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Abstract: Protein homo-oligomerization is a very common phenomenon, and approximately half
of proteins form homo-oligomeric assemblies composed of identical subunits. The vast majority of
such assemblies possess internal symmetry which can be either exploited to help or poses challenges
during structure determination. Moreover, aspects of symmetry are critical in the modeling of protein
homo-oligomers either by docking or by homology-based approaches. Here, we first provide a brief
overview of the nature of protein homo-oligomerization. Next, we describe how the symmetry of
homo-oligomers is addressed by crystallographic and non-crystallographic symmetry operations,
and how biologically relevant intermolecular interactions can be deciphered from the ordered array
of molecules within protein crystals. Additionally, we describe the most important aspects of
protein homo-oligomerization in structure determination by NMR. Finally, we give an overview
of approaches aimed at modeling homo-oligomers using computational methods that specifically
address their internal symmetry and allow the incorporation of other experimental data as spatial
restraints to achieve higher model reliability.

Keywords: structure determination; modeling; homo-oligomers

1. Introduction

Many proteins have a natural tendency to self-associate into homo-oligomeric protein
complexes, also termed homomers, which are composed of two or more identical subunits.
According to the estimation, 30–50% of all proteins oligomerize [1]. In addition, analysis
of protein crystal structures demonstrated that roughly 45% of eukaryotic proteins and
60% of prokaryotic proteins that are deposited as single polypeptide chains also exist in a
form of homo-oligomeric complex [2]. Adding the specifics of structural characterization
of homo-oligomers, for example, symmetry and challenges associated with distinguishing
between intra- and inter-molecular inter-residue contacts, the topic is of great importance
to any structural biologist. We aim to provide an overview of the topic, first by giving
background information on the nature of homo-oligomerization and continuing by describ-
ing experimental/computational approaches for homo-oligomer structure determination
and modeling.

1.1. Protein Homo-Oligomerization as an Efficient Design Principle

Homo-oligomerization is believed to be nature’s solution to form large proteins by
avoiding efficiency problems with the synthesis of long polypeptide chains. In comparison
to small proteins, larger ones are more favorable due to their higher stability and smaller
solvent-exposed surface percentage. Moreover, building larger protein complexes from
smaller subunits has several benefits. Such complexes are less prone to translational errors,
as only the defected subunits can be discarded and replaced in contrast to the whole large
single polypeptide-chain protein. Next, coding efficiency is higher because less information
needs to be stored to build a large protein. Furthermore, assembly of (homo)-oligomeric
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proteins can be triggered and/or fine-tuned and thus provides an additional layer of
regulation, which is crucial in dynamic processes such as actin filament assembly [3]
and microtubule growth [4]. Other examples are protein activation as a consequence of
dimerization, as in the case of caspase-9 activity [5] and signaling via epidermal growth
factor receptor (EGFR) [6]. Additionally, an opposite effect can be achieved—for example,
dimerization inhibits the activity of receptor-like protein tyrosine phosphatase-a [7]. Even
more prominent examples are where the active site is formed at the interface between
subunits, as in the case of HIV-1 dimerization protease. [8]. Besides, oligomerization also
enables homotropic allosteric interactions between subunits, for example, in membrane
protein αβ TCR [9] and L-Lactate dehydrogenase [10]. Such allosteric regulation was found
to be the most common in oligomers with dihedral symmetries, especially in metabolic
enzymes [11]. Yet another example are the death domains of several proteins involved in
cell death and immune cell signaling where dimerization often leads to protein activation.
Here, dimerization is if often mediated via domain swapping where two subunits exchange
their parts to form an intertwined dimer [12]. The same principle can also apply to higher-
order homo-oligomers, an example is the barnase domain-swapped trimer [13], and is also
frequently associated with formation of protein aggregates/deposits [14].

As these advantages are almost intuitive, it is often assumed they should also pro-
vide a clear evolutionary benefit. However, Lynch suggested that homo-oligomers could
have arisen from stochastic, non-adaptive processes [15,16] and that the benefits of homo-
oligomerization are not all-pervasive, but rather dependent on the context and the prop-
erties of the individual protein [17]. These and other possible reasons as to why homo-
oligomerization is such a frequently encountered property were also extensively discussed
elsewhere [1,18–21].

1.2. Most Protein Homo-Oligomers Are Symmetric

Symmetry is an inherent property of almost all homo-oligomers characterized up to
date. Although homo-oligomers often exhibit at least some degree of local asymmetry [18],
this asymmetry is limited to small differences in the backbone position, differences in
sidechain orientations or limited to a certain part of the protein, while the complex as
a whole is still symmetric (Figure 1A). Local asymmetry may provide an insight into
the mechanism of complex formation [22]. For example, in the case of domain swapped
oligomers, local asymmetry may reveal the location of the hinge regions that connect the
swapped portions of the subunits [23], as in the case of pancreatic ribonuclease where
N-terminal regions are exchanged (Figure 1A). For a comprehensive review on struc-
tural asymmetry in homo-dimers, the reader is referred to the paper written by Swapna,
Srikeerthana and Srinivasan [24].

On the other hand, global asymmetry (Figure 1B) is rare. In the dataset of annotated
biological assemblies (QSbio) [25], less than 5% of homo-oligomeric structures do not have
symmetry (Figure 2A, Supplementary Table S1). The most observed symmetry types are
cyclic symmetries (Cn in Schönflies notation) with a single axis of rotation, and dihedral
symmetries (Dn) with at least one additional axis of rotation, perpendicular to the first one
(Figure 2B). Cubic symmetry with the tetrahedral, octahedral and icosahedral arrangement
is much less common; together, they account for roughly 1% of all structures. Icosahedral
symmetry is often observed in viral envelopes, but there, the envelope is usually composed
of several different polypeptide chains [26]. Interestingly, symmetries with an odd number
of subunits are less common than those with an even number of subunits. This can
be explained by the nature of interactions between subunits, which can be isologous or
heterologous. Isologous interactions take place between identical surfaces and amino-
acid residues on the interacting subunits, while, in heterologous interactions, different
regions on juxtaposed subunits are involved (Figure 2C). Several studies have shown that
isologous interactions are more favorable than heterologous [27–30], thus explaining the
higher number of oligomers with an even number of subunits [1]. While C2 symmetric
dimers are by far the most populous oligomeric state, dihedral symmetries prevail among
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homo-oligomers with a higher number of subunits. These can also be explained by the
advantages of isologous interactions over heterologous, as interactions in cyclic homo-
oligomers with more than two subunits are, by definition, heterologous. Symmetry is also
related to a finite control of protein assembly by producing a closed set of subunits. On
the contrary, aggregation of proteins through the non-finite assembly is related to several
pathological conditions [31].
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Figure 1. The difference between local and global asymmetry. (a) An example of a globally symmet-
ric homo-oligomeric complex with a substantial local asymmetry is the structure of bovine pancre-
atic ribonuclease N-term-swapped dimer (PDB: 1A2W) [24,32]. During the dimer formation, the N-
terminal region of the monomer (PDB: 1A5P, pink) [33] is swapped the juxtaposed subunit. (b) Mu-
rine CHIP-U-box E3 ubiquitin ligase (PDB: 2C2L) [34] is an example of a globally asymmetric homo-
oligomeric complex. Individual subunits are depicted in yellow and blue. For both complexes, the 
superposition of polypeptide chains is also presented to demonstrate the extent of structural differ-
ences between the subunits. 

Figure 1. The difference between local and global asymmetry. (A) An example of a globally symmetric
homo-oligomeric complex with a substantial local asymmetry is the structure of bovine pancreatic
ribonuclease N-term-swapped dimer (PDB: 1A2W) [24,32]. During the dimer formation, the N-
terminal region of the monomer (PDB: 1A5P, pink) [33] is swapped the juxtaposed subunit. (B) Murine
CHIP-U-box E3 ubiquitin ligase (PDB: 2C2L) [34] is an example of a globally asymmetric homo-
oligomeric complex. Individual subunits are depicted in yellow and blue. For both complexes,
the superposition of polypeptide chains is also presented to demonstrate the extent of structural
differences between the subunits.
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Figure 2. Symmetries observed in the determined structures of homo-oligomeric protein complexes: 
(a) Relative distribution of symmetry types in QSbio with a 90% sequence similarity cutoff. Com-
plexes were classified by the number of subunits (# sub) and the symmetry type (symm). Data for 
tetrahedral (tetr), octahedral (octa), icosahedral (icos) and non-symmetric (NS) complexes are com-
bined for all number of subunits. (b) Assembly of a dihedral symmetry from parts of protein com-
plexes with cyclic symmetry, glucose-6-phosphate 1-dehydrogenase (PDB: 6D23) [35]. In the repre-
sentation of protein surfaces of the C2 symmetric subcomplexes, one of the subunits is transparent 
to enable visualization of the interaction surface. (c) Representation of the isologous and heterolo-
gous interactions in complexes with odd and even number of subunits in the case of orange carote-
noid-binding protein (PDB: 5UI2) [36] and corrinoid adenosyltransferase (PDB: 2R6T) [37], respec-
tively. Individual subunits are depicted with different shades of yellow. Distinct interaction surfaces 

Figure 2. Symmetries observed in the determined structures of homo-oligomeric protein complexes:
(A) Relative distribution of symmetry types in QSbio with a 90% sequence similarity cutoff. Com-
plexes were classified by the number of subunits (# sub) and the symmetry type (symm). Data
for tetrahedral (tetr), octahedral (octa), icosahedral (icos) and non-symmetric (NS) complexes are
combined for all number of subunits. (B) Assembly of a dihedral symmetry from parts of protein
complexes with cyclic symmetry, glucose-6-phosphate 1-dehydrogenase (PDB: 6D23) [35]. In the
representation of protein surfaces of the C2 symmetric subcomplexes, one of the subunits is trans-
parent to enable visualization of the interaction surface. (C) Representation of the isologous and
heterologous interactions in complexes with odd and even number of subunits in the case of orange
carotenoid-binding protein (PDB: 5UI2) [36] and corrinoid adenosyltransferase (PDB: 2R6T) [37],
respectively. Individual subunits are depicted with different shades of yellow. Distinct interaction
surfaces are depicted with green and pink, respectively. Two- and three-fold axes are denoted by
corresponding symbols.
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2. High-Resolution Structure Determination of Homo-Oligomers

Experimental structure determination is still the principal and most reliable method of
high-resolution structural characterization of proteins. The structural models are deposited
in the publicly available Protein Data Bank where the oligomeric state is annotated in terms
of stoichiometry and symmetry, which can be either global (operating between complete
chains or their assemblies), local (limited to a part of the molecule) or helical [38]. Symmetry
is an important factor in structure determination and interpretation process; however, how
it is addressed differs between the different experimental approaches.

Currently, the main methods for high-resolution structure determination of proteins
are X-ray crystallography and nuclear magnetic resonance (NMR), with cryo-electron
microscopy (cryo-EM) joining the group, fueled by technological advances in recent years
enabling sub-1.5 Å resolution [39]. Of these methods, X-ray crystallography is the one most
inherently linked to symmetry operations because symmetry underlies both diffraction
data collection and processing [40] as well as nearly all calculations needed to arrive at
the final model of the structure [41]. Moreover, cryo-EM utilizes symmetry during image
processing and averaging to achieve a higher signal-to-noise ratio [42]. Since symmetry is
also a fundamental property of the vast majority of protein homo-oligomers (as already
discussed above), the consideration of symmetry aspects during structure determination
and interpretation is critical. Here, we provide an overview of the homo-oligomerization-
associated aspects of the listed methods for protein structure determination with a focus
on how symmetry can either help or pose significant challenges.

2.1. X-ray Crystallography
2.1.1. Characteristics of Protein Crystals

A critical requirement for X-ray structure determination is a crystal of the molecule/complex
of interest. A crystal represents an ordered array of molecules, and the smallest unit from
which the complete crystal can be re-created by application of translation and rotation
is the asymmetric unit. Therefore, the crystal structure of a protein is determined and
reported as the structure(s) of the protein molecule(s) and their ligands within one copy of
the asymmetric unit. Next, symmetry operations of the crystal space group, determined
already during initial diffraction data processing and later confirmed during phasing and
structure refinement process, can be applied to generate neighboring asymmetric units, the
unit cell and, by translation, the complete crystal. Application of these operations produces
copies of protein molecules, which form a network of inter-molecular contacts stabilizing
the crystal [43]. Typically, biological interfaces bury more than 400 Å2 per subunit (800 Å2

in total), while crystal contacts bury, on average, less than 400 Å2 per subunit [1]. It can
happen, however, that crystal contacts bury 400–1000 Å2, and in some instances even more.
Here, the main question with which a crystallographer is faced during structure analysis
and interpretation is: Which, if any, of these inter-molecular contacts are stable also in
solution and hence could be of biological relevance? Below, we provide an overview of the
approaches aimed to address this question, first by considering the most important aspects
of protein crystallization relevant for homo-oligomers.

Since, in protein crystals, solvent typically occupies approximately half of the volume
of the crystal [44], protein molecules generally retain their solution-like structure and activ-
ity. However, there are examples where ordered packing into the crystal influenced protein
conformation, mainly by preferential stabilization of one of the possible conformations. For
example, a comparison of the structures of the same protein molecules determined by dif-
ferent groups or even structures with different local environments within the same crystal
demonstrated the effect of packing on side-chain and backbone conformations as well as on
hinge-like motions of protein molecules [45]. Furthermore, flash-freezing, a method com-
monly employed to stabilize crystals before diffraction data collection, can alter intra- and
even more inter-molecular contacts within the crystal, particularly by cooling-introduced
stabilization of long, polar side-chains of residues, which are then engaged in an extensive
network of hydrogen bonds [46]. Even more, preferential packing of one equilibrium
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oligomeric state vs. the other, for example, monomer vs. dimer, can complicate structure
interpretation [47]. On the other hand, crowding effects exerted due to high protein con-
centration in the crystallization drop (typically 10 mg/mL or higher) and the presence
of other reagent enhancing crowding, such as polyethylene glycol, can make low-affinity
complexes more stable and thus make them more likely to be structurally characterized [48].
In addition, since symmetric proteins/protein assemblies tend to crystallize more readily,
efforts were undertaken to trigger the formation of symmetric homo-oligomeric assemblies
to broaden the crystallization bottle-neck [49,50]. Therefore, caution must be taken during
the analysis of inter-molecular contacts and possible homo-oligomeric protein assemblies.

2.1.2. Symmetry Operations

Within the crystal, two types of symmetry operations are possible—crystallographic
and non-crystallographic symmetry (NCS) operations. The crystallographic symmetry
operations relate to neighboring asymmetric units, while the NCS operations work on
molecules within the asymmetric unit. An extensive overview of crystal symmetry is given
in the International Tables for Crystallography [51], particularly in section F, dedicated to
biological macromolecules [52], with a more easily comprehensive compendium by Dauter
and Jaskolski [53]. Due to packing and chirality-maintenance requirements, the crystallo-
graphic symmetry operations in protein crystal are limited to translations, rotations around
2-, 3-, 4- and 6-fold axes (rotations for 180◦, 120◦, 90◦ and 60◦), plus their combinations in
the form of screw axes. However, the NCS operations may also include rotations around
other axes, for example, 5- and 7-fold axes, and operations not producing a closed set of
copies—all of these have implications in the content of the asymmetric unit.

In case that the rotation axis/axes of symmetric homo-oligomeric complexes coincide
with the crystallographic rotation axis/axes, the asymmetric unit will contain only part of
the homo-oligomer, and the whole assembly can be re-created by application of symmetry
operations of the crystal space group producing identical copies of the initial part. Indeed,
analysis of a subset of structures in the Protein Data Bank showed that trimers, tetramers
and hexamers preferentially crystallized in systems where the homo-oligomer symmetry
was incorporated into crystal symmetry—in this case, the asymmetric unit does not con-
tain the full oligomer [54]. However, the symmetry axis/axes of a homo-oligomer may
correspond to NCS axis/axes. In this case, the asymmetric unit will contain one or more of
the complete assemblies. Symmetric pentamers and heptamers, as an example, contain a
rotational axis incompatible with crystal packing. The asymmetric unit will, in these cases,
always contain one or more of such complete assemblies. There are also mixed cases where
the complete homo-oligomeric assembly can be reconstituted by the application of crystal
symmetry operations on partial assemblies containing NCS. The critical difference between
crystallographic and non-crystallographic symmetry operations is that crystallographic
symmetry operations always produce identical copies. However, the NCS operations may
be improper and, as such, relate copies of molecules that are not perfect copies of each
other. These copies differ in the conformation of one or more regions, for example, due
to different inter-molecular contacts. One of the many examples is the crystal structure of
human thyroid hormone receptor mutant with a dimer within the asymmetric unit. The
subunits are related by a non-crystallographic 2-fold rotation axis, but they slightly differ
with a root mean square deviation of 0.23 Å over Cα atoms [55].

2.1.3. Approaches to Distinguish between Crystal-Only and Biologically Relevant
Interaction Interfaces

To determine which molecular assembly, either containing purely crystallographic
symmetry, non-crystallographic symmetry or the combination of both, is biologically rele-
vant, an inspection of all different inter-molecular contacts within the crystal is necessary.
This is equally true for all protein complexes—for both hetero- as well as for symmetric
and asymmetric homo-oligomers.
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Various computational tools are available for this purpose and have already been
extensively reviewed, for example, by Capitani and coworkers [56] and recently by Elez
and coworkers [57]. Therefore, we provide here just a short overview of the approaches
that can be classified into three main groups: (1) energy/thermodynamics-based methods;
(2) empirical and comparative approaches based on evolutionary, B-factor, pair-atom
distance and composite analysis; and (3) approaches incorporating machine learning. Due
to different approaches, each tool uses a distinct set of parameters, which are generally
distilled into a score signifying the relevance of the interaction. However, these scores are
not directly comparable between different tools.

Of the thermodynamics-based methods, the most commonly used tool is PISA (Protein
Interfaces, Surfaces, and Assemblies) [58,59]. PISA looks, by making copies of asymmetric
unit contents through the application of crystallographic symmetry operations, at all possi-
ble inter-molecular interfaces both within and between asymmetric units. The interfaces
are analyzed and described in terms of interface surface area, solvation free energy gain
upon interface formation (∆iG) and associated estimation of interface specificity (P-value)
as the measure of the probability of obtaining lower ∆iG from randomly picked atoms.
Interface surface area is calculated as the difference between accessible surface area (ASA)
of separated and complexed protein molecules, divided by the number of molecules in the
proposed complex. ASA is commonly calculated by rolling a probe of the radius of 1.4 Å
(corresponding to a water molecule) around the protein atoms with slightly increased radii
to account for hydrogen atoms [60]. Additionally, the number of hydrogen bonds, disulfide
bonds and salt bridges are reported. Interfaces with more negative ∆iG (corresponding to
hydrophobic interfaces), with higher P-value and with larger interface area are considered
as mediating a stable oligomeric assembly. The significance of the observed interaction is
reported as complexation significance score (CSS), which is the maximal fraction of the
analyzed interface in terms of free energy of binding—higher value (up to 1) corresponds
to higher significance. Another energy-based approach is that of ClusPro-DC [61], which
underlies the ClusPro [62] docking algorithm mentioned below. The subunits of the pro-
posed oligomer are taken apart and subjected to docking, and, if the docked poses form
a close cluster resembling the initial oligomer, the interface is considered as biologically
relevant. Contrary to PISA, this approach is limited to homo-dimers.

Empirical approaches work by analyzing specific features of each of the distinct inter-
molecular interfaces within the crystal and classifying it as stable/biologically relevant
in light of knowledge on already thoroughly analyzed interfaces. For example, EPPIC
(evolutionary protein-protein interface classifier) relies on evolutionary analysis consid-
ering surface entropy of homologous sequences and few other parameters. However, for
clear distinction, a high sequence similarity between query and homologs is needed [63].
The authors of ClusPro-DC tested three tools (PISA, EPPIC and ClusPro-DC) on the same
dataset, and the accuracies were 59.6%, 78% and 74.5%, respectively, where accuracy is
defined as the percentage of correct classification (true positive and true negatives) over
the sum of correct and incorrect classifications [63]. Another approach is CFPScore (com-
binatorial four-parameter score), which incorporates estimates of binding free energy in
inter-protein interactions, interface area, shape complementarity and packing density,
reaching a reported prediction accuracy of 96.6% [64]. Other tools/approaches in this
group are based on B-factor describing atomic vibrational motions [65], or interface area
and complementarity, as in PreBI [66] and COMP [67].

The group of approaches incorporating machine learning (ML) is much broader.
One of the newer tools is PIACO (protein interface analysis using covarying signals),
which is based on covariance calculated from multiple sequence alignment and few other
parameters such as amino acid composition and pair frequency [68]. The prediction
accuracy was over 90% [67]. Another tool is PRODIGY-CRYSTAL (PROtein binDIng enerGY
prediction) where the classification is based on inter-residue contacts and interaction
energies and employs random forest (RF) ML [69,70]. Compared with EPPIC, which
reached 88% accuracy, PRODIGY-CRYSTAL scored 92% prediction accuracy on the same
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test dataset [71]. Next, RPAIAnalyst (residue pairs across interface) integrates the co-
evolutionary aspect of residue pairs at the interface with other properties, such as secondary
structure, B-factor and hydrophobicity/polarity, and again uses RF ML approach [72]. The
tool reached 84.6% prediction accuracy on the same dataset as used for ClusPro-DC (above).
These are just a few tools employing ML, and a more comprehensive list is available
elsewhere [57].

To finally confirm the in-solution and also biological relevance of the proposed homo-
oligomeric assembly, further experiments are needed. For example, insight into stoichiom-
etry in the solution can be provided by size exclusion chromatography, static and dynamic
laser light scattering experiments, analytical ultracentrifugation, mass spectrometry under
native conditions and other methods. Further insight, also in terms of overall structural fea-
tures, possibly of help in distinguishing between non-relevant and relevant assemblies, can
be provided by small-angle X-ray scattering (SAXS). Examples are the crystal structures of
human aldehyde dehydrogenase 7A1 [73] and of fungal UDP-galactopyranose mutase [74]
where SAXS has been utilized to analyze various possible assemblies as interpreted from
crystal packing contacts.

2.2. Nuclear Magnetic Resonance Spectroscopy

Nuclear magnetic resonance or NMR spectroscopy—shortly, NMR—is based on col-
lecting various types of spectra, mainly 1D and 2D. Neighboring atoms, covalent bond
lengths and other distances, dihedral angles and similar structure characteristics can be esti-
mated from these spectra and are then used as restraints to calculate a convergent ensemble
of structural models. Typically, around 20 models, representing different possible conform-
ers, all satisfying the initial restraints, are obtained [75]. Contrary to X-ray crystallography,
which is well suited for structural characterization of (very) large proteins and their assem-
blies, structure determination of proteins larger than approx. 35 kDa using NMR is still
significantly challenging due to slower tumbling rates and shorter NMR signal relaxation
times [76]. During NMR spectra recording proteins are generally in solution, which may
more closely resemble their natural environment than the densely packed crystal. However,
an equilibrium between monomeric and specific homo-oligomeric species—plus eventual
non-specific associations—may pose significant challenges during structure determination
due to spectral degeneracy and difficulties associated with distinguishing between intra-
and intermolecular interactions [77]. On the other hand, symmetry in homo-oligomers can
be useful since it results in simplified spectra because the complexity of spectra from large
symmetric homo-oligomers is at the level of those of the monomer/subunit, especially in
the case of cyclic symmetry [78].

An advancement in oligomer structure determination by NMR is represented by
the approach using residual dipolar couplings, which provide domain orientation re-
straints [79], together with the nuclear Overhauser effect (NOE) due to dipole–dipole
interactions and classical chemical shifts. These can be combined and used in modeling
of monomer using CS-Rosetta, and of oligomer using Rosetta symmetric docking algo-
rithm [77]. Another approach is to use a hybrid method, for example, by including overall
shape information derived from SAXS data to guide assembly of monomer structure to
homo-oligomers [80].

Interestingly, by using NMR, it has been shown that several homo-oligomers that were
described as symmetric using X-ray crystallography display a certain degree of symmetry
deviation, mainly due to hydrophilic amino acid residues at the subunit interface [22]. The
authors of this recent analysis propose that averaging several conformations within the
crystal result in a lower rate of observed symmetry deviations in crystal structures [22].
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2.3. Cryo-Electron Microscopy

To determine protein structure, a special variant of cryo-EM is employed—the single
particle analysis (SPA). Here, a high number of two-dimensional low-resolution images of
the single macromolecule or an assembly—hence, single particle—in various orientations is
combined to reconstruct its three-dimensional model [39]. Internal symmetry of the object
of interest—as in the case of symmetrical oligomers or symmetrical arrangement of units
composed of different chains—makes averaging possible and thus greatly contributes to
higher signal-to-noise ratio and to a higher resolution of the final model. Historically, the
high symmetry of large icosahedral viruses was employed to determine their structure. An
early example from 2008 is the cryo-EM structure of the cytoplasmic polyhedrosis virus [81].
Here, averaging due to the icosahedral symmetrical arrangement of asymmetric units,
although composed of several different chains, greatly contributed to the final resolution
of 3.88 Å. The same detail-enhancing principle was employed during the determination of
cryo-EM structures of other symmetrical assemblies, for example, high-resolution structures
of oligomeric enzymes with cyclic, dihedral and tetrahedral symmetry [42]. However,
similarly to improper NCS in crystal structures, also here subunits of the oligomer may
have different conformations. In the case of higher-order oligomers, a high number of
combinations with locally structurally different subunits is possible—this poses significant
problems in particle classification [42].

In the process of cryo-EM structure determination, symmetry of macromolecular
assemblies is generally detected during the initial analysis and classification of single
particles. The most commonly used approach is based on a multivariate statistical analysis
(MSA), which was initially used to process noisy images of randomly oriented biological
macromolecules [82]. An improved approach based on the MSA is able to detect symmetry
from the side- and tilted-view oriented particles, also from images of stoichiometrically
non-uniform particles [83]. A recently reported novel approach detects symmetry using
the charge density map after particle classification and 3D density map calculation without
imposed symmetry. The method works by transforming the calculated density map using
symmetry operations and then testing if the initial and transformed map coincide [84].

3. Computational Approaches for Modeling of Homo-Oligomers

High-resolution structure determination of protein homo-oligomers using X-ray crys-
tallography or NMR is often time- and resource-consuming, and sometimes a structure
of the monomer is available or can be modeled using homology approaches easily. In
these cases, a structural model of homo-oligomer can be generated using computational
approaches. For higher model reliability and relevance, additional data on the oligomer-
ization interfaces obtained from other experiments can be used as spatial restraints. The
success of modeling, especially of the docking approach, is critically dependent on the start-
ing monomer structure—more success can be expected when their conformation closely
resembles the one within the oligomer. Therefore, since due to computational complexity
large conformational changes are inherently problematic to model, special care must be
taken when selecting the input structure. This is even more critical when domain swapping
is expected [85].

Here, we provide an overview of approaches and available computational tools,
which are of special interest when modeling homo-oligomers (Table 1), first by considering
symmetry-aware docking tools for constructing assemblies from monomeric structures
(ab initio). Next, we continue with homology-based modeling approaches where the
interface involved in oligomerization is translated from structures of homo-oligomers of
homologous proteins.
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Table 1. A summary of available software, designed for the modeling of symmetric homo-oligomeric protein complexes.
When a webserver is available, only the number of subunits and the additional information, used to guide the modeling,
that can be inputted into the webserver are summarized.

Software Symmetry Types

Additional
Information That Can
Be Used to Guide the

Modeling

Website References

Ab Initio Docking of Protein Complexes with Cyclic Symmetries

M-ZDOCK C2–24, user-defined

https:
//zdock.umassmed.edu/m-zdock/
(webserver) (accessed on 20 August

2021)

[86]

SymmDock C2–100, user-defined interacting residues,
distance restraints

http:
//bioinfo3d.cs.tau.ac.il/SymmDock/
(webserver) (accessed on 20 August

2021)

[87,88]

ClusPro C2 and C3,
user-defined

interacting and
non-interacting

residues, distance
restraints (can be

grouped), SAXS based
restraints

https://cluspro.bu.edu/ (webserver)
(accessed on 20 August 2021) [62,89–91]

GRAMM-X C2–8, user-defined interacting residues

http://vakser.compbio.ku.edu/
resources/gramm/grammx/

(webserver) (accessed on 20 August
2021)

[92–94]

Ab initioDocking of Protein Complexes with Dihedral and Cubic Symmetries

MOLFIT cyclic and dihedral,
user-defined

http://www.weizmann.ac.il/
Chemical_Research_Support/

/molfit/home.html (accessed on 20
August 2021)

[95–97]

SAM any, user-defined http://sam.loria.fr/ (accessed on 20
August 2021) [98]

HSYMDOCK
cyclic and dihedral,

user-defined
orpredicted

interacting residues
http://huanglab.phys.hust.edu.cn/

hsymdock/ (webserver) (accessed on
20 August 2021)

[99–101]

GalaxyTongDock
cyclic and dihedral, (up

to 12 subunits),
user-defined

interacting and
non-interacting

residues

http:
//galaxy.seoklab.org/cgi-bin/submit.

cgi?type=TONGDOCK_INTRO
(webserver) (accessed on 20 August

2021)

[102]

HADDOCK

cyclic and dihedral, up
to 20 subunits and up

to 10 segment pairs for
each symmetry,

user-defined

a variety of
experimental restraints

https:
//wenmr.science.uu.nl/haddock2.4/
(webserver) (accessed on 20 August

2021)

[103–105]

Homology-Based Modeling of Homo-Oligomers

Rosetta SymDock

cyclic, dihedral,
icosahedral, helical,

(only cyclic and
dihedral with up to 10

subunits on the
webserver),
user-defined

https://rosie.graylab.jhu.edu/
symmetric_docking/submit

(webserver) (accessed on 20 August
2021)

[106,107]

https://zdock.umassmed.edu/m-zdock/
https://zdock.umassmed.edu/m-zdock/
http://bioinfo3d.cs.tau.ac.il/SymmDock/
http://bioinfo3d.cs.tau.ac.il/SymmDock/
https://cluspro.bu.edu/
http://vakser.compbio.ku.edu/resources/gramm/grammx/
http://vakser.compbio.ku.edu/resources/gramm/grammx/
http://www.weizmann.ac.il/Chemical_Research_Support//molfit/home.html
http://www.weizmann.ac.il/Chemical_Research_Support//molfit/home.html
http://www.weizmann.ac.il/Chemical_Research_Support//molfit/home.html
http://sam.loria.fr/
http://huanglab.phys.hust.edu.cn/hsymdock/
http://huanglab.phys.hust.edu.cn/hsymdock/
http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=TONGDOCK_INTRO
http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=TONGDOCK_INTRO
http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=TONGDOCK_INTRO
https://wenmr.science.uu.nl/haddock2.4/
https://wenmr.science.uu.nl/haddock2.4/
https://rosie.graylab.jhu.edu/symmetric_docking/submit
https://rosie.graylab.jhu.edu/symmetric_docking/submit
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Table 1. Cont.

Software Symmetry Types

Additional
Information That Can
Be Used to Guide the

Modeling

Website References

Rosetta
Fold-and-dock

cyclic, dihedral,
icosahedral, helical,

user-defined

a variety of
experimental restraints

https://www.rosettacommons.org/
(accessed on 20 August 2021) [108]

Rosetta
SymDock2

cyclic, dihedral,
icosahedral, helical,

user-defined

a variety of
experimental restraints

https://www.rosettacommons.org/
(accessed on 20 August 2021) [109]

SWISS-MODEL symmetry is inferred
from the templates

https://swissmodel.expasy.org/
(webserver) (accessed on 20 August

2021)
[110–112]

GalaxyGemini symmetry is inferred
from the templates

http://galaxy.seoklab.org/cgi-bin/
submit.cgi?type=GEMINI (webserver)

(accessed on 20 August 2021)
[113]

GalaxyHomomer

symmetry is inferred
from the templates

(user-defined), Cn can
also be modeled

http://galaxy.seoklab.org/cgi-bin/
submit.cgi?type=HOMOMER

(webserver) (accessed on 20 August
2021)

[114,115]

HDOCK cyclic and dihedral,
user-defined

the binding site,
distance restraints,

SAXS based restraints

http://hdock.phys.hust.edu.cn/
(webserver) (accessed on 20 August

2021)
[116]

ClusPro TBM
the user defines

stoichiometry, not
symmetry

https://tbm.cluspro.org/template_
based/index.php (webserver)
(accessed on 20 August 2021)

[117]

Rosetta CM
cyclic, dihedral,

icosahedral, helical,
user-defined

a variety of
experimental restraints

https://www.rosettacommons.org/
(accessed on 20 August 2021) [118,119]

3.1. Ab Initio Docking of Protein Complexes with Cyclic Symmetries

Cyclic symmetry is the most frequently encountered symmetry type in protein homo-
oligomers, especially in its simplest form—the C2 symmetry in symmetrical homo-dimers.
There are several tools available where the user can impose such symmetry in docking of
subunits—some allow modeling of only a small assembly such as dimer or trimer, while
others are less restricted in the number of subunits.

M-ZDOCK [86] is an extension to ZDOCK [120], which uses a grid-based fast Fourier
transform (FFT) approach to sampling. The online version allows docking of up to 24 sub-
units. In contrast to ZDOCK, sampling space is reduced to oligomers that are Cn symmetric.
Imposing symmetry at the initial sampling instead of filtering the results at the end also
leads to improvements in both the accuracy and computational time [86]. Although M-
ZDOCK uses the ZDOCK scoring function [121], which does not provide the user with
the ability to include experimentally determined restraints, integration of cross-linking
mass spectrometry (XL-MS) data with Z-DOCK was recently reported to improve docking
results and even provide insight into the symmetry of the analyzed protein complex [122].

A similar approach is also employed in SymmDock [87,88] which incorporates symmetry-
based restraints to the PatchDock algorithm for pairwise docking, which is based on shape
complementarity [123]. SymmDock can generate homo-oligomers with cyclic symmetry
(up to 100 subunits), but an adapted version was also successfully used to generate models
with dihedral D2 symmetry [124]. To further improve modeling efficiency, users can
provide external information on the binding site to restrict the sampling and distance
restraints for scoring. The same group also developed the MultiFoXS [125] for fitting SAXS

https://www.rosettacommons.org/
https://www.rosettacommons.org/
https://swissmodel.expasy.org/
http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=GEMINI
http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=GEMINI
http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=HOMOMER
http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=HOMOMER
http://hdock.phys.hust.edu.cn/
https://tbm.cluspro.org/template_based/index.php
https://tbm.cluspro.org/template_based/index.php
https://www.rosettacommons.org/
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data to multi-state models, which is especially useful in cases when multiple oligomeric
states are present during data acquisition.

ClusPro, another software that uses FFT for sampling [62,90,91], also has an option to
directly incorporate cyclic symmetry in docking [89]. However, docking is limited to dimers
and trimers only. In contrast to M-ZDOCK and SymmDock, which rotate the subunit to
generate symmetrical homo-oligomers, ClusPro rotates the coordinate system. Symmetry
is enforced by only considering translations that are within 2 Å from the plane, defined
by the symmetry axis of rotation [62]. Similar to SymmDock, distance restraints [126] and
the binding site can be defined to narrow the sampling space. In addition to defining
residues that participate in interactions (attraction), users can also provide those that are
known to be located outside the interaction surface (repulsion). Distance restraints can
be combined into groups of restraints and sets of groups. This feature is especially useful
in the modeling of homo-oligomers, as distance restraints are often ambiguous (intra-
and inter-subunit ambiguity) and/or symmetry related, as we have shown in the case
of chemical-crosslinking-based restraints [127]. An option to filter final docking results
according to their agreement with SAXS data [128,129] is also integrated.

Symmetry modeling of up to eight subunits can also be defined in GRAMM-X [92,93].
Symmetry is enforced by only considering models, provided by the discrete FFT grid
search, that are symmetrical within a defined cutoff [94].

3.2. Ab Initio Docking of Protein Complexes with Dihedral and Cubic Symmetries

Although dihedral, tetrahedral, octahedral and icosahedral symmetric complexes can
be in principle generated with additional transformations of protein complexes with cyclic
symmetry, the software that incorporate this option in their ab initio docking workflow are
rare. However, some were designed specifically for this purpose.

MolFit was the first algorithm to employ FFT to calculate the correlation function [96]
and was adapted for the generation of D2 protein complexes [95] by utilizing two ap-
proaches named ab/cd and ab/ac. The first applies translation and rotation to C2 symmet-
ric docking solutions, provided by MolFit, to assemble the tetramer. The second combines
two different C2 docking solutions (ab and ac), each representing one interaction surface
between subunits in the tetramer. Later, the algorithm was extended to generate cyclic and
dihedral symmetric complexes with a higher number of subunits [97].

Symmetry assembler (SAM) [98] employs spherical polar Fourier representations for
sampling to rapidly assemble protein complexes with any closed symmetry, adopted by
homo-oligomeric protein complexes. In all cases, (parts of) protein complexes with cyclic
symmetry are first generated. Dihedral complexes are then assembled with additional
translation and rotation. Similarly, tetrahedral, octahedral and icosahedral complexes are
assembled from C3 trimers.

HSYMDOCK [101] also enables the building of protein complexes with cyclical [100] or
dihedral symmetries. An important feature of this software is that it includes an automatic
prediction of the symmetry, without the user’s input. Recently, [130], the software was
expanded to include long-range interactions in the FFT-based search algorithm [131].
Dihedral symmetries are built with an approach similar to that of the ab/cd algorithm
of MolFit and SAM, by an additional C2 symmetric docking of a previously predicted
Cn complex.

GalaxyTongDock [102], similar to M-ZDOCK described above, is also based on
ZDOCK [120]. While M-ZDOCK is limited to cyclic symmetries, GalaxyTongDock also
models dihedral symmetries with up to 12 subunits. Additionally, the user can provide a
list of interacting and non-interacting residues to guide the docking.

Protein complexes with dihedral symmetry can also be modeled with HADDOCK [103,105],
one of the most popular software for data-driven docking of biological macromolecules.
The HADDOCK protocol consists of three stages. First, rigid body energy minimization is
performed to identify docking poses, consistent with provided restraints. Second, there
is a semi-flexible refinement in torsion angle space of all residues within the certain ra-
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dius from the other molecule (5 Å by default). Third, a final explicit solvent refinement
is performed. Various types of data can be used to guide the docking [132], including
NMR-based restraints (residual dipolar couplings [133] relaxation anisotropy [134], pseudo
contact shifts [135], interface predictions [136], and the radius of gyration obtained from
experiments such as SAXS [137] and cryo-EM [138,139].

Multimer docking was introduced to HADDOCK in 2010 [104]. Currently, up to
20 subunits can be submitted to the HADDOCK webserver. The user can impose symmetry
by defining C2 pairs, C3 triplets, C4 quadruplets and/or C5 quintuplets of subunits. By
combining these options, complexes with dihedral symmetry can also be assembled. Sym-
metry is imposed at every stage of the HADDOCK protocol by requiring the intermolecular
distances between symmetric Cα to be the same.

A protocol for symmetry docking with Rosetta SymDock, another very popular
software for molecular docking, was demonstrated to be successful for modeling cyclic,
dihedral, helical and icosahedral complexes [106]. It uses a real space Monte-Carlo-plus-
minimization protocol, which is composed of two stages: a fast, low-resolution stage
followed by atomic-scale optimization. Symmetry is imposed at both stages [106]—once
the first subunit is introduced, the others are generated by symmetry transformations. If
the homo-oligomer is composed of more than three subunits, only three adjacent ones
are used, with energy only calculated for the central one, to improve the performance. In
the second stage, any transformation to the sidechain-atoms of the first subunit is also
mimicked in the other subunits. This approach was later expanded to the so-called “Fold-
and-Dock” protocol [108] starting with extended polypeptide chains and simultaneously
folding the subunits while docking them together, which is especially useful for modeling
interleaved homo-oligomers. Recently, an updated version of SymDock—SymDock2—was
released [109]. SymDock2 improves docking performance by using a more advanced
scoring scheme called Motif Dock Score in the first, low-resolution stage of modeling, and
including backbone flexibility in the second stage.

The accuracy of modeling predictions can be further improved by including restraints
based on experimental data, such as NMR [140], cross-linking [141], SAXS [142] and
sequence co-evolution data [143].

3.3. Homology-Based Modeling of Homo-Oligomers

The increasing number of solved 3D structures of protein complexes, deposited to
PDB, enabled the development of homology-based algorithms for homo-oligomer struc-
ture prediction.

The first homology-based modeling software that was available to users as an auto-
mated pipeline for protein structure prediction was SWISS-MODEL [110–112]. Although it
was initially limited to predictions of individual proteins, it was later expanded to model
oligomeric structures [144]. The performance of oligomeric structure modeling was later
improved by identifying protein–protein interactions with a conservation score that calcu-
lates the ratio between the interface and surface residue entropy from multiple sequence
alignments of homologous proteins. This builds upon the assumption that residues at
the interaction surface are more conserved compared with other residues on the protein
surface [145]. Additionally, two features were introduced to improve the quality of the final
predictions [145]: (1) quaternary structure score (QS-score), which quantifies the similarity
between interfaces as a function of shared interfacial contacts, and (2) supervised machine
learning approach, support vector machines (SVM), to predict the expected model-target
QS-score.

One of the first software, designed specifically for template-based homo-oligomeric
modeling, was GalaxyGemini, developed by the Chaok Seok group [113]. GalaxyGemini
runs an HHsearch [146] on the homo-oligomer database, with the user inputted subunit
structure, to extract templates based on sequence and tertiary/quaternary structure similar-
ity. Homo-oligomeric models are then generated by superimposing the subunit structure
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on the subunits of the homo-oligomer template with TM-align [147] and rigid-body energy
minimization to remove steric clashes.

The same group later also developed another software homo-oligomer structure
prediction—GalaxyHomomer [114,115], which combines template-based modeling, utiliz-
ing GalaxyTBM [148], as well as ab initio modeling, if less than 5 templates with sufficient
homology are available. The oligomeric state can be specified by the user or inferred from
homology-based templates. When less than 5 templates are available, the oligomeric state
is predicted by ab initio modeling using GalaxyTongDock [102] algorithm; however, only
Cn symmetries are considered. The key advantages of GalaxyHomomer over its predeces-
sor GalaxyGemini are the final terminal region and loop-remodeling, using GalaxyLoop
GalaxyLoop [149–151] while considering the symmetry and overall structure relaxation by
GalaxyRefineComplex [152].

Symmetric docking of cyclic and dihedral complexes was also introduced to the
HDOCK webserver [116]. HDOCK also employs a hybrid approach, combining template-
based and ab initio docking. Template-based modeling is used if a suitable template of the
complex is available; otherwise, ab initio docking is performed with HDOCK algorithm for
multimer docking, while restricting the search space to abide by the symmetry-imposed
constraints. In contrast to HSYMDOCK, developed by the same group, HDOCK also
enables users to define the binding site and distance restraints or provide SAXS data to
improve the docking result.

Recently, ClusPro template-based modeling (TBM) webserver was launched [117].
However, the functionality of ClusPro TBM still has some limitations in comparison to
ClusPro. Users are not able to provide any experimental data to guide the docking,
and symmetry cannot be defined. Homo-oligomeric models are generated by searching
potential templates that agree with the user-defined stoichiometry and then copying the
subunit to the matching positions, followed by interface optimization with fixed backbones.

Symmetry constraints can also be used in Rosetta’s comparative modeling protocol,
Rosetta CM [119]. Target sequences are modeled onto template backbone, followed by
fragment-based modeling of gaps and all-atom optimization. Only templates with the
target symmetry are considered [153]. Symmetry is also imposed in the second and the
third step of the protocol [118].

3.4. Other Computational Approaches, Used for Modeling Homo-Oligomers

Although not designed for handling symmetric complexes, several docking algo-
rithms and servers, not described above, were successfully employed for docking homo-
oligomeric complexes in the recent CASP-CAPRI experiments [94,154]: SWARMDOCK [155],
PPI3D [156,157] and LzerD [158,159] MDOCKPP [160]. However, it needs to be noted that
they were often combined with the algorithms for symmetry docking to impose symmetry.

To tackle homo-oligomer modeling on a proteome scale, the ProtCHOIR tool was
recently developed and applied to the Mycobacterium abscessus proteome as a proof-of-
concept as part of the Mabellini project [161].

The development of deep learning methods led to a dramatic improvement in struc-
ture prediction of uncomplexed proteins, especially by the AlphaFold2 algorithm [162].
On the other hand, comparable improvement was not observed in the modeling of protein
complexes, although the AlphaFold2 authors claim it often provides good predictions for
homo-oligomers, even those with intertwined chains. Given the previous successes of
the Rosetta protocol, the recent release of the RoseTTAfold [163], which is also available
as a webserver https://robetta.bakerlab.org (accessed on 20 August 2021), also holds
great promise.

4. Conclusions

Identification of protein homo-oligomers, and other assemblies in general, from crystal
structures has a long history and continues to be an important aspect of protein structure
determination. In the last decades, computational methods are becoming more and more

https://robetta.bakerlab.org
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relevant due to the high number of experimental template structures for homology model-
ing and for deciphering the nature of inter-subunit contacts. However, despite significant
advancement in several algorithms designed to specifically tackle modeling of homo-
oligomers, and advances in protein–protein docking algorithms in general, there is still
plenty of room for improvement.

Highly accurate models can be predicted for homodimers, especially when good
templates are available. However, predictions are poorer for higher-order oligomers or
cases without suitable homology-template of the complex, as can be seen from CASP
(critical assessment of protein structure prediction)-CAPRI (critical assessment of predicted
interactions) experiments [94,154]. For example, in the last CASP-CAPRI experiment, no
good predictions were made for 4 out of 6 difficult targets [154].

Evaluation of protein assembly predictions in CASP13 led to similar conclusions [164].
The authors of the evaluations also pointed out three challenges that need to be addressed
to improve docking predictions: (1) combining modeling of subunits with modeling of
the complex; (2) separating intra-chain from inter-chain contacts; and (3) improving the
evaluation of isologous interfaces between subunits, especially in the case of inter-subunit
interactions between the same residues or residues that are very close in the amino acid
sequence. Considering recent advances of the protein structure prediction approaches
using deep learning, expectations for improved and novel modelling approaches for protein
complexes are likewise high.
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