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Abstract: Accurate identification of bitter peptides is of great importance for better understanding
their biochemical and biophysical properties. To date, machine learning-based methods have become
effective approaches for providing a good avenue for identifying potential bitter peptides from
large-scale protein datasets. Although few machine learning-based predictors have been developed
for identifying the bitterness of peptides, their prediction performances could be improved. In
this study, we developed a new predictor (named iBitter-Fuse) for achieving more accurate iden-
tification of bitter peptides. In the proposed iBitter-Fuse, we have integrated a variety of feature
encoding schemes for providing sufficient information from different aspects, namely consisting
of compositional information and physicochemical properties. To enhance the predictive perfor-
mance, the customized genetic algorithm utilizing self-assessment-report (GA-SAR) was employed
for identifying informative features followed by inputting optimal ones into a support vector machine
(SVM)-based classifier for developing the final model (iBitter-Fuse). Benchmarking experiments
based on both 10-fold cross-validation and independent tests indicated that the iBitter-Fuse was
able to achieve more accurate performance as compared to state-of-the-art methods. To facilitate the
high-throughput identification of bitter peptides, the iBitter-Fuse web server was established and
made freely available online. It is anticipated that the iBitter-Fuse will be a useful tool for aiding the
discovery and de novo design of bitter peptides.

Keywords: bitter peptide; bioinformatics; support vector machine; feature selection; machine learning;
classification

1. Introduction

To protect themselves from environmental toxins, mammalian species, including
humans, are averse to bitter-tasting substances. [1]. A bitter peptide is well-known for its
ability to interact with bitter taste receptors (T2Rs) in the oral cavity [2,3]. The ability of
a peptide to be bitter is determined by its amino acid composition; hydrophobic amino
acids are especially known for their bitter characteristics. It is therefore important to
investigate and characterize the bitterness intensity as they play an important role for
drug development and nutritional research [4-7]. Although experimental methods are
considered to be reliable approaches for characterizing the bitterness of peptides [5,8,9],
they are usually time-consuming and expensive. Due to their convenience and high
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efficiency, machine-learning (ML) methods have attracted increasing attention in the field
of bioinformatics. Thus far, several computational methods based on quantitative structure—
activity relationship (QSAR) modeling have been published on the prediction of peptide
bitterness [10-15]. For instance, Yin et al. [12] generated a collection of QSAR models
in order to estimate the bitterness of dipeptides. Specifically, support vector regression
(SVR) was used for constructing QSAR models for analyzing 48 angiotensin-converting
enzyme (ACE) inhibitor dipeptides, 55 ACE inhibitor tripeptides and 48 bitter dipeptides.
In addition, the quantitative multidimensional amino acid descriptors E (E1-E5) were
introduced in this aspect, where E1, E2, E3, E4 and E5 represents hydrophobicity, steric
properties or side chain bulk/molecular size, preferences for amino acids to occur in -
helices, composition and the net charge, respectively. In 2016, Huang et al. [6] introduced
BitterX, which is the first online available tool developed for identifying human bitter
taste receptors. In BitterX, sequential minimal optimization (SMO), logistic regression
(LR) and random forest (RF) were employed to develop ML-based models in order to
discriminate bitter from non-bitter compounds. In their experimental setting, training
(70%) and hold-out test (30%) datasets were constructed for model development and
validation. Performance as evaluated in terms of accuracy (ACC) was 0.93 and 0.83 for
training and hold-out test sets, respectively. Subsequently, BitterPredict was developed by
Dagan-Wiener et al. [16] in order to identify bitter compounds based on the information of
chemical structures.

In this study, we focused on the identification of bitter peptides based on sequence
information. According to our research, only two ML-based prediction tools have been
published to identify bitter peptides (iBitter-SCM [17] and BERT4Bitter [18]). The first
sequence-based bitter peptide predictor was introduced by Charoenkwan et al. and is
called iBitter-SCM [17]. iBitter-SCM used propensity scores of peptides for predicting and
analyzing the bitterness of peptides. In addition, these propensity scores were employed to
provide better understanding on biochemical and biophysical properties of bitter peptides.
Recently, deep learning (DL) algorithms were considered to develop the prediction model
in this aspect. The same group presented BERT4Bitter, which is based on the bidirectional
encoder representation from transformers (BERT)-based predictor for the prediction of
bitter peptides. Although iBitter-SCM [17] and BERT4Bitter [18] could yield reasonably
high prediction accuracies, there remain certain shortcomings. Firstly, the generalization
capability of ML-based predictors will depend on the feature representation method.
However, iBitter-SCM [17] employed only dipeptide composition (DPC) for representing
peptide sequences, which was unable to fully capture the discriminative characteristics
between bitter and non-bitter peptides [19-24]. Secondly, the embodiment of non-important
features in model development might have led to two possible outcomes: information
redundancy and over-fitting [23-30]. Finally, the overall performance of existing methods
is not yet of satisfactory level.

Motivated by these considerations, we present iBitter-Fuse, which is a novel com-
putational model designed for accurate and large-scale identification of bitter peptides.
The schematic framework of iBitter-Fuse for bitter peptide identification is depicted in
Figure 1. Particularly, we explored a variety of feature encoding schemes (e.g., DPC, amino
acid composition (AAC), pseudo amino acid composition (PAAC), amphiphilic pseudo
amino acid composition (APAAC) and physicochemical properties from AAindex (AAI))
for providing sufficient information from different aspects (i.e., pertaining to compositional
information and physicochemical properties) to build a more comprehensive prediction
model. To enhance the predictive performance, the customized genetic algorithm utilizing
self-assessment-report (GA-SAR) as introduced by Charoenkwan et al. [26] was employed
in identifying m informative features and the optimal ones are used as input to the support
vector machine (SVM)-based classifier for development of the final model (iBitter-Fuse).
Extensive comparative analysis indicated that the proposed iBitter-Fuse, which only uti-
lizes m = 36 selected features, was able to achieve significantly better performance than
those of conventional ML classifiers as evaluated by 10-fold cross-validation and inde-
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pendent tests. Moreover, iBitter-Fuse was shown to outperform existing state-of-the-art
predictors in terms of ACC (0.930), Sn (0.938), Sp (0.922) and MCC (0.859) as evaluated
on the independent test. Results highlighted that the proposed iBitter-Fuse has better
generalization capability and discriminative power for accurately identifying bitter pep-
tides than that of existing methods and conventional ML classifiers. Finally, the predictive
model was deployed as the iBitter-Fuse web server and made freely available online at

http:/ /camt.pythonanywhere.com/iBitter-Fuse (accessed on 8 August 2021).
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Figure 1. Schematic framework of iBitter-Fuse for predicting bitter peptides. The main procedure
in the design of iBitter-Fuse is essentially comprised of the following steps: (i) dataset construction,
(ii) feature extraction, (iii) feature selection using GA-SAR and (iv) iBitter-Fuse construction.

2. Materials and Methods
2.1. Benchmark Dataset

The same benchmark dataset called BTP640 [17,18] was used to develop and evaluate
our proposed predictor. This dataset had 640 peptide sequences that consisted of 320 bitter
peptides and 320 non-bitter peptides. To create a fair test, the BTP640 dataset was randomly
divided into training and independent test datasets using a ratio of 8:2. Finally, the training
dataset consisted of 256 bitter peptides and 256 non-bitter peptides, while the independent
test dataset consisted of 64 bitter peptides and 64 non-bitter peptides. Further details about
this benchmark dataset can be found in [17]. It should be noted that both of these datasets
can be retrieved from http://pmlab.pythonanywhere.com/BERT4Bitter (accessed on 1
July 2021).

2.2. Feature Encodings

AAC and DPC represent the proportions of each amino acid and dipeptide in a peptide
sequence P that are expressed as fixed lengths of 20 and 400, respectively. Thus, in terms
of AAC and DPC features, a peptide P can be expressed by vectors with 20D and 400D
(dimension) spaces, respectively, as formulated by:

P = [aaj,aay, ..., aay)" @

P = [dpl,dp2,--., C1P400]T 2
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where T is the transposed operator, while aa;, aa; ..., aap and dpy, dps ..., dpago are
occurrence frequencies of the 20 and 400 native amino acids and dipeptides, respectively,
in a peptide sequence P.

There are 544 AAls of amino acids derived from version 9.0 of the Amino acid index
database (AAindex) [31]. Each AAI consisted of a set of 20 numerical values for amino
acids where AAls having NA values were discarded. Finally, 531 AAls (531D) were used
in the extraction of features from peptide sequences that are then used for the development
of models in this study. Previously, AAls have been regarded as one of the most intuitive
features associated with biophysical and biochemical reactions and is also referred to as an
easy and interpretable feature [17,32-39].

As mentioned in previous studies [40—42] and shown in Equations (3) and (4), AAC
and DPC features only provide compositional information of a peptide sequence, but all of
the sequence-order information may be completely lost. To remedy this limitation, PAAC
and APAAC approaches were proposed by Chou [41]. According to Chou’s PAAC, the
general form of PAAC for a peptide P is formulated by:

P=[¥,%,..., V..., ¥al" ©)

where the subscript () is an integer to reflect the feature’s dimension. The value of (3 and
the component of ¥, whereu =1,2,...,Q) is dependent on protein or peptide sequences.
In this study, parameters of PAAC (i.e., the discrete correlation factor A and weight of the
sequence information @) were estimated by using the optimization procedure as described
hereafter. The dimension of PAAC feature is 20 + A x @. Since the hydrophobic and
hydrophilic properties of proteins plays an important role in their folding and interaction,
APAAC was introduced by Chou [41]. The dimension of APAAC feature is 20 + 2A.
Particularly, the first 20 components are the 20 basic AAC (py, p,, - - -, pzo), while the next
2\ ones denote the set of correlation factors that reveal physicochemical properties such as
hydrophobicity and hydrophilicity in a protein or peptide sequence as formulated by:

T

4)

Parameters of PAAC (w! and A') and APAAC (w? and A\?) were optimized by varying
weight and lambda values from 0 to 1 and 1 to 10 with step sizes of 0.1 and 1, respectively,
on the training dataset as evaluated by the 10-fold CV test. Subsequently, all parameter
sets of PAAC and APAAC were used to individually develop SVM-based classifier and the
parameter set provided the best cross-validation ACC, which was considered as the optimal
set. More details on how to estimate such parameters can be found elsewhere [19,20]. In
addition, PAAC and APAAC descriptors are described in the Supplementary Materials.
After performing such parameter optimization, w!, A1, w? and A% were found tobe 0.7, 1,
0.2 and 1, respectively.

P= [pl'PZ""/ P20 P20+ A7 P20+ A+17 -+ ~P20+2A]

2.3. Support Vector Machine

SVM is an effective ML algorithm for dealing with binary classification problem and
has been widely used in various biological problems [30,43—48]. This method is based on
the Vapnik—Chervonenkis theory of statistical learning [49-51]. Briefly, SVM constructs a
binary classifier by determining a separate hyper plane with the largest distance between
two classes. In order to make linear separation on high dimensional samples, SVM employs
a well-known kernel function for transforming the sample space having p-dimensional
feature vector onto a feature space with n-dimensional feature vector where p < n. In this
work, the widely used radial basis function is applied to non-linearly transform the feature
space as defined as follows:

K(xi,xj) = exp(—’y | xi—x; | 2), >0 (5)
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The kernel parameter  represents how samples are transformed to the feature space
while the cost parameter C of SVM model adjusts the penalty of the total error. To enhance
the performance of the SVM model, C and -y parameters were tuned by using the grid
search method and evaluated via the 10-fold cross-validation scheme using the training
dataset where the search space for C and -y are [272, 22] and [272, 22] with steps of 2 and 2,
respectively.

2.4. Feature Selection Based on GA-SAR

To save time and computational resources, a wise approach is to use a feature selection
algorithm for identifying informative features [23,24,26,44,52-58]. In this study, the GA-
SAR algorithm was utilized to determine the minimal number of informative features
while maximizing performance results of the SVM model [26]. The original GA-SAR was
first proposed by Charoenkwan et al. [26] for the improved prediction of quorum-sensing
peptides. In GA-SAR, a self-assessment-report (SAR) approach is utilized to construct a
profile used for reporting the usefulness of a feature pool based on the assumption that a
good feature will be highly correlated with the output variable, but poorly correlated to each
other. More specifically, the GA-SAR algorithm can automatically rank the most informative
features and simultaneously estimate SVM'’s parameters. Therefore, the chromosome of
GA-SAR comprises of the parameter setting of two main genes: (i) binary genes for the
purpose of informative features selection and (ii) parametric genes for the purpose of the
SVM’s parameter optimization. Herein, 994 binary genes contain two 3-bit for encoding C
272,271,...,2%andy (272,271,...,29) parameters of the SVM model. More details on
the GA-SAR algorithm are described in our previous studies [19,20,26].

2.5. Performance Evaluation

In order to evaluate the prediction ability of the model, we used four widely used
metrics for the two-class prediction problem as follows:

TP + TN
A =
CC= TP TN+ PP+ PN ©)
TP
S0 = TP BN @
TN
Sp= 8
P~ (IN + FP) ®
MCC — TP x TN — FP x EN o

/(TP + FP)(TP + FN) (TN + FP) (TN + FN)

where ACC, Sn, Sp and MCC represent the accuracy, sensitivity, specificity and Matthews
correlation coefficient, respectively. TP and TN indicate the number of correctly predicted
true bitter peptides and true non-bitter peptides, respectively. Meanwhile, FP indicates the
number of non-bitter peptides predicted as bitter peptides and FN indicates the number of
bitter peptides predicted as non-bitter peptides. Model comparison of the proposed model
with those of previously described models was performed via the use of the receiver oper-
ating characteristic (ROC) curve of threshold-independent parameters. Correspondingly
the area under the ROC curve (AUC) was utilized to assess the prediction performance
whereby AUC values in the range of 0.5 and 1 are indicative of random and perfect models,
respectively.

3. Results and Discussion
3.1. Performance Comparison of Different Feature Encodings

In this study, five well-known feature encodings (i.e., AAC, DPC, PAAC, APAAC
and AAI) and the fused feature (i.e., AAC + DPC + PAAC + APAAC + AAI) were used
for training predictive models using the SVM method for accurately predicting bitter
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peptides. Table 1 and Figure 2 show their 10-fold cross-validation and independent test
results. Based on cross-validation results, it was observed that the highest ACC, MCC and
AUC of 86.72%, 0.736 and 0.903, respectively, was achieved by using the fused feature,
while the second and third highest performance results were achieved by using PAAC
and AAI descriptors. Interestingly, Figure 2A shows that the fused feature also exhibits
a great capability to identify bitter peptides with an AUC of 0.903 and achieves the best
performance on the training dataset among other types of feature encodings. As for the
independent dataset, Table 1 and Figure 2B show that the overall prediction performance
is quite consistent with the 10-fold cross-validation results. The fused feature still provided
the highest performance in terms of three out of five performance metrics (i.e., ACC, Sn
and MCC). Specifically, the fused feature provided ACC of 0.906, Sn of 0.922 and MCC of
0.813 as well as an AUC of 0.906.

Table 1. Cross-validation and independent test results of different feature encodings.

Cross-Validation Feature  #Feature ACC Sn Sp MCC AUC
AAC 20 0.830 0.804 0.856 0.662 0.893
DPC 400 0.781 0.790 0.773 0.565 0.853
10-fold CV PAAC 21 0.842 0.840 0.844 0.687 0.891
o APAAC 22 0.804 0.757 0.852 0.614 0.870
AAI 531 0.838 0.812 0.864 0.681 0.894
Fusion 994 0.867 0.855 0.879 0.736 0911
AAC 20 0.867 0.859 0.875 0.734 0.925
DPC 400 0.852 0.781 0.922 0.710 0.902
Independent test PAAC 21 0.898 0.891 0.906 0.797 0.925
P APAAC 22 0.875 0.875 0.875 0.750 0.933
AAI 531 0.891 0.891 0.891 0.781 0.942
Fusion 994 0.906 0.922 0.891 0.813 0.906
10 (A) p— - L 10 (B)
AAC (AUC = 0.890) AAC (AUC = 0.925)
o § pacic-ose 02 || PAC (A - 0925)
APAAC (AUC = 0.868) APAAC (AUC = 0.933)
PCP (AUC = 0.895) ' PCP (AUC = 0.942)
J ALL (AUC = 0.908) ALL (AUC = 0.906)
BEST (AUC = 0.936) ) BEST (AUC = 0.933)
° * Fnaldse Positive Rna(;c o e 0 07 F(;I‘Ze Positive Rﬂaze o e

Figure 2. ROC curves of different feature encodings based on 10-fold cross-validation (A) and
independent tests (B).

3.2. Determination of Optimal Features

As mentioned above, the fused feature outperformed the five feature encodings. Based
on the fused feature scheme, each peptide sequence was represented with a 994D feature
vector, but the number of sequences used in the training dataset was 512. This problem
might cause two outcomes: information redundancy and over-fitting. To address this issue,
the GA-SAR was employed to identify m out of 994 features followed by simultaneous
tuning of SVM parameters where the number of m is in the range of 10-50; the search
range of SVM parameter is recorded in Supplementary Table S1. We hypothesized that
if a feature is selected by GA-SAR, it is considered to be beneficial for the bitter peptide
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prediction [19,20,26]. Due to the non-deterministic characteristics of GA-SAR, ten individ-
ual experiments were performed to generate ten different feature sets. Specifically, these
ten feature sets were individually used as the input feature to individually construct ten
SVM models whose corresponding 10-fold cross-validation and independent test results
are recorded in Tables 2 and 3.

Table 2. Cross-validation results of ten SVM models trained with various feature sets derived from
GA-SAR.

#Exp. #Feature ? ACC Sn Sp McCC AUC
1 37 0.920 0.898 0.941 0.842 0.947
2 36 0.918 0.918 0.918 0.837 0.937
3 36 0.912 0.910 0.914 0.825 0.945
4 41 0.910 0.906 0.914 0.822 0.924
5 36 0.906 0914 0.899 0.814 0.937
6 40 0.906 0.902 0.910 0.814 0.950
7 38 0.906 0.890 0.922 0.814 0.925
8 37 0.898 0.898 0.899 0.802 0.932
9 36 0.896 0.871 0.922 0.795 0.947
10 38 0.896 0.906 0.887 0.795 0.938

Mean 0.907 0.901 0.913 0.816 0.938
STD. 0.008 0.013 0.015 0.016 0.009

2 #Feature represents the number of features used for constructing a model. Experiment #2 afforded the optimal
prediction performance and is therefore used for further analysis.

Table 3. Independent test results of ten SVM models trained with various feature sets derived from
GA-SAR.

#Exp. #Feature ? ACC Sn Sp MCC AUC
1 37 0.891 0.875 0.906 0.782 0.935
2 36 0.930 0.938 0.922 0.859 0.933
3 36 0.891 0.906 0.875 0.782 0.925
4 41 0.898 0.906 0.891 0.797 0.922
5 36 0.883 0.906 0.859 0.766 0.930
6 40 0.898 0.891 0.906 0.797 0.926
7 38 0.906 0.938 0.875 0.814 0.949
8 37 0.891 0.859 0.922 0.783 0.938
9 36 0.914 0.922 0.906 0.828 0.939
10 38 0.914 0.953 0.875 0.831 0.935

Mean 0.902 0.909 0.894 0.804 0.933
STD. 0.014 0.029 0.022 0.029 0.008

2 #Feature represents the number of features used for constructing a model. Experiment #2 having the optimal
prediction performance is used for further analysis.

From Table 2, it can be noticed that the three top-ranking feature sets (ACC) are com-
prised of feature sets from experiments 1 (0.920), 2 (0.918) and 3 (0.912), respectively. The
feature set from experiment 2 achieved very comparable results to those from experiment
1. In the case of the independent test results as recorded in Table 3, it can be observed
that the three top-ranked feature sets were from experiment 2 (0.923), 10 (0.914) and 9
(0.914), respectively. Taking into consideration 10-fold cross-validation and independent
test results, the feature set from experiment 2 was considered as the optimal one and
was used for developing the proposed iBitter-Fuse; more details of this feature set are
summarized in Table 4 and Supplementary Table S3. Furthermore, the selected feature set
consisted of m = 36 informative features covering four different feature descriptors: AAC
(4 features), DPC (13 features), PAAC (1 feature) and AAI (18 features).
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Table 4. List of fused informative features having m = 36 features as derived from the GA-SAR

algorithm.
Feature #Feature List
AAC 4 LK WY
DPC 13 AA, AE EL, GV, 1A, IQ, KG, LE, LQ, PF, QL, TD, YG
PAAC 1 Xcl.P

BIGC670101, DESM900101, FAUJ880106, FAUJ880110,
GOLD730101, GRAR740102, NAKH900113, OOBM770104,
AAI 18 QIANS880129, VENTS840101, WERD780102, WOLS870103,
YUTKS870102, ZIM]J680103, MUNV940105, TAKK010101,
CEDJ970102, HARY940101

3.3. Comparison of Our Fused Features and Other Feature Descriptors

In this section, we compared the performance of our fused features (the selected
m = 36 informative features) with the five individual feature descriptors (AAC, DPC,
PAAC, APAAC and AAI). The performance of our fused features and the compared feature
descriptors is summarized in Figure 3 and Supplementary Table S2. As shown in Figure
3A, it can be observed that the 10-fold cross-validation results of our fused features were
significantly better than that of the five selected feature descriptors when evaluated from
all five performance metrics. Specifically, the ACC, Sn and MCC of our fused features
were 0.918, 0.918 and 0.837, respectively, where 7.6-13.7%, 7.8-16.1% and 15-22.7% were
higher than other feature descriptors. Regarding independent test results, the performance
of our fused features was still better than those of other feature descriptors as evaluated
by ACC (0.930), Sn (0.938), Sp (0.922) and MCC (0.859) (Figure 3B). This demonstrated
that the fusion of different view information was effective in contributing to the improved
predictive performance.

A
B Fusion [ DPC B APAAC

1.0 I AAC B PAAC I AAI

dos
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©
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Figure 3. Performance evaluations of our fused features and the five individual feature descriptors
based on (A) 10-fold cross-validation and (B) independent tests.
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3.4. Comparison of iBitter-Fuse with Conventional ML Classifiers

To evaluate the predictive performance of iBitter-Fuse, we compared its performance
with those of conventional ML classifiers. Herein, we constructed and optimized several ML
classifiers trained using decision tree (DT), extremely randomized trees (ETree), k-nearest
neighbor (KNN), multi-layer perceptron (MLP), naive Bayes (NB), random forest (RF) and
extreme gradient boosting (XGB) with three selected feature descriptors (AAC, AAl and
PAAC). All of these ML classifiers were constructed and optimized using the scikit-learn
Python machine-learning package (version 0.22) [59]. Herein, the optimal hyperparameters
of respective ML classifiers were determined by using a grid search procedure and 10-fold
cross-validation scheme (i.e., the search range is presented in Supplementary Table S1).
To make a fair test, the same training and independent test datasets were used for model
training and validation, respectively. Figure 4 and Supplementary Tables 54 and S5 display
the details of 10-fold cross-validation and independent test results of iBitter-Fuse and
several ML classifiers. Furthermore, Figure 5 and Table 5 show the performance comparison
of our predictor with those of top five ML classifiers (XGB-AAI, ETree-AAI, MLP-AAI,
RF-AAI and RF-AAC).

A iBitter-Fuse { I B iBitter-Fuse { I
XGB-AAI{ XGB-AAI{
ETree-AAIl | ETree-AAl {
MLP-AAI{ [ MLP-AAI |
RF-AAI{ I RF-AAI{
RF-AAC | RF-AAC
Elleo-PAAC | Elice-PANC | —
ree-AAC | R . ree-AAC | [ '
KNN_AAT | S — Descriptor KNN-AAT | — Descriptor
MLP-PAAC { MLP-PAAC | - I
LP-AAC +{ . Fuse MLP-AAC 1 — . Fuse
XGB-AAC | XGB-AAC |
F-PAAC | B aa RF-PAAC { [l B an
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Figure 4. Performance evaluations of iBitter-Fuse and different ML classifiers based on (A,B) their
10-fold cross-validation ACC and MCC and (C,D) independent test ACC and MCC.
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Figure 5. Performance evaluations of iBitter-Fuse and top five ML classifiers based on (A) 10-fold
cross-validation and (B) independent tests.

Table 5. Performance comparison of iBitter-Fuse with top five ML classifiers.

Cross-Validation #Feature ACC Sn Sp MCC AUC
iBitter-Fuse 0.918 0.918 0.918 0.837 0.937

XGB-AAI 0.906 0.938 0.875 0.814 0.960

ETree-AAI 0.883 0.875 0.891 0.766 0.952

10-fold CV MLP-AAI 0.875 0.844 0.906 0.751 0.916
RF-AAI 0.867 0.891 0.844 0.735 0.943

RF-AAC 0.853 0.847 0.86 0.71 0.912

iBitter-Fuse 0.930 0.938 0.922 0.859 0.933

XGB-AAI 0.830 0.820 0.840 0.666 0.907

Independent test ETree-AAI 0.838 0.816 0.860 0.680 0.899
MLP-AAI 0.828 0.840 0.817 0.660 0.884

RE-AAI 0.812 0.801 0.824 0.629 0.897

RF-AAC 0.898 0.906 0.891 0.797 0.950

As can be seen from Figure 5, we observe that the 10-fold cross-validation results of
our predictor is better than the five selected feature descriptors in terms of three out of
five performance metrics (ACC, Sp and MCC). To be specific, our predictor obtained the
maximum ACC of 0.918, Sp of 0.918 and MCC of 0.837, which were 1.2%, 4.3% and 2.3%
higher than the best ML classifier (XGB-AAI) (Table 5). Remarkably, our predictor showed
2-10.6% higher ACC, 7.8-11.7% higher Sn, 2.7-10.1% higher Sp and 4-20.8% higher MCC
than top five ML classifiers on the independent test dataset, indicating that the proposed
iBitter-Fuse was more capable for identifying bitter peptides than those of conventional
ML classifiers as developed in this study (Figures 4 and 5).
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3.5. Comparison of iBitter-Fuse with the State-of-the-Art Methods

To evaluate the effectiveness of the iBitter-Fuse, we compared its performance with
state-of-the-art methods, namely iBitter-SCM [17] and BERT4Bitter [18]. Of note, the
proposed iBitter-Fuse and state-of-the-art methods were developed and evaluated using
the same benchmark dataset. The performance of iBitter-SCM and BERT4Bitter was
obtained directly from the published work of BERT4Bitter [18]. Table 6 records the 10-fold
cross-validation and independent test results of iBitter-Fuse and state-of-the-art methods.
In the case of 10-fold cross-validation results, iBitter-Fuse clearly outperformed existing
methods in terms of four out of five performance metrics (ACC, Sp, MCC and AUC) based
on the 10-fold cross-validation test. Particularly, ACC, Sp, MCC and AUC of iBitter-Fuse
were approximately 74.7-5.7%, 6.4-9%, 8.6-11.1% and 2.2-3.4% higher than that of existing
methods. To further validate the robustness of iBitter-Fuse, the approach was tested and
compared with existing methods by using the independent test dataset. As can be seen from
Table 6, our predictor significantly outperforms iBitter-SCM in achieving 8.6%, 9.4%, 7.8%
and 17.1% improvement in terms of ACC, Sn, Sp and MCC, respectively. Meanwhile, our
predictor could achieve slightly better performance than that of BERT4Bitter as evaluated
by four out of five performance metrics (ACC, Sp, Sn and MCC). Taking into consideration
the cross-validation and independent test results, the aforementioned comparative results
indicated that the proposed iBitter-Fuse was more precise and stable for the identification
of bitterness of peptides than those of existing predictors.

Table 6. Performance comparison of iBitter-Fuse with the existing methods.

Cross-Validation Classifier 2 ACC Sn Sp MCC AUC
10-fold CV iBitter-SCM 0.871 0.913 0.828 0.751 0.903
BERT4Bitter 0.861 0.868 0.854 0.726 0.915

iBitter-Fuse 0.918 0.918 0.918 0.837 0.937

Independent test iBitter-SCM 0.844 0.844 0.844 0.688 0.904
BERT4Bitter 0.922 0.938 0.906 0.844 0.964

iBitter-Fuse 0.930 0.938 0.922 0.859 0.933

2 Results come from the work BERT4Bitter [16].

3.6. iBitter-Fuse Web Server

In order to allow easy access by the scientific community, we have developed a user-
friendly web server iBitter-Fuse that is freely available online at http://camt.pythonany
where.com/iBitter-Fuse (accessed on 8 August 2021). Herein, we provide step-by-step
guidelines on how to use the iBitter-Fuse web server. Firstly, users can access the web
server by entering the URL mentioned in the previous sentence, which would bring us to
the webpage as shown in Figure 6. Secondly, the user can enter the query sequence into
the text box or upload a FASTA file by clicking on the “Choose file” button. Thirdly, the
user can click on the “Submit” button in order to start the prediction process; this step
typically takes a few seconds for the server to process the task. Finally, after finishing the
prediction process, results are displayed on the right-hand side of the web server. Examples
of FASTA-formatted sequences can be accessed by clicking on the “example file” button.
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Figure 6. Screenshots of the iBitter-Fuse web server.

4. Conclusions

A novel computational model referred herein as iBitter-Fuse was developed for ac-
curately identifying the bitterness of peptides. In the development of iBitter-Fuse, we
have explored a variety of feature encoding schemes for providing sufficient informa-
tion from different aspects, including compositional information and physicochemical
properties. Subsequently, the optimal feature set was determined by using the GA-SAR
approach and used as input to the SVM-based classifier for development of a more ro-
bust model. We have conducted extensive benchmarking experiments via both 10-fold
cross-validation and independent tests. Extensive comparative analysis indicated that the
proposed iBitter-Fuse was more effective and could outperform conventional ML classi-
fiers as well as existing state-of-the-art predictors as evaluated by 10-fold cross-validation
and independent tests. This thereby highlights the effectiveness and generalization ca-
pability of the proposed iBitter-Fuse. Finally, for the convenience of experimental sci-
entists, the iBitter-Fuse web server was established and made freely available online at
http://camt.pythonanywhere.com/iBitter-Fuse (accessed on 8 August 2021). We believe
that the iBitter-Fuse may serve as a useful and cost-effective approach for predicting bitter
peptides on a large scale as well as facilitating de novo bitter peptide design.
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