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Abstract: Hypertrophic cardiomyopathy (HCM) is the most common form of hereditary cardiomy-
opathy. It is characterized by an unexplained non-dilated hypertrophy of the left ventricle with
a conserved or elevated ejection fraction. It is a genetically heterogeneous disease largely caused
by variants of genes encoding for cardiac sarcomere proteins, including MYH7, MYBPC3, ACTC1,
TPM1, MYL2, MYL3, TNNI3, and TNNT23. Preclinical evidence indicates that the enhanced cal-
cium sensitivity of the myofilaments plays a key role in the pathophysiology of HCM. Notably, this
is not always a direct consequence of sarcomeric variations but may also result from secondary
mutation-driven alterations. Long non-coding RNAs (lncRNAs) are a large class of transcripts
≥200 nucleotides in length that do not encode proteins. Compared to coding mRNAs, most lncRNAs
are not as well-annotated and their functions are greatly unexplored. Nevertheless, increasing evi-
dence shows that lncRNAs are involved in a variety of biological processes and diseases including
HCM. Accumulating evidence has indicated that lncRNAs are dysregulated in HCM, and closely
related to sarcomere construction, calcium channeling and homeostasis of mitochondria. In this
review, we have summarized the known regulatory and functional roles of lncRNAs in HCM.

Keywords: hypertrophic cardiomyopathy; long non-coding RNA; genetic variants; cardiovascu-
lar diseases

1. Introduction

Hypertrophic cardiomyopathy (HCM) is one of the most prevalent inherited disor-
ders of cardiomyocytes, without specific geographic, ethnic, or sex patterns of distribu-
tion. Studies estimate a prevalence of HCM at a range between 0.16–0.29% (~1:625 to
1:344 individuals) in the general adult population [1]. HCM is categorized as a typical
single gene disorder with variable penetrance and expression, exhibiting an autosomal
dominant pattern of inheritance. More than 1500 gene variants have been linked to HCM,
with over 95% of them found in 11 or more genes encoding sarcomeric proteins, the heart’s
contractile building blocks [2]. Variants of HCM with autosomal recessive and X-linked
modes of inheritance have been described but are rare [3,4].

Phenotypically, HCM is characterized by an increase in the left ventricular wall
thickness (end-diastolic left ventricular wall thickness≥15 mm or the equivalent relative
to the body surface area in children that cannot be solely explained by abnormal loading
conditions (European Society of Cardiology Guidelines) [5]. Ventricular wall thickness to
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lesser degrees (13–14 mm) can also be diagnostic of HCM, especially when it is identified
in family members [6]. Additionally, cardiac hypertrophy observed in HCM is typically
asymmetric, with the greatest involvement most commonly at the basal interventricular
septum subjacent to the aortic valve (Figure 1A). It is infrequently restricted to other
myocardial regions, such as the posterior wall of the left ventricle in symmetric hypertrophy
(Figure 1B) and at the apex in apical hypertrophy (Figure 1C).
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trophy, present in almost one-half and approximately three-fourths of patients with un-
derlying contributing variants by the third and sixth decades of life, respectively. Due to 
the age-dependent expression of HCM variants, it is expected that its prevalence will be 
higher in the elderly. Attesting to this is the fact that HCM has been documented in 0.29% 
(1:333) of 60-year-old subjects undergoing echocardiography for cardiovascular evalua-
tion in the United States, United Arab Emirates and in other parts of the globe [7–10]. 
Furthermore, when more sensitive imaging methods are used, or when more family mem-
bers from a family diagnosed with HCM are evaluated clinically and through genetic test-
ing, a much higher estimate of 0.6% (1:167) has been proposed [11–13]. This warrants that 
the mechanism underlying HCM be investigated at depth to identify novel biomarkers, 
allowing for an uncomplicated diagnosis of the condition. Accurate estimates can thus be 
obtained, facilitating the development of suitable therapeutic and management strategies. 

Long non-coding RNAs (lncRNAs) have transcripts ≥200 nucleotides that do not code 
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and their role in the physiological milieu remains largely unexplored. Increasing evidence 
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with an overview of HCM, focusing on the molecular genetic aspects. Next, we elaborate 
on lncRNAs’ role in a variety of pathophysiological states focusing on HCM. Lastly, we 
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symmetrical stiffening and thickening of the left ventricle in a circumferential pattern shaded in red.
(C) Apical Hypertrophy: stiffening and thickening of the apex of the left ventricle shaded in red.

Estimating the prevalence of HCM based on clinical detection of cardiac hypertro-
phy has many limitations. The first issue lies with age-dependent expression of cardiac
hypertrophy, present in almost one-half and approximately three-fourths of patients with
underlying contributing variants by the third and sixth decades of life, respectively. Due to
the age-dependent expression of HCM variants, it is expected that its prevalence will be
higher in the elderly. Attesting to this is the fact that HCM has been documented in 0.29%
(1:333) of 60-year-old subjects undergoing echocardiography for cardiovascular evaluation
in the United States, United Arab Emirates and in other parts of the globe [7–10]. Further-
more, when more sensitive imaging methods are used, or when more family members
from a family diagnosed with HCM are evaluated clinically and through genetic testing,
a much higher estimate of 0.6% (1:167) has been proposed [11–13]. This warrants that
the mechanism underlying HCM be investigated at depth to identify novel biomarkers,
allowing for an uncomplicated diagnosis of the condition. Accurate estimates can thus be
obtained, facilitating the development of suitable therapeutic and management strategies.

Long non-coding RNAs (lncRNAs) have transcripts ≥200 nucleotides that do not code
for proteins. In comparison to messenger (m) RNAs, lncRNAs are less well-annotated,
and their role in the physiological milieu remains largely unexplored. Increasing evidence
shows that lncRNAs are implicated in causation of HCM. However, a comprehensive
review evaluating the link/association of lncRNA with HCM is currently absent in the
literature. In this manuscript, we address this gap of information. First, we provide the
reader with an overview of HCM, focusing on the molecular genetic aspects. Next, we
elaborate on lncRNAs’ role in a variety of pathophysiological states focusing on HCM.
Lastly, we identify areas of further research that still need to be addressed such that
lncRNAs can be effectively employed as novel biomarkers for the early detection and
suitable management of HCM.

2. Molecular Genetics of HCM

Based on several identified variants in major causal genes and all encoding sarcomere
proteins, HCM is classified as a genetically heterogeneous condition. HCM patients are
found to have some sort of genetic mutation in one-half of the cases on average [14,15].
Genetic dissection of HCM patients has revealed a series of alterations in more than 11 gene
encoding sarcomeric proteins [16]. HCM follows the dominant autosomal inheritance
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pattern with variable penetrance and expression related to age or as a new variation in non-
related family cases [17]. The most dominant mutation is a missense mutation, replacing
one nucleic acid with another, resulting in the modification of the translated amino acid
and subsequent protein. Deletions and insertions are also found to be common in the
pathogenesis of HCM leading to the translation of a modified protein [18].

Most variations occur in genes that are responsible for normal functioning of con-
tractile sarcomeric proteins: troponin I and T, myosin binding protein C, myosin heavy
and light chains, α-actin, titin and α-tropomyosin. Nevertheless, in rare cases, variations
in non-sarcomeric protein coding genes have also been reported in HCM patients [19].
The genes predominantly related to the HCM development are TNNT2, MYH7, MYBPC3,
ACTC1, TPMI, TNNI3, TNNC1, TNNC2, MYL2, MYL3, CSRP3, and MYOZ2 (Figure 2 and
Table 1) [20].
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The MYH7 and MYBPC3 (myosin-binding protein C) genes are the most prevalent
and are recognized to be responsible for approximately 50% of patients with familial
HCM [21,22]. Variants TNNT2, TNNI3 (cardiac troponin I) and TPM1 (α-tropomyosin) are
comparatively infrequent causes of HCM and account for <10% of all cases [23,24]. Varia-
tions in ACTC1 (cardiac α-actin), MYL2 (myosin light chain 2), MYL3 (myosin light chain 3)
and CSRP3 (cysteine and glycine-rich protein 3) are also found to cause HCM [25,26].
While variations in TCAP (telethonin) [27], TTN (titin) [28], MYOZ2 (myozenin 2), FHL1
(four-and-a-half LIM domains 1) [29], and TRIM63 (ubiquitin E3 ligase tripartite protein 63
or MuRF1) usually occur in rare cases and small families [30].

The concept of phenocopies within the HCM setting is also vital to highlight. These
patients might have a HCM phenotype without the reported HCM genetic variants,
but often present are a few other diseases driving to a similar heart condition, such as
LAMP2 cardiomyopathy, Fabry malady, PRKAG2, Pompe Disease, Noonan syndrome,
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Wolff-Parkinson-White syndrome, Barth syndrome, Forbes disease, and/or amyloidosis
(Table 2) [31].

Table 1. List of genes implicated in hypertrophic cardiomyopathy.

Gene Protein Location Function Locus Frequency (%)

ACTC1 Cardiac actin-1

Thin Filament

Actomyosin interaction 15q14 <1

TPMI α-tropomyosin Places the troponin complex on
cardiac actin 15q22.2 <1

TNNI3 Cardiac troponin I Inhibitor of actomyosin
interaction 19q13.4 <5

TNNC1 Cardiac troponin C Calcium sensor in cardiac and
slow skeletal muscle 3p21.1 <1

TNNT2 Cardiac troponin T Regulator of actomyosin
interaction 1q32.1 ~10

MYBPC3 Myosin binding
protein C

Thick Filament

Cardiac contraction 11p11.2 ~40

MYH7 Cardiac myosin heavy
chain β

ATPase activity, force
generation 14q11.2 ~40

MYL2 Cardiac myosin light
chain 2 MYH7 binding protein 12q21.11 <1

MYL3 Cardiac myosin light
chain 3 MYH7 binding protein 3p21.31 <1

CSRP3 Cysteine and glycine
rich protein 3 Z-disk

Muscle LIM protein (MLP), a Z
disk protein 11p15.1 <1

MYOZ2 Myozenin 2 Z disk protein 4q26 <1

Table 2. Phenocopies of hypertrophic cardiomyopathy.

Syndrome Gene Protein Locus Frequency

Danon’s syndrome LAMP2 lysosome-associated membrane
protein-2 Xq24 rare

Forbes disease (Glycogen
Storage Disease Type 3) AGL Amylo-1,6-glucosidase 1p21 rare

Fabry’s disease (Lysosomal
Storage Disorder) GLA a-Galactosidase A Xq22 <5%

Pompe Disease (Glycogen
Storage Disease Type 2) GAA a-1,4-glucosidase deficiency 17q25.2-q25.3 rare

Noonan
syndrome/LEOPARD

syndrome

PTPN11
SOS1
RAFI

v-Ki-ras2 Kirsten rat sarcoma viral
oncogene
Homolog

Son of sevenless homolog 1
V-RAF-1 murine leukemia viral

oncogene homolog 1

12q24.1
2p22-p21

3p25

rare
rare

Friedreich’s ataxia FXN Frataxin 9q13 rare

Wolff-Parkinson-White
syndrome PRKAG2 AMP-activated protein kinase 7q35-q36.36 <1%

Barth syndrome/left
ventricular noncompaction

DTNA
TAZ

a-Dystrobrevin
Tafazzin (G4.5)

18q12
Xq28 rare
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3. Molecular and Biological Functions of lncRNAs

Long non-coding RNAs (lncRNAs) are characterized as RNAs having a transcript
length that surpasses 200 bp of nucleotides and are not decoded into proteins [32]. Although
lncRNAs were once thought to be byproducts of RNA polymerase II transcripts without
any specific biological function, an expansive collection of lncRNAs have been certified to
modulate cellular processes, such as genome and chromosome and modification, nuclear
transport and transcription stimulation, hence driving more analysts to investigate how
lncRNAs impact human biology. Classification of lncRNAs can be done in terms of function,
location, length, and mode of action and as of now there’s no single standard for their
categorization. Agreeing to their position within the genome, they can be categorized
as sense, antisense, bidirectional, intronic, intergenic, and enhancer lncRNAs [33]. At
the same time, they are commonly sorted as bait, scaffold, signal, and guide lncRNAs
according to their functional mechanisms [34]. Recent studies reported that lncRNAs can
translate small peptides to fine-tune common processes in a tissue-specific way, further
disclosing the esteem of lncRNAs as well as their complexity [35–38]. However, the modes
in which lncRNAs modulate gene expression are complicated and therefore, have not
been completely explained. LncRNAs can work through diverse modes of operations:
(1) binding to transcription factors or DNA directly to attain gene expression control at
the transcriptional level; (2) focusing on miRNAs, mRNAs, and proteins to regulate their
activities at the posttranscriptional level and (3) intertwining with chromatin complexes to
modulate epigenetic gene expression [39–41].

The mode of action of lncRNAs permits their presence in nearly all physiological
processes in living cells, thus relating them to a broad range of diseases. LncRNAs have
developed into potent novel molecules in disease prognosis, diagnosis and treatment. As
a result of their crucial role in diseases, researchers are presently developing tools and
technologies to make lncRNA-based drugs by targeting lncRNAs. The relationship between
chronic diseases and lncRNAs is explicit. In any case, cancer is the foremost studied illness
that is related to lncRNAs [42]. However, recent years has revealed accounting evidence
that has emphasized the role of lncRNA modulation in cardiovascular development as well
as in cardiovascular diseases [43]. A thorough functional characterization of lncRNAs may
help in the monitoring, prevention and treatment of cardiovascular diseases, including
cardiac hypertrophy, hypertension, myocardial infarction and heart failure. Recent studies
show that lncRNA-DACHI modulates heart function, and it was upregulated in heart
failure patients, whereas the knockdown of lncRNA-DACHI in Heart failure (HF) mice
hampered the HF development [44]. LncRNA-Safe was found to promote myocardial
fibrosis and its inhibition in fibroblasts impeded cardiac functions: showing that the Safe
can be a novel target for antifibrotic therapy [45]. Until now, MHRT, CHRF, MALATA1
and many more lncRNAs have been investigated in the cardiovascular field, particularly
in cardiac hypertrophy (Table 3) [33]. However, the functions of lncRNAs in diagnosis,
prevention and treatment of HCM are still understudied and should be further explored to
identify novel biomarkers for HCM.

Table 3. LncRNAs involved in pathogenesis of Cardiac Hypertrophy.

lncRNA Mechanism of Action

Plscr4 Protective against cardiac hypertrophy by sponging miR-214 to derepress Mfn2 [46]

Chast Promotes cardiac hypertrophy by activating NFAT signaling and downregulates Plekhm1 to induce
cardiac remodeling processes [47]

CHRF Induces cardiac hypertrophic response by sponging miR-489 to increase expression of Myd88, also by
sponging miR-93 to disinhibit PI3K/Akt pathway [48]

MIAT
Contributing factor to the pathogenesis of cardiac hypertrophy and act by
1-Sponging miR-150 to increase expression of P300 [49,50]
2-Sponging miR-93 to activate PI3K/Akt/mTOR pathway via TLR4 [49]
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Table 3. Cont.

lncRNA Mechanism of Action

Chaer Increases pro-hypertrophic gene expression by interacting with PCR2 to disinhibit hypertrophic gene
expression [51]

HOTAIR Inhibits progress of cardiac hypertrophy by sponging miR-19 to derepress PTEN expression [52]

ROR Promotes fetal genes and cardiomyocyte growth by sponging miR-133 [53]

MAGI1-IT1 Protects against cardiac hypertrophy by sponging miR-302e to derepress DKK1 and inactivate
Wnt/beta-catenin signaling [54]

Meg3 Promotes cardiac hypertrophy by activating STAT3 to sponge miR-361-5p and derepress HDAC9 [55]

SYNE1-AS1 Promotes cardiac hypertrophy and activate SP1 to sponge miR-525-5p to derepress SP1, forming a
positive feedback loop [56]

MALATI Protects against cardiac hypertrophy by sponging miR-302e to derepress DKK1 and inactivate
Wnt/beta-catenin signaling [57,58]

Ak045171 Promotes cardiac hypertrophy by binding with SP1, which promotes transcription activation of
MEG3 [59]

TINCR Attenuates cardiac hypertrophy by epigenetically silencing CaMKII [60]

UCA1 Promotes the progression of cardiac hypertrophy through competitively binding with miR-184 to
enhance the expression of HOXA9 [61]

XIST 1-Regulates cardiac hypertrophy by sponging miR-101 to derepress TLR2 [62]
2-Attenuates cardiac hypertrophy by sponging miR-330-3p to derepress S100 [63]

TUG1 1-Contributes to cardiac hypertrophy via regulating miR-29b-3p [64]
2-Alleviates cardiac hypertrophy by targeting miR-34a/DKK1/Wnt-β-catenin signaling [65]

VDR/CASC15 Facilitates cardiac hypertrophy via miR-432-5p/TLR4 axis [66]

CYTOR Protects against cardiac hypertrophy through miR-155 and downstream IKKi and NF-κB
signaling [67]

FTX Reduces hypertrophy by regulating the pten/pi3k/akt signaling pathway by sponging
microrna-22 [54]

PVT1 Positively regulates cardiac hypertrophy by an unknown mechanism [68]

CHAR Protects against cardiac hypertrophy via regulating miR-20b and the downstream PTEN/AKT
pathway [69]

KCNQ1OT1 Attenuates cardiac hypertrophy through modulation of the miR-2054/AKT3 axis [70]

ZEB2-AS1 Stimulates cardiac hypertrophy by downregulating PTEN [71]

PEG10 Aggravates cardiac hypertrophy by positively regulating HOXA9 [72]

NEAT Promotes cardiac hypertrophy through sponging microRNA-19a-3p/SMYD2 axis [73]

Ahit Protects against cardiac hypertrophy through suz12 -mediated downregulation of mef2a [74]

Gm15834 Alleviates autophagy-induced myocardial hypertrophy by sponging miR-30b-3p [75]

4. Emerging Role of lncRNAs in Pathogenesis of HCM

Numerous studies demonstrate that lncRNAs regulate pathophysiological processes
in cardiac hypertrophy by interacting with genes involved in mitochondria, sarcomeres,
and calcium transition at the intracellular level (Table 3). Many review articles have been
published on the recent advancement in establishing the role of lncRNA in physiological
cardiac hypertrophy [76–80]. However, there is a dearth of research regarding the function
of lncRNAs in the pathophysiology of hypertrophic cardiomyopathy (Table 4).

Current evidence suggests that lncRNAs could be a promising target for attenuating
or even reversing the pathological phenotype of hypertrophic cardiomyopathy. To date,
several animal experiments and bioinformatics analyses have been conducted to determine
the possible role of specific lncRNAs in the production of hypertrophic cardiomyopathy.
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However, we focused on those studies only involving the known mechanism of action of
lncRNAs in development of hypertrophic cardiomyopathy.

Table 4. LncRNAs involved in pathogenesis of hypertrophic cardiomyopathy.

lncRNA Mechanism of Action

Mhrt
Protect against pathological hypertrophic cardiomyopathy by inhibiting the Brg1-Hdac-Parp
chromatin repressor complex to prohibit initiation of Myh6-to-Myh7 switch 2. Reduce myocardin
acetylation/expression via HDAC5

MIAT Contributing factor to the pathogenesis of hypertrophic cardiomyopathy and act by mediating the
expression of miR-29a-3p

H19 Targets CaMKIIδ through miR-675 and functions as a negative regulator of hypertrophic
cardiomyopathy

CAIF Downregulated in end-stage cardiomyopathy

uc004cov.4 Upregulation leads to Hypertrophic obstructive cardiomyopathy-unknown mechanism

uc022bqu.1 Upregulation leads to Hypertrophic obstructive cardiomyopathy- unknown mechanism

4.1. H19 Regulates HCM through miR-675

H19 is an lncRNA that is expressed in a variety of tissues and is significantly increased
during myoblast differentiation and muscle regeneration. H19 may act as a sponge for
several miRNAs, thereby regulating the expression of numerous genes and signaling
pathways. In pathological heart failure and cardiac hypertrophy, H19 and its host miR-675
are upregulated. Some researchers identified H19 variants in a group of patients with
hypertrophic cardiomyopathy and compared their allele and genotype frequencies to
those of healthy controls. In patients without sarcomere variations, the H19 rs2107425
CC genotype was significantly increased (p = 0.017; odd ratio: 1.51). The H19 transcript
sequence revealed heterozygous carriers of a rare allele, rs945977096 AG, that was absent
in the controls. Their study established a statistically significant link between H19 variants
and an increased risk of developing hypertrophic cardiomyopathy. In pathological HCM
and heart failure tissues, H19 and its host miR-675 were upregulated. H19 silencing
resulted in cardiomyocyte hypertrophy, while overexpression resulted in cell size reduction
both at baseline and in response to phenylephrine, an effect that may be mediated by miR-
675. The SNP rs2107425 was associated with HCM, with the C allele being significantly
more prevalent in patients who did not have sarcomere variants. Thus, homozygotes for
rs2107425 CC would have a higher risk of developing HCM [81].

4.2. LncRNA-MIAT Regulates HCM through miR-29a-3P

In GC cell lines and tissues, the miR-29a-3p is an important miRNA with poor ex-
pression that is regulated by myocardial infarction-associated transcript (MIAT). MIAT
can suppress the expression of miR-29a-3p as an endogenous miRNA sponge by making
bonds with the miR-29a-3p inside the GC cells. Many studies investigated the expression
of MEG3, MIAT, and H19 in effort to identify the particular lncRNA that regulates the
miR-29a expression in myocardial fibrosis. Negative correlation of MIAT with the miR-29a
expression was discovered. Based on ROC analysis, miR-29a and MIAT may accurately
predict the prognosis in HCM patients [82].

4.3. LncRNA-Mhrt Protects the Myocardium against HCM

Han et al., identified an important lncRNA transcript cluster from Myh7 loci, which
presented a new heart failure mechanism linked with lncRNA-chromatin. They named this
transcript as “Myosin Heavy Chain Associated RNA Transcripts (Mhrt or MyHEART)”. In
the heart, the Brg1-Hdac-Parp chromatin repressor complex3 is activated by pathological
stress to inhibit transcription of Mhrt. This stress-induced repression of Mhrt is important
for the development of cardiomyopathy: however, Mhrt restoration at a pre-stress level
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protects the heart from hypertrophic cardiomyopathy. In humans, MHRT is also present at
MYH7 loci and is found to be suppressing in many kinds of cardiomyopathies, suggesting
a conserved lncRNA mechanism in human hypertrophic cardiomyopathy [83].

4.4. LncRNA-CAIF Attenuates HCM

Cardiac autophagy inhibitory factor (CAIF) is a unique long noncoding RNA that
protects against myocardial infarction. The function of CAIF in end-stage cardiomyopathy
was investigated by Wu et al. This research included patients with end-stage cardiomy-
opathy and the control subjects. CAIF was found to be downregulated in end-stage
cardiomyopathy patients as compared to healthy controls, hence it may be used as a diag-
nostic and prognostic marker [84]. CAIF expression differentiated patients with end-stage
cardiomyopathy from stable controls and predicted patient survival.

4.5. LncRNAs uc004cov.4 and uc022bqu.1 Mediate HCM

In another study, seven different cardiac and mitochondrial remodeling-related lncR-
NAs were quantified in control HOCM and HNCM patients. LncRNAs uc022bqu.1 and
uc004cov.4 were substantially upregulated in patients with HOCM compared to controls,
but no substantial deregulation was found in patients with HNCM. In both patients, the
lncRNAs uc004coz.1, uc004cos.4, uc022bqw.1, uc011mfi.2, and uc022bqs.1 (LIPCAR) were
not deregulated relative to the control group. When ROC curve analysis of the substantially
increased lncRNAs in HOCM was conducted, both uc022bqu.1 and uc004cov.4 had the
highest potential to considerably classify HOCM patients under the curve area of >0.68 [85].

4.6. High-throughput Screening of lncRNAs in HCM Patients

Hypertrophic cardiomyopathy (HCM) is one of the most common hereditary heart
disorders. However, the signaling pathways and regulatory networks responsible for the
manifestation of HCM are poorly understood. Recently, some bioinformatics studies have
been done to profile the differentially expressed lncRNAs in HCM patients and to also
understand the gene regulatory networks. Case in point, Guo et al. employed weighted
correlation network analysis (WCNA) and linear models for microarray data (Limma) to
analyze GSE68316 data from cardiac tissue in the Gene Expression Omnibus database.
Their analysis did reveal that three circulating lncRNAs (lnc-P2RY6-1:1, ENST00000488040
and ENST00000588047) were significantly upregulated in the HCM cardiac tissue, but they
didn’t elaborate how these circulating lncRNAs are involved in the molecular mechanism
underlying the pathogenesis of HCM. Other similar studies have also been conducted.
Readers can refer to these studies for details [86–91].

5. Probing the Transcriptome for Identification of lnc—RNAs Implicated in HCM

RNA-seq is an emerging technique in the transcriptome profiling system. Here we
present an overview of experimental design and workflow that can be effectively adopted
to generate a dedicated protocol, which can be used to identify the differentially expressed
lncRNAs in HCM vs. normal heart tissues (Figure 3).

The first and foremost step is the recruitment of HCM patients based on the results of
genetic testing for HCM casual genes and collection of their heart tissue through myocardial
biopsy. However, this can pose a challenge especially when it comes to obtaining ethical
approval, in addition to the fact that myocardial biopsy is a specialized procedure that
requires extensive training to perform. One of the ways to bypass this challenge will be to
use heart tissue samples obtained from cadavers whose clinical history shows the presence
of HCM. Our research group is in the process of standardizing a protocol for isolating
total RNA from cadaveric heart tissue samples (Naidoo et al., unpublished data). Total
RNA isolated from patients or cadaveric specimens can then be used for the generation
of sequencing libraries and resulting libraries can then be sequenced in paired-end mode
using a suitable platform such as the Illumina HiSeq system.
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The raw sequencing reads obtained can then be subjected to base quality filtering
and adapter trimming. Clean reads thus obtained will then be required to align with the
reference genome (Human-GRCh37) using a fast and sensitive alignment program for
mapping next-generation sequencing reads.
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After assembling all clean paired-end reads, lncRNAs can be filtered according to
specific defined criteria: (1) the assembled transcript must have specific strand information:
(2) the length should be more than 200 bp: (3) it must have more than one exon and (4)
lack of coding potential according to a defined coding potential calculator (CPC) algorithm,
such that only the “noncoding” transcripts are obtained as an output.

All long non-coding RNAs will then require incorporation in a differential expression
analysis workflow (such as the Stringtie workflow freely accessible on the webpage of The
Center for Computational Biology at Johns Hopkins University) leasing to the identification
of differentially expressed genes (DEGs). A comparison of DEGs between normal and HCM
heart tissues can then be performed using a bioinformatics tool such as sleuth (Readers
are requested to refer to the excellent article: Differential analysis of gene regulation at
transcript resolution with RNA-seq by Cole Trapnell, David G Henderickson, Martin
Savageau, Loyal Goff, John L Rinn and Lior Pachter, Nature Biotechnology 31, 46–53 (2013);
where this aspect has been discussed in detail.).

6. Conclusions

There has been considerable progression in the molecular mechanisms regarding
hypertrophic cardiomyopathy over the past several decades. However, the pathological
mechanisms of HCM for improved treatment strategies still require further elucidation.
Covering a large body of evidence, this review illustrates that lncRNAs may act as an
important participant in the complex network that regulates the pathological process of
HCM, identifying them as potentially promising targets for the treatment of hypertrophic
cardiomyopathy. It is an emerging avenue in providing new insights to explore the patho-
physiologic mechanisms and establishing novel therapeutic targets for disease modulation
and prevention.
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