submit” button, the corresponding violin/fea-

ture/heatmap plot for the target gene(s) will show on the right panel. 

2.5. Browsing and Exporting DEGs 

For each dataset, ExpressHeart provides differential expression analysis among dif-

ferent cell types, as well as among different subtypes within each of the three major cell 

types, namely, fibroblasts, endothelial cells, and macrophages. DEGs are listed in tables 

(shown in Figure 4). Specifically, as shown in Figure 4A, we present DEGs in each cell 
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type (versus the other cell types) in the right panel, and display the UMAP/t-SNE plot 

highlighting the target cell type in color at the left (the other cell types are in grey). Fur-

thermore, we also present the DEGs for each subtype (versus other subtypes of the same 

major cell type) in a similar manner, where, in the UMAP/t-SNE plot of a major cell type, 

for example, fibroblast, the subtype of interest is highlighted in color, and other subtypes 

are in grey (Figure 4B). Note that all the tables of DEGs from ExpressHeart are available 

at the “Download” module. 

 

Figure 4. Interfaces of DEG lists for (A) each major cell type versus the other cell types, and (B) each subtype versus the 

other subtypes the same major cell type. On the left panel of each interface, the UMAP/t-SNE plot highlighting the target 

major cell type (A) or subtype (B) is presented, and the corresponding DEGs are listed in a table on the right. 

2.6. Applications of ExpressHeart-Cross-Dataset Comparison 

ExpressHeart incorporates multiple datasets from three species, thus allowing users 

to perform the analyses of nonCMs features between different datasets from the same 

species, as well as across different species. These analyses can provide a comprehensive 
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view of the similarities and differences in the transcriptomic dynamics among different 

conditions or different species. Here we present four application examples of Ex-

pressHeart. 

2.6.1. DEG Query 

In ExpressHeart, we provide a panel “DEG Query”, allowing users to check whether 

a gene of interest is differentially expressed in any of the five datasets. For a given gene, 

ExpressHeart would search it against the DEG list of each cell type from each dataset, and 

list all the relevant information, including differentially expressing in which cell type and 

dataset, log-scaled fold change, the proportions of cells where the gene was detected in 

the target and background cell groups, and the adjusted p-value. The information is iden-

tical to the DEG information under each dataset, except that here homologs from other 

species will also be shown when searching a gene of interest. This function would allow 

users to rapidly obtain a comprehensive summary of DEGs in the existing datasets of the 

three species. 

2.6.2. High Confidence DEGs 

For scRNA-seq data, cluster annotation largely depends on prior knowledge of the 

expression profiles of cell type-specific features. A comprehensive list of genes differen-

tially expressed among cell types can improve the accuracy of cell type discovery. How-

ever, although there are a large amount of scRNA-seq data available, different datasets 

are generally generated from different laboratories, using different techniques, and/or un-

der different conditions, and the DEGs identified in different datasets are usually differ-

ent. With the help of ExpressHeart, we can obtain a confident list of DEGs for a certain 

cell type across multiple datasets. Between two mice datasets (Mouse-Wang-2021 and 

Mouse-Farbehi-2019), 741 shared DEGs are identified for three major cell types, fibroblasts, 

endothelial cells, and macrophages (Figure 5A). Gene ontology (GO) enrichment results 

show that these shared DEGs are highly relevant to the biological functions of the corre-

sponding cell type (Figure 5B), where those identified in fibroblasts are enriched for ex-

tracellular matrix and collagen metabolism, and those in endothelial cells and macro-

phages are overrepresented in angiogenesis regulation and immune response, respec-

tively. Moreover, we also identified 329 DEGs for fibroblasts subtypes shared between 

two mouse datasets (Figure 5C). These DEGs of high confidence can help to improve the 

accuracy of cell type annotation and discovery in scRNA-seq data. 
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Figure 5. Upset plots of DEGs for three cell types combined (A) and fibroblast (C) between Mouse-Wang-2021 and Mouse-

Farbehi-2019 datasets. Here, a total of 741 high confidence DEGs are detected for three cell types (fibroblasts, endothelial 

cells, and macrophages), including 329 DEGs for fibroblast. (B) Feature GO terms enriched for the high confidence DEGs 

of fibroblasts (upper panel), endothelial cells (middle panel), and macrophages (bottom panel). The dashed line represents 

the significance threshold of −log10(0.05). 

2.6.3. Matching Cell Subtypes across Datasets 

In general, different studies might identify subtypes for the major cell types with cus-

tomized labels. Matching subtypes across datasets would facilitate the investigation of 

their biological functions. By comparing similarities in the expression profiles of subtype-

specific features, ExpressHeart allows users to match subtypes across different datasets. 

Wang et al. identified three fibroblast subtypes with different functional states [18]. The 

two major subtypes, namely, FB1 and FB2, participate in cellular response and cytoskele-

ton organization.FB1 and FB2 are distinguished by several specific markers, for example, 

Hsd11b1, Inmt and Cxcl14 for FB1, and Gfpt2, Pi16, and Uap1 for FB2. Here, using Ex-

pressHeart, we investigate the expression profiles of the six feature markers of the two 

fibroblast subtypes in the Mouse-Farhebi-2019 dataset to assess the potential biological 

roles of FB1 and FB2 subtypes during the MI process. As shown in Figure 6 and Supple-

mentary Figure S1, the three FB1-feature markers Hsd11b1, Inmt, and Cxcl14 are highly 

expressed in the FB1 subtype with low expression of Sca1 (Fibroblast: Sca1-low in Figure 

6), while the FB2-feature markers Gfpt2, Pi16, and Uap1 are highly expressed in the FB2 

subtype with high Sca1 expression (Fibroblast: Sca1-high). These suggest that FB1 identi-

fied by the Mouse-Wang-2021 dataset corresponds to Sca1-low-expressing fibroblasts of 

the Mouse-Farhebi-2019 dataset, and FB2 corresponds to Sca1-high-expressing fibroblasts. 

Fibroblast: Sca1-low-expressing fibroblasts were found to transit into Wnt-expressing fi-

broblasts, promoting the differentiation of monocytes during heart repair in response to 

MI [11]. It is consistent with the proposed function of FB1 in cellular response [18]. 
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Figure 6. Comparison between two mice datasets. The two violin plots show the expression profiles of the feature genes 

of two fibroblast subtypes (Hsd11b1 and Gfpt2, respectively) in the Mouse-Wang-2021 dataset in the major subtypes iden-

tified in the Mouse-Farbehi-2019 dataset. Users can type in the name(s) of target gene(s) and choose the cell type(s) of 

interest by checking the corresponding box(es) on the left panel, and the violin plot(s) showing the gene expression level 

will be presented on the right. 

2.6.4. Cross-Species Distribution Comparison 

Although the fundamental physiological processes in hearts are conservative across 

species, there are still some genes playing different roles in different species. For example, 

both under injury conditions, there are 391 homologs identified to be differentially ex-

pressed in the three major cell types of both mice and zebrafish, while 414 and 1363 hom-

ologs are exclusively differentially expressed in mice and zebrafish, respectively (Supple-

mentary Figure S2). Therefore, characterizing and comparing in transcriptional dynamics 

of homolog genes across different species can decode their similar or different functional 

roles. 

Furthermore, ExpressHeart can also visualize the expression profiles of a given gene 

across the three species under the normal/healthy condition. In Figure 7, we present an 

example: mmp14b is expressed in zebrafish in both fibroblasts and macrophages with pro-

portions 28.0% and 27.8%, respectively. In contrast, Mmp14 in mice is expressed in a sim-

ilar proportion of fibroblasts (28.5%), but in a much lower proportion of macrophages 

(0.9%). Thus, with ExpressHeart, users can get a clear and more comprehensive view of 

both the similarities and the differences in gene expression profiles across species. 
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Figure 7. Cross-species comparison between mouse and zebrafish datasets. Users can input the homolog gene name on 

the left panel, and the corresponding violin plots for the homolog genes (mmp14b in zebrafish, and Mmp14 in mouse) are 

shown on the right. Here, mmp14b is expressed in 28.0% and 27.8% of fibroblasts and macrophages of zebrafish, while its 

homolog gene Mmp14 is expressed in a similar proportion of fibroblasts (28.5%), but in a much lower proportion of mac-

rophages (0.9%) of mouse. 

3. Discussion 

An increasing amount of scRNA-seq data has been generated for nonCMs; however, 

there is currently no method or platform allowing researchers to easily visualize or ana-

lyze these datasets. To address this issue, we developed ExpressHeart, which is a web 

server for visualizing and analyzing scRNA-seq data from public nonCMs datasets under 

various conditions and from two different species. Specifically, ExpressHeart incorporates 

three scRNA-seq data from (1) healthy hearts from adult human donors, (2) healthy/nor-

mal hearts from adult mice, (3) control and MI injured hearts from mice, and (4) con-

trol/uninjured and injured hearts of 2, 7 and 14 days post-injury from zebrafish (Figure 

1A). ExpressHeart provides UMAP/t-SNE visualization, shows expression profiles across 

cell types/subtypes for genes of interest via feature plot, violin plot, and heatmap plot, 

tabulates DEGs in a certain cell type/subtype, and provides cross-comparisons between 

different datasets, as well as different species (Figures 2–7). By providing the conveniently 

displayed results, ExpressHeart not only aids investigators to gain a more comprehensive 

understanding of the functions of nonCMs in different physiological conditions (in 

healthy or MI conditions, or heart regeneration processes), but also provides important 

information that can guide the experimental design and analysis of future studies. 

ExpressHeart provides an interface to directly compare transcriptional profiles 

across different datasets. On the one hand, for the same species, ExpressHeart provides 

users lists of high confidence cell-type-specific DEGs by taking the intersection to DEGs 

obtained from multiple datasets. These high confidence DEGs could unify cell type iden-

tification, and thus, increase the reproducibility of biological findings. Furthermore, we 

could also use the high confidence DEGs to match the corresponding cell subtypes across 

studies, which can help us distinguish different biological functions for distinct subtypes 

and potentially lead to the identification of new subtypes. 

On the other hand, ExpressHeart allows cross-species distribution comparison of 

nonCMs features among humans, mice, and zebrafish, which can provide a comprehen-

sive view of the similarities and differences in the transcriptomic profiles of homolog 

genes across those three species. One example is shown in Figure 7. In mice, Mmp14 en-

codes the endopeptidase involved in extracellular matrix component degeneration, and is 
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expressed only in a high proportion of fibroblasts (28.5%), while in zebrafish, its homolog 

mmp14b is found to be expressed in both fibroblasts (28.0%) and macrophages (27.8%), 

indicating it may also play a role in the immune process. This example suggests that, alt-

hough certain regulatory pathways are shared across species, there are differences be-

tween mice and zebrafish. A better understanding of these differences could provide new 

insights into the differentiation in heart growth and injury response processes across dif-

ferent species. 

In the current version, ExpressHeart mainly focuses on visualizing and characteriz-

ing the molecular features of nonCMs profiled by scRNA-seq. With the rapid develop-

ment of omics technologies, many other single-cell assays have become available to meas-

ure other aspects of the cell features beyond gene expression signatures, such as DNA 

methylation [24], open chromatin status [25,26], and chromatin interactions [27]. Several 

studies have profiled the specific open chromatin landscapes controlling the cellular iden-

tity of nonCMs [17,18]. For example, using a single-nucleus assay for transposase-accessi-

ble chromatin using sequencing (snATAC-seq), Hocker et al. identified more than 280,000 

cis-regulatory elements (CREs) in the hearts of healthy adult humans, and found that cell-

type-specific CREs and their trans-acting factors are associated with cardiac structures, 

functions and disease pathogenesis [17]. In addition, the different activities of distinct 

CREs and trans-acting factors are also found to contribute to the differentiation among 

subtypes [18]. Therefore, further work would involve the incorporation of multi-omics 

single-cell assays to obtain a comprehensive view of the molecular features of nonCMs 

beyond the transcriptomic profile. 

4. Materials and Methods 

4.1. Processing of scRNA Sequencing Datasets 

The five datasets presented in ExpressHeart were pre-processed and analyzed fol-

lowing the pipeline described in the corresponding publications. 

4.1.1. Human-Hocker-2021 

For the Human-Hocker-2021 dataset, the expression matrix of 24,535 high-quality 

cells was downloaded from Gene Expression Omnibus (GEO) with accession number 

GSE165838. These cell nuclei were isolated from four cardiac chambers (right and left 

atrium, and right and left ventricles) of four healthy donors. Following the analytic pipe-

line described in Hocker et al. [17], the expression counts of each cell were scaled by the 

total counts and a scaling factor of 10,000 and natural-log normalized using the Normal-

izeData function of Seurat v3 [28]. The top 3000 highly variable genes (HVGs) were iden-

tified by the FindVariableFeatures function, and then all the genes were scaled and centered 

by the ScaleData function. Principal components analysis (PCA) was performed using the 

RunPCA function with the 3000 HVGs as input. To remove the batch effect between dif-

ferent donors, the RunHarmony function from the Harmony package [29] was employed 

with the first 30 principal components (PCs) to merge cells from the two donors. We com-

puted t-SNE and UMAP coordinates using the first 14 Harmony components by the 

RunTSNE and RunUMAP functions of Seurat v3 [28], respectively. Cell identities were 

assigned according to the annotations from Hocker et al. [17]. Only major cell types were 

included in the downstream analysis. To speed up for ExpressHeart, we downsampled 

each of the four large cell types, fibroblasts, endothelial cells, pericytes, and macrophages, 

to 1500 cells, and kept all 2993 cells from five rarer cell types (including smooth muscle 

cells, myofibroblasts, adipocytes, nerve cells, and lymphocytes), leading to a total of 8993 

remaining cells (Supplementary Table S1). 
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4.1.2. Mouse-Wang-2021 

For the Mouse-Wang-2021 dataset, single live nonCM cells were isolated from the 

left and right ventricles of adult mice and transcriptionally profiled using the 10× Ge-

nomics Chromium platform (10× Genomics, Inc., Pleasanton, CA, USA). Low-quality cells 

expressing < 200 genes and genes expressed in less than three cells were first filtered out 

from each of the two biological replicates. For each sample, the top 2000 HVGs were iden-

tified. Then, the two biological replicates were merged and corrected for batch effect using 

Seurat v3 [28]. Data dimensions were reduced by PCA, and unsupervised clustering was 

performed to identify cell clusters using the FindClusters function, with the first 20 PCs 

and the resolution parameters set to 0.5. The obtained clusters were defined according to 

the expression levels of known cell-type-specific markers. Since we only focused on 

nonCMs, cluster(s) highly expressing canonical markers of cardiomyocytes were removed 

from downstream analysis. 

4.1.3. Mouse-Farbehi-2019 

For the Mouse-Farbehi-2019 dataset, the expression matrix of 15,073 cells, which were 

isolated from ventricles and interventricular septum, was downloaded from EMBL-EBI 

with accession number E-MTAB-7376. Data analysis was carried out in Seurat v2 [30]. 

Specifically, cells with <200 genes expressed, or <500 unique molecular indices (UMIs), or 

>5% RNA mapped to mitochondrial genes were first removed. Genes expressed in less 

than ten cells were also filtered out. Furthermore, cells with >4000 expressed genes or 

20,000 UMIs were considered potential doublets and excluded from further analysis. Var-

iations, due to the total number of UMIs, were regressed out during the data scaling pro-

cess, using the ScaleData function. PCA was performed, and the first 54 PCs were selected 

for unsupervised clustering with a resolution of 1.2. 

4.1.4. Mouse-McLellan-2020 

For the Mouse-McLellan-2020 dataset, the expression matrix of 29,615 cells, isolated 

from cardiac ventricles of untreated, sham- and Ang II-treated mice, was downloaded 

from EMBL-EBI with accession number E-MTAB-8810. Cells with <100 or >15,000 genes 

expressed, or >50,000 UMIs or >30% RNA mapped to mitochondrial genes were filtered 

out. Genes expressed in <10 cells were also excluded from the dataset. Analysis was per-

formed in Seurat v3 [28]. Top 2000 HVGs were detected, and PCA was performed. The 

first 30 PCs were selected for unsupervised clustering with a resolution of 1.2. Cluster(s) 

highly expressing cardiomyocyte markers were removed from downstream analysis. To 

speed up ExpressHeart, we downsampled each of the 13 large cell clusters to 700 cells, 

while kept all cells from 15 rarer cell clusters, leading to a total of 13,176 remaining cells 

(Supplementary Table S1). 

4.1.5. Zebrafish-Ma-2021 

For the Zebrafish-Ma-2021, low-quality cells, i.e., those expressing < 200 genes, were 

first removed. Cells from each sample were clustered using Seurat v2 [30]. Clusters highly 

expressing cardiomyocyte markers, including tnnt2, ckma, and nppa, were filtered out. In 

addition, clusters that express a high level of typical markers of any two cell types and are 

of observed frequencies close to the expected values were considered doublets and ex-

cluded from downstream analysis. All the cells retained from all four-time points were 

merged using LIGER v0.3.1 [31]. Briefly, HVGs with variance > 0.1 were selected for each 

sample, and the union was taken for the subsequent analysis. Factorization was per-

formed on the scaled data using the optimizeALS function, with the number of factors (k) 

set to 45. All the samples were merged using the quantileAlignSNF function with the reso-

lution parameter set to 2. After alignment, nonspecific factors (technical factors), consist-

ing of mitochondrial, ribosomal, or cell cycle genes, were excluded from downstream 

analysis. In the merged data, potential doublets were also filtered out. 
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4.2. Data Visualization 

For each of the five datasets, the dimensionality of the scRNA-seq data was reduced 

by two methods, UMAP, and t-SNE, for visualization using the Dimplot function of the 

Seurat package. For gene(s) provided by users, feature plot, violin plot, and heatmap are 

produced using the FeaturePlot, VlnPlot, and DoHeatmap functions of Seurat v3 [28]. 

4.3. Analysis of DEGs 

Differential expression analysis was performed among different nonCM cell types, 

in each of the five datasets presented in ExpressHeart. In addition, DEGs among the sub-

types of the three major cell types (fibroblasts, endothelial cells, and macrophages) in each 

of the two mouse datasets and the zebrafish dataset were also detected and presented in 

ExpressHeart. Specifically, DEGs in a certain cell type/subtype were identified by com-

paring them to cells of the other cell types/subtypes using the Wilcoxon Rank Sum test by 

the FindMakers function of Seurat v3 [28]. Genes (1) expressed in a minimal 25% of cells in 

the target cell types/subtypes, (2) 1.28-fold higher (upregulated) or lower (downregulated) 

than the rest of cells, and (3) with adjusted p-values < 0.05 are considered as significantly 

DEGs in that cell types/subtypes. 

4.4. High Confidence DEGs 

We defined high confidence DEGs as those shared across multiple (≥2) datasets in 

the same species. We first compared DEGs for three major cell types (namely fibroblasts, 

endothelial cells, and macrophages) across two mouse datasets. We generated upset plots 

to show the numbers of high confidence DEGs and the number of dataset-specific DEGs. 

To assess the functional relevance of the DEGs, we performed GO enrichment analysis for 

DEGs of the three major cell types that are identified in both Mouse-Wang-2021 and 

Mouse-Farbehi-2021 datasets, using ClusterProfiler [32]. GO terms with adjusted p-value 

< 0.05 were considered as significantly overrepresented. 

4.5. Cross-Species Distribution Comparison 

For the cross-species distribution comparison, we generated gene violin plots to com-

pare the expression distribution in each cell type for each species. For mouse and 

zebrafish, the uninjured zebrafish cells from the Zebrafish-Ma-2021 dataset were first ex-

tracted, and then compared with the wildtype mouse cells from the Mouse-Wang-2021 

dataset. The lists of homolog genes among any two of the three species—humans, mice, 

and zebrafish, was downloaded from ensembl BioMart. Only genes having homologs 

across those three species (or between any of two) are visualized in ExpressHeart. 

4.6. Web Server Implementation 

ExpressHeart consists of a web frontend application and a backend database. The 

frontend web, displaying visualization and results, is constructed in R Shiny [33]. Our R 

Shiny application mainly contains two parts: User interaction (UI) and server backend. 

Seven functional panels are created in the web frontend, including two descriptive panels: 

“Home” and “Help”; five data analysis panels corresponding to five datasets from three 

species: “Human-Hocker-2021, “Mouse-Wang-2021”, “Mouse-Farbehi-2019” and 

“Zebrafish-Ma-2021”; one cross-dataset-comparison panel: “Cross-comparison”; and one 

“Download” panel to download DEGs. When the server backend receives requests/input 

from the web user via the web frontend, it loads the database required for the analysis, 

generates corresponding figures, and tables, and transmits the results to the web frontend. 

Notably, for efficiency, some analysis results (figures and tables produced without the 

requirement to user’s input) are kept static in that they have been already deposited at the 

backend and can be directly transmitted to the web frontend. 
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5. Conclusions 

In summary, we present ExpressHeart, a comprehensive visualization and analysis 

web portal for nonCM cells in mice and zebrafish. ExpressHeart is a valuable resource for 

investigators studying molecular mechanisms of cardiac homeostasis and repair. Ex-

pressHeart is freely available at: http://shiny.bios.unc.edu/expressheart/. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-

cle/10.3390/ijms22168943/s1. Supplementary Table S1: Cell number and proportion for each major 

cell type in the five datasets presented in ExpressHeart, Supplementary Table S2: Cell number and 

proportion for the subtypes of the major cell types in three datasets presented in ExpressHeart, Sup-

plementary Figure S1: Violin plots showing the expression profiles of the feature genes of fibroblast 

subtypes, Supplementary Figure S2: Upset plots of homolog DEGs for three major cell types com-

bined between Zebrafish-Ma-2021 and Mouse-Farbehi-2019 datasets. 
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