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Abstract: In this review article, tissue engineering and regenerative medicine are briefly explained
and the importance of scaffolds is highlighted. Furthermore, the requirements of scaffolds and how
they can be fulfilled by using specific biomaterials and fabrication methods are presented. Detailed
insight is given into the two biopolymers chitosan and collagen. The fabrication methods are divided
into two categories: isotropic and anisotropic scaffold fabrication methods. Processable biomaterials
and achievable pore sizes are assigned to each method. In addition, fiber spinning methods and
textile fabrication methods used to produce anisotropic scaffolds are described in detail and the
advantages of anisotropic scaffolds for tissue engineering and regenerative medicine are highlighted.

Keywords: scaffold; biomaterials; biopolymers; collagen; chitosan; pores; fibers; anisotropic; tex-
tile; spinning

1. Introduction

The two terms “regenerative medicine” and “tissue engineering” are used synony-
mously as well as differently in the current literature. It is difficult to distinguish between
both terms, as their descriptions have a great deal of intersection. The ideas and concepts
of “regenerative medicine” and “tissue engineering” have been used since the beginning
of the 20th century: Alexis Carrel was developing techniques to cultivate cells in vitro and
was proposing with Charles Lindbergh to grow organs as early as the 1930s [1]. These
concepts were focused exclusively on cells until the 1970s. By discovering the importance
of the extracellular matrix in the 1970s, the concept of “tissue engineering” was established
in the following decades. The term “regenerative medicine” has gained in importance
with the developments in stem cell research since the 2000s [2]. If a differentiated view of
the two terms is indispensable, “tissue engineering” may be assigned to the engineering
context and “regenerative medicine” to the medical or biological context. Likewise, both
terms can be summarized as “tissue engineering and regenerative medicine” (TERM).

2. Tissue Engineering and Regenerative Medicine (TERM)
2.1. Fundamentals of Tissue Engineering and Regenerative Medicine

The TERM approach is based on the interaction of up to three components (triad).
New tissue forms by cultivating cells on cell carriers or scaffolds under the influence of
chemical or physical signals (Figure 1).
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Figure 1. The triad of tissue engineering and regenerative medicine in the context of the in situ, in vivo and in vitro strategy
with in vivo and ex vivo cell culture.

The cells used in the TERM are mostly stem cells. These cells can self-renew in terms of
proliferation and generate somatic cells, which can proliferate only to a very limited extent.
The relevant stem cells for TERM are mesenchymal stem cells (MSCs) [3], embryonic stem
cells (ESCs) [4], and induced pluripotent stem cells (iPSCs) [5,6].

Chemical signals such as growth factors influence the proliferation and differentiation
of cells. However, as the bioactivity of growth factors has a short half-life in physiological
environments, delivery systems are developed for on-demand growth factor delivery [7–9].
Physical signals are equally a focus of research as moderate mechanical stimulation ensures
maintenance of the natural phenotype of tissues [10]. Mechanical stimulation methods
are therefore used to generate a specific tissue phenotype in TERM such as cartilage [11],
tendon [12], or cardiac muscle tissue [13].

Scaffolds serve as cell carriers in the form of artificial extracellular matrices (ECMs).
They determine the geometric template for the tissue to be generated by stabilizing cells and,
if necessary, signal molecules in a defined manner in three-dimensional space. Scaffolds
must have an open-pore structure to allow migration of cells and nutrients. Many scaffolds
employ pore sizes between 100 and 400 µm, with pore sizes varying depending on the
specific cell and tissue type [14]. Therefore, the fabrication method of scaffolds must
enable adjustability of the pore size. In addition, scaffolds control the proliferation and
differentiation potential of cells through their material-specific properties such as surface
chemistry, roughness, structuring, and stiffness (mechanotransduction) [15–17]. After
successful proliferation, differentiation, tissue formation, and optional vascularization, the
scaffold material must degrade without leaving residues. Scaffold materials can be of either
synthetic or natural origin, but they have to possess certain characteristics to be suitable
for TERM. These include good biocompatibility, biodegradability, biomimetics (a structure
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and mechanical behavior similar to that of natural ECM), and sufficiently high mechanical
stability under physiological conditions.

2.2. In Vivo, Ex Vivo, In Vitro, and In Situ

The successive steps of cell culture: seeding, proliferation, differentiation, and tissue
formation can take place either inside or outside the body. In case of the in vitro strategy,
cells are obtained from the patient (autologous transplantation) or a donor (allogeneic
transplantation), which are then seeded on a scaffold. After proliferation and differentiation,
new tissue is formed, which is implanted in the defect of the body [18]. For the in vivo
strategy, cells are obtained analogous to the in vitro strategy. However, proliferation and
differentiation are started after seeding and implantation. For this purpose, the scaffold
seeded with cells is implanted either directly in the defect site or at another site in the
body, with the body serving as a bioreactor in each case [19]. In the in situ strategy,
on the other hand, an acellular scaffold (without cells) is implanted into the defect site.
Subsequently, the new tissue is formed by regenerative processes of the body after cells from
the adjacent tissue migrate into the scaffold, proliferate, and differentiate [20]. However, a
clear classification of the different strategies is difficult, as no clear boundary is drawn in
the literature, especially between the in vivo and in situ strategies.

In ex vivo cell culture, cells are cultivated outside a living organism under controlled
conditions. The ex vivo cell culture technology is applied in the in vitro and in vivo strategy.
Hence, a high availability of stem cells and logistic efforts are required. In addition, organ
and tissue damage may occur in the donor when the cells are harvested. Additionally,
phenotypic changes of the cells may occur. Last but not least, autocrine or paracrine
signaling (hormone release from cells to themselves or to neighboring cells) is difficult
to implement, especially with the in vitro strategy. The in vivo cell culture of the in situ
strategy decreases these limitations and challenges [21–23].

Regulatory challenges also need to be considered. The European Regulation No.
1394/2007 describes the regulations for cell-containing medical devices (“advanced therapy
medicinal products,” ATMPs) and became effective in 2008. The ATMPs include the three
product classes: gene therapy, somatic cell therapy, and tissue engineered products. Thus,
high requirements for approval are set for implants applied in the in vitro strategy and
in vivo strategy. These regulations do not apply to cell-free scaffolds from the in situ
strategy, which gives them an advantage with regard to approval.

In summary, due to the disadvantages resulting from the stem cell harvesting, ex vivo
cell culture and regulatory challenges, cell-free scaffolds for the in situ strategy of TERM
have increasingly become the focus of research and development.

2.3. Tissue Engineering Applications

The natural or physiological regeneration and repair of tissues is a complicated and
continuous process in all living beings. In regeneration, the defective tissue is replaced
by new tissue and cells, whereas in repair, normal or pathological scar tissue is generated.
Complete regeneration occurs only in some animal species (e.g., salamanders, zebrafish,
and reindeer). In human embryos, complete regeneration is found until the last trimester
of pregnancy using endogenous stem cells. Which of the two processes dominates depends
on different growth factors and cytokines [24–26].

The need for TERM originates from the inability of the human body to regenerate
tissue. The most important tissues for TERM include cartilage, skin, bone, cornea, nerves,
tendons, ligaments, cardiac tissues (e.g., arteries and heart valves), and teeth (Figure 2) [27].
Of these tissue types, cartilage tissue has a particularly poor physiological regenerative ca-
pacity. This is due to the avascular nature (the lack of blood vessels) of cartilage, the limited
availability of chondrocytes (cartilage cells), and their limited proliferative potential [28].



Int. J. Mol. Sci. 2021, 22, 9561 4 of 25
Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 4 of 26 
 

 

 

Figure 2. The most important tissues for TERM include cartilage, skin, bone, cornea, nerves, tendons, ligaments, cardiac 

tissues (arteries, heart valves, and myocardium), and teeth. 

3. Biomaterials 

3.1. Overview 

Scaffolds are made of biomaterials, being characterized by their biocompatibility (i.e., 

not causing any negative effects on the metabolism of living organisms when in direct 

contact with them). According to recent systematic reviews, biomaterials may be poly-

mers, ceramics, metals, and their composites; they can be of synthetic or biological origin 

and with and without the ability to degrade [29–32]. However, non-degradable biomateri-

als are used for the fabrication of permanent implants (tissue substitutes), whereas biode-

gradable materials are used for scaffolds as their support for tissue formation is only tem-

porary. Therefore, the biocompatibility of biomaterials for implants is essentially based 

on their inertness (i.e., little or no interaction between biomaterial and tissue is required). 

The biocompatibility of biomaterials for scaffolds is primarily based on providing an en-

vironment for cells similar to the natural ECM (biomimetics) and on their biodegradabil-

ity. In addition to the biological requirements, these biomaterials must provide sufficient 

stability in aqueous media as they must withstand handling and implantation and, if nec-

essary, mechanical stimulation. As is the case with other materials, good processing prop-

erties and sufficient availability on the market are also desirable. 

Collagen has been widely studied in TERM as it is the major natural building material 

for most tissues and organs and collagen scaffolds thus show very high biomimetic prop-

erties. Therefore, collagen and gelatin, the denatured form of collagen, are discussed in 

more detail below. However, collagen is only available in limited quantities, its processing 

Figure 2. The most important tissues for TERM include cartilage, skin, bone, cornea, nerves, tendons, ligaments, cardiac
tissues (arteries, heart valves, and myocardium), and teeth.

3. Biomaterials
3.1. Overview

Scaffolds are made of biomaterials, being characterized by their biocompatibility (i.e.,
not causing any negative effects on the metabolism of living organisms when in direct
contact with them). According to recent systematic reviews, biomaterials may be polymers,
ceramics, metals, and their composites; they can be of synthetic or biological origin and
with and without the ability to degrade [29–32]. However, non-degradable biomaterials are
used for the fabrication of permanent implants (tissue substitutes), whereas biodegradable
materials are used for scaffolds as their support for tissue formation is only temporary.
Therefore, the biocompatibility of biomaterials for implants is essentially based on their
inertness (i.e., little or no interaction between biomaterial and tissue is required). The
biocompatibility of biomaterials for scaffolds is primarily based on providing an environ-
ment for cells similar to the natural ECM (biomimetics) and on their biodegradability. In
addition to the biological requirements, these biomaterials must provide sufficient stability
in aqueous media as they must withstand handling and implantation and, if necessary,
mechanical stimulation. As is the case with other materials, good processing properties
and sufficient availability on the market are also desirable.

Collagen has been widely studied in TERM as it is the major natural building material
for most tissues and organs and collagen scaffolds thus show very high biomimetic prop-
erties. Therefore, collagen and gelatin, the denatured form of collagen, are discussed in
more detail below. However, collagen is only available in limited quantities, its process-
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ing poses major challenges, and processed collagen exhibits only moderate mechanical
properties under physiological conditions. Therefore, many other biocompatible polymers
have become the focus of research for scaffold materials. Common organic biomaterials
are naturally occurring polymers such as alginate, cellulose, collagen, chitosan, chitin,
gelatin, hyaluronic acid, and silk fibroin and synthetic polymers such as polycaprolactone,
polyglycolide, polylactic acid, and poly(lactic-co-glycolic acid). Chitosan is a cationic and
hydrophilic polysaccharide, which is derived from chitin, which is the second most abun-
dant naturally occurring polysaccharide after cellulose, but is poorly soluble [33]. Alginate
and hyaluronic acid are anionic and hydrophilic polysaccharides [34,35]. All three poly-
mers are characterized by their high availability, good processability, and biodegradability.
Cellulose is a polysaccharide produced by bacteria and plants, which is characterized by
its excellent mechanical properties, but is not biodegradable in the human body [36]. Silk
fibroin is a protein fiber spun by Bombyx mori, which has very good mechanical properties
and a low degradation rate in the human body [37]. Polycaprolactone is currently the most
widely used synthetic polymer in the field of TERM, as it is characterized by its good pro-
cessing properties and a low degradation rate [38]. Polycaprolactone and other degradable
polyesters are hydrophobic when compared to naturally occurring biopolymers and thus
exhibit comparatively poor cell adhesion, which may require surface treatment for use in
TERM [39]. In addition to the biopolymers listed here, which are widely used in TERM,
very specific biopolymers such as smart biomaterials that interact with biological systems
are also being studied [40,41]. Important inorganic biomaterials are bioactive glass [42] and
hydroxyapatite [43].

3.2. Collagen

Collagens were intensively studied for use in medicine in the 20th century [44]. By
the end of the 20th century, collagens were displaced by the development of new synthetic
polymers such as polylactides, polyglycolic acids, and polylactide-co-glycolides [45]. Since
the newly developed polymers have often failed to meet medical expectations such as
biocompatibility, biodegradability, and biomimetics, collagen-based materials are gaining
renewed importance, especially in the context of TERM.

Currently, 28 collagen types are known in humans. With the exception of cartilage
tissue, all tissues contain fibrillar type I collagen, being the most abundant in the human
body. Other rarer types perform specialized tasks (e.g., type II in hyaline cartilage) or
complement type I collagen in specific parts of the body (e.g., types I and III in skin, types I
and VI in connective tissue) [46]. In the following sections, the terms collagen and type I
collagen are used synonymously.

The collagen molecule is composed of three polypeptide helices. This right-handed
triple helix (tertiary structure) has a diameter of about 1.5 nm and a length of about
300 nm [47]. Collagen molecules are naturally found in the ECM. They self-assemble into
larger ordered structures such as microfibrils, fibrils, and fibers (quaternary structures) [48].
This self-assembly or fibrillogenesis is part of natural tissue formation in vivo. Likewise,
fibrillogenesis can be initiated in vitro [49,50]. A characteristic feature of assembled collagen
molecules is that the ends of adjacent collagen molecules are aligned by a specific offset to
each other. This offset is called the D-period and ranges from 60 to 73 nm depending on
the tissue type [51].

The helical tertiary structure of collagen molecules is irreversibly destroyed when
a specific temperature, the denaturation temperature, is exceeded. Dispersed collagen
molecules in water denature at a temperature as low as 37 ◦C [52] The denaturation
temperatures of collagenous quaternary structures are much higher (up to 120 ◦C) and
are strongly dependent on their water content [53]. Besides heat, collagen can also be
denatured by mechanical influences [54] or organic solvents [55]. After denaturation, the
helix is (partially) destroyed and the three polypetide chains are (partially) disordered.
Denatured collagen is known as gelatin. It dissolves in an aqueous environment at a
temperature of approximately 40 ◦C. From an energetic point of view, the polypetide
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chains would adopt the helical structure of collagen upon subsequent cooling (complete
renaturation). However, only partial renaturation occurs, since peptides were entangled
and thus cannot completely rearrange to the helical structure [56].

Both collagen and gelatin contain amino acid sequences for cell adhesion. Due to their
different tertiary and quaternary structures, these amino acid sequences have different
accessibility. These sequences are RGD sequences in gelatin (arginine, glycine, and aspartic
acid) and GFOGER sequences in collagen (glycine, phenylalanine, hydroxyproline, glycine,
glutamic acid, and arginine) [57]. Studies have shown a positive effect on cellular behavior
to both the RGD sequence of gelatin [58,59] and the GFOGER sequence of collagen [60,61].
Other studies indicate that collagen-based scaffolds may have beneficial effects on cellular
behavior compared to gelatin-based scaffolds [62,63].

Collagen is considered particularly suitable for TERM as it is the most abundant
protein in natural ECM and therefore collagen has a very high biomimetic potential as
a biomaterial.

Collagen is derived from animal sources such as rat tails [64], calf skin [65], horse
tendons [66], and other animal tissues. Within the last few years, marine animals as a source
of collagen have increasingly been studied [67]. Moreover, transgenic plants as a collagen
source have been studied [68]. Acid-soluble collagen is extracted from animal tissues
using acids. To extract acid-insoluble collagen, the animal tissue is treated with proteolytic
enzymes such as pepsin [69]. This treatment produces the collagen derivative atelocollagen,
in which the N- and C-terminal non-helical sequences of collagen are removed, enabling
solubility for the extraction process. In some publications, atelocollagen is considered to
have lower immunogenicity compared to tropocollagen, however, no comparative studies
on the immunogenicity of tropocollagen and atelocollagen are available and no reliable
statement can be made [70].

Three-dimensional porous collagen scaffolds are therefore state-of-the-art. They are
fabricated using electrospinning [71,72], 3D printing [73,74], freeze-drying [75,76], phase
separation (in combination with polycaprolactone [77], in combination with hydroxyap-
atite [78]), and salt leaching [79,80].

Collagen-based membranes such as Chondro-Gide® (Geistlich Pharma AG, Wol-
husen, Switzerland), Cartimaix (Matricel GmbH, Herzogenrath, Germany), Novocart®

Basic (B. Braun SE, Melsungen, Germany), MaioRegen™ (Finceramica, Faenza, Italy) and
collagen-based gels such as ChondroFiller (meidrix biomedicals GmbH, Esslingen am
Neckar, Germany) and CaReS®-1S (Arthro-Kinetics AG, Tübingen, Germany) are commer-
cially available and approved for the treatment of cartilage defects.

4. Isotropy and Anisotropy

Isotropy means uniformity in all directions, whereas anisotropy means dependence
on directions. Consequently, an isotropic scaffold shows a similar or identical response
regardless of the direction of, for example, an applied force. Anisotropic scaffolds, on the
other hand, are characterized by directional properties. Thus, parameters such as porosity
or strength depend on the direction.

The idea in using scaffolds for TERM is to mimic the natural ECM. Most tissues
in the human body have a collagen fiber based structure, and thus, directional fiber
reinforcement, which, among other things, gives them their robust and shock-absorbing
properties. Anisotropy is found from the macroscopic to the molecular level, as collagen
fibers themselves have anisotropic properties as their molecules are aligned in the direction
of the fiber axis. Therefore, ECMs with aligned and parallel collagen fibers (Figure 3) have
anisotropic properties, for example, in terms of their mechanical load capacity. These
anisotropic properties have to be mimicked by biomimetic scaffolds (e.g., by mimicking
the orientation of the collagen fibers of the tissue to be regenerated).
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CC BY-SA 4.0.

5. Isotropic Scaffold Fabrication

The range of properties of the scaffolds developed for TERM is very wide as they
are tailor-made for specific applications and tissues by using a variety of biomaterials as
well as fabrication methods. Scaffolds may be composed of a graphene single-layer [81],
electroactive elastomer actors [82], and metals [83]. For the fabrication of three-dimensional
open porous scaffolds, five main conventional fabrication methods are applied: 3D printing,
freeze drying, phase separation, salt leaching, and gas foaming (Figure 4).

Phase separation involves the conversion of a polymer solution into a two-phase
heterogeneous material system in which polymer-enriched regions and solvent regions
are separated. Phase separation can be initiated thermally by cooling the polymer solu-
tion [84] or by mixing the polymer solution with a non-solvent or coagulant [85]. After
phase separation, the solvent is removed from the two-phase system by freeze-drying.
Phase separation is mainly used to prepare polylactide scaffolds, which have pore sizes of
100 µm [86], 100 and 200 µm [87], and 15 to 55 µm [88]. In comparison to other fabrication
methods and in the context of cell migration, the mean pore size of these scaffolds is small
and influencing the pore geometry is limited. Currently, this method is not widely used to
prepare scaffolds from biopolymers such as chitosan, collagen, and alginate. Nevertheless,
it should be noted that the mechanism of phase separation is also used in almost all other
fabrication methods, since the polymer is often dissolved in a solvent and separated from
the solvent in a subsequent step.
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Various additive manufacturing methods can be used to prepare scaffolds such as
“3D printing” (bonding of particles by binder application), “fused deposition modeling”
(solidification of extruded thermoplastic threads by cooling), “stereolithography” (solidifi-
cation of resins by photopolymerization using lasers), “selective laser sintering/melting”
(bonding of particles by melting/sintering using lasers) and “3D plotting” (solidification of
extruded hydrogel threads by cooling or coagulating) [89]. The main advantage of all addi-
tive manufacturing methods when compared with other conventional fabrication methods
is the achievable shape variety and complexity of the printed structures and the almost un-
limited adjustability of the pore size. Their main disadvantage, however, is that the specific
additive manufacturing method chosen determines the material and its solidification or
bonding mechanism, and therefore the biopolymer cannot be selected arbitrarily.

With “3D printing”, all powdery materials can be processed, but an additional binder
or adhesive is mandatory to bond the powdery material. With “stereolithography”, typical
biomaterials cannot be processed as the method is based on the photopolymerization
of liquid monomers or prepolymers. With “fused deposition modeling” and “selective
laser sintering/melting” and “fused deposition modeling”, only thermoplastics such as
polylactide [90] and polycaprolactone [91] can be processed. Non-meltable biopolymers
are almost exclusively processed into scaffolds using “3D plotting”. Similar to “fused
deposition modeling”, a polymer solution is extruded and layered to form structures. The
“plotted” structures consist, for example, of collagen threads with a diameter of 330 µm and
pore size of 260 µm [92], calcium-phosphate-cement threads with a diameter of 200 µm,
pore size of 900 µm [93], and chitosan threads with a diameter of 210 µm and pore size
of 175 µm [94]. One advantage of “3D plotting” is that substances such as cells [95] and
growth factors [93] can be embedded in the threads. The disadvantage of 3D plotting
compared to other additive manufacturing methods is that complex structures such as
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undercuts, overhangs, and bridges can only be printed to a limited extent or not at all, since
no temporary support material can be printed.

For the fabrication of scaffolds by means of freeze-drying, a polymer is distributed in
a homogeneous solution or heterogeneous suspension/emulsion and poured into a mold.
During subsequent cooling, crystals grow in the liquid phase, leading to a system with two
separate phases: a crystal phase and a polymer-enriched phase. During subsequent freeze-
drying, the crystals are sublimated and a porous polymer framework is formed [96]. The
crystals or pores can be influenced in terms of size, shape, and orientation by controlling the
liquid, cooling, and drying parameters. For example, this method can be used to prepare
collagen scaffolds with pore sizes ranging from 85 to 325 µm [97], alginate scaffolds with
pore sizes ranging from 10 to 141 µm [98], and uniaxially oriented gelatin scaffolds with
pore sizes ranging from 50 to 500 µm [99].

In chemical gas foaming, a foaming agent is added to a polymer solution and this
mixture is poured into a mold. A chemical reaction creates gas bubbles in the cast polymer.
After solvent and gas are removed from the polymer, a porous scaffold is present. However,
homogeneous pore distribution can only be achieved by stabilizing the gas foaming agent
with (toxic) surfactants. Therefore, methods for physical gas foaming have been developed,
where the molded and solvent-free polymer is infiltrated with carbon dioxide gas in a
pressure chamber. For hydrophilic polymers, an auxiliary solvent is needed to infiltrate the
nonpolar carbon dioxide. Upon subsequent depressurization, the gas expands and forms
pores within the polymer. The pore geometry can be influenced by controlling the pressure,
temperature, and pressure decrease rate [100]. By means of chemical gas foaming, for
example, alginate scaffolds with pore sizes ranging from 100 to 400 µm [101], gelatin scaf-
folds with pore sizes ranging from 280 and 550 µm [102], and calcium phosphate cement
scaffolds with pore sizes ranging from 100 to 400 µm [103] can be prepared. Using physical
gas foaming, for example, chitosan scaffolds with pore sizes of 30 to 40 µm [104], poly-
caprolactone scaffolds with pore sizes of 40 to 250 µm [105], and chitosan/gelatin/alginate
scaffolds with a pore size of 57 µm [106] can be prepared.

Scaffolds are fabricated by salt leaching by dispersing a porogen (particle) in a polymer
solution without dissolving the porogen in the polymer solvent. After the polymer is
formed and the solvent is removed, the porogon is dissolved from the polymer, leaving a
porous structure. The method limits the choice of polymer because water-soluble inorganic
salts are often used as porogen. Hence, aqueous polymer solutions cannot be used as that
salt particle would be dissolved too early. Therefore, polymers that dissolve in organic
solvents are often applied. The pore size can be adjusted by the particle size of the
salts [107]. By salt leaching, for example, polycaprolactone scaffolds with pore sizes from
50 to 500 µm [108], silk scaffolds with pore sizes of about 380 µm [109], and polylactide
scaffolds with pore sizes from 166 to 453 µm [110] can be prepared.

In each of the scaffold examples given, one fabrication method was used. In the
literature, however, the methods are often combined in order to take advantage of sev-
eral methods. For example “3D plotting” is combined with electrospinning [111,112],
freeze drying with salt leaching [113,114], “fused deposition modeling” with gas foam-
ing [115,116], and thermally induced phase separation with non-solvent induced phase
separation [117,118].

Although the mentioned conventional fabrication methods have many specific ad-
vantages and are equally characterized by the fact that they can be applied using simple
tools, none of the conventional methods can affect the molecular structure of the polymer
network of the scaffolds. Only the macroscopic shape of the scaffolds can be influenced,
and the polymer network is essentially present as an isotropic structure. However, the
goal of biomimetic scaffolds is to mimic the natural ECM and its anisotropic properties as
closely as possible. In summary, the characteristic molecular structure or the collagen fiber
architecture of the ECM of the individual tissues [119] cannot be prepared by conventional
fabrication methods.
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6. Anisotropic Fiber Scaffold Fabrication
6.1. Spinning Methods

Most natural fibers such as cotton fibers [120] and wool fibers [121] as well as most
man-made endless fibers (=filaments) such as ultra-high molecular weight polyethylene
filaments (Dyneema®) [122] and polyester filaments [123] have a molecular structure
oriented in the fiber direction, resulting in strongly pronounced anisotropic properties such
as a high tensile strength and modulus. If fiber or filament yarns are further processed into
scaffolds using textile technologies, the fiber position and orientation can be influenced,
and thus a spatially defined molecular structure of the polymer network can be realized.

Spinning methods for the production of continuous filament yarns can be divided into
three main types: wet spinning, dry spinning, and melt spinning (Figure 5). In each method,
liquid spinning masses are extruded through spinnerets, subsequently drawn and wound
on a spool. Subsequently, the dry or consolidated yarn is processed into textile structures by
means of textile technologies. The diameter of an individual filament is typically between
10 and 100 µm. In addition to these main types of spinning, electrospinning may be
used for the production of nanofiber-based structures. Here, filaments are also produced,
but in contrast to the main spinning methods, these filaments have significantly smaller
diameters (<1 µm) and are not wound on a spool, but are deposited as a nonwoven on a
substrate [124].

In the case of both wet and dry spinning, a polymer is dissolved with a solvent and
placed in a spinning tank. In wet spinning, the polymer solution is extruded by pumps
through spinnerets into a coagulation bath, in which the polymers of the extruded threads
are precipitated by chemical phase separation. Subsequently, the polymer threads are
drawn into filaments, washed, dried, and the resulting yarn is wound on a spool. Compared
to wet spinning, dry and melt spinning require spinning masses with significantly higher
viscosity, since much higher polymer concentrations are used. To homogenize the spinning
masses, extruders are employed to transport the polymer solution in the case of dry
spinning or the polymer melt in the case of melt spinning to the spinning pumps. By
means of pumps, the spinning masses are pushed through the spinnerets and the extruded
threads are drawn into filaments. Solidification is based on solvent evaporation (dry
spinning) or cooling (melt spinning). Typical polymers for wet spinning are cellulose [125]
and polyacynitrile [126] for dry spinning cellulose acetate [127] and for melt spinning
polyester [128] and polyamide [129].

For the spinning of some specific polymers, spinning methods need to be adapted,
further developed, and combined. Therefore, special spinning methods have been estab-
lished such as matrix spinning for particularly resistant filaments made of the non-soluble
or meltable polytetrafluoroethylene [130], gel spinning for high-strength filaments made of
the ultra-high-molecular-weight polyethylene [131], air-gap spinning for improving poly-
mer orientation for filaments made of aramid (e.g., Kevlar®) [132], or melt electrospinning
for nanofilaments made of non-soluble but meltable polymers [133].

Electrospinning is a commonly used spinning method for direct fabrication of mem-
brane scaffolds or surfaces for cell adhesion, which are made of nano- and micro-fibers.
For this purpose, a polymer is dissolved in a solvent and extruded through a cannula. The
extruded thread is accelerated in an electric field between the cannula and the substrate,
whereby the thread is drawn and the solvent evaporates. The resulting nanofilaments,
10 to 1000 nm in diameter, are layered either randomly or directionally on the station-
ary or rotating substrate to form a membrane [134]. Alignment of the fibers is achieved
by spinning on rotating electrodes [135] or in between the gap of two electrodes [136].
However, it should be noted that the influence of orientation is relatively small (i.e., it can
typically only be implemented in one direction; orientations perpendicular to the plane,
multi-axial orientations or local orientations are very difficult to implement). Since elec-
trospinning has very low material throughput, modified variants such as multiple-needle
electrospinning [137], needleless electrospinning [138], or melt electrospinning exist to
increase mass throughput [139]. Another major challenge in electrospinning is to improve
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the mechanical properties of the membrane structures as they generally have very low
strength and low ductility. Increasing the strength is achieved by, for example, reinforcing
the nanofilaments with a filler material, increasing the orientation of the nanofilaments,
and using post-treatment methods such as a heat treatment, post-drawing, or crosslink-
ing [140]. Pore sizes of electrospun membranes are often too small (<100 µm) to allow for
the migration of cells into the interior of the structure. Therefore, electrospinning is also
modified in terms of increasing pore sizes [141,142]. Due to the random fiber deposition,
the molecular structure of the polymer network cannot be influenced, or in the case of
modified electrospinning methods, only to a certain extent.
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Figure 5. Schematic representation of the three main types of spinning processes: melt, dry and wet spinning for the
production of filament yarns; electrospinning and microfluidic wet spinning are additionally shown. In all the processes
illustrated, with the exception of electrospinning, yarn spools are produced which can be used for further textile processing.
In the electrospinning process membranes or nonwovens are produced.
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Most spinning methods can produce various types of bi- and multi-component fil-
aments. The components either remain as a composite or one of the two components
serves as a temporary carrier and is removed afterward; this is the case for the popular
example of microfiber production (diameter 100 to 5000 nm) from the bicomponent type
island-in-sea, in which the microfilaments or -fibers (islands) are embedded in a circular
matrix (sea) [143]. Island-in-sea yarn types are also used to produce shape memory yarns
by embedding a phase changing or temporary phase as islands in a permanent elastic phase
as a matrix [144]. The two components can likewise be arranged in other bicomponent
types such as side-by-side [145–147], core-sheath [148–150], and segmented-pie [151–153].
To produce multiple bicomponent filaments (bicomponent multifilament), bicomponent
spinning packages are applied in which the components are distributed over all individ-
ual core-sheath-nozzles of the spinneret. These packages are composed of several plates,
each with specific channels and holes (Figure 6D–F). Due to the circularly symmetrical
and three-dimensional guidance of the two components through the spinning package,
a similar pressure can be set at each core-sheath-nozzle, thus enabling the production of
homogeneous bicomponent multifilament yarns.
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Figure 6. Schematic representation (left) of a microfluidic system with core-sheath-setup consisting of 3 layers, (A) shown
as exploded view, (B) sectional view, and (C) detailed view. The inlet and the flow of the coagulation medium (gray-blue)
and the polymer solution (red) of the microfluidic system are illustrated. At the exit, the polymer solution is coagulated
into a monofilament and the coagulation medium flows off to the side. Schematic representation (right) of a melt spinning
package with a multifilament-core-sheath-spinneret, (D) shown as exploded view, (E) sectional view, and detailed view (F).
The inlet and the flow of the polymer A (red) and the polymer B (green) of the melt spinning package are illustrated. At the
exit, both polymers are coaxially combined to form several bicomponent filaments (multifilament).
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In wet spinning, spinning solutions with high viscosity (compared to electrospinning
and “3D plotting”) are applied to enable fast coagulation or solidification rates. However,
for the production of filaments from spinning solutions with low viscosity and therefore
slow solidification rates, standard wet spinning cannot be applied, since the solidifying
threads would break during transportation through the coagulation bath. Therefore, mi-
crofluidic wet spinning (also called hydrodynamic wet spinning or flow focusing) has been
established for the production of filaments from spinning solutions with low viscosity [154].
Therefore, flat (two-dimensional) microfluidic systems (Figure 6A–C) are applied, which
were originally developed for lab-on-a-chip applications [155]. These systems consist of
stacked polydimethylsiloxane layers on a glass support, whereby the internal layers are
engraved with channels. In these systems, for example, two components can be extruded
side by side or coaxially (core-sheath) to each other through a bicomponent-spinneret, with
a coagulation medium as the sheath component and the spinning solution as the core com-
ponent. As a result, the spinning solution is temporarily stabilized during coagulation and
can be transported through a flow channel without breaking to ensure continuous thread
formation. After sufficiently long coagulation within the flow channel, the strength of the
thread is high enough and the filament exits the microfluidic system for further drying and
winding. Microfluidic wet spinning can be used to produce filaments that are difficult or
impossible to produce using standard wet spinning methods such as filaments made from
globular proteins [156], colloidal particles [157], nanocellulose [158], collagen [159], and fil-
aments with incorporated cells [160]. In addition, this method is used to produce filaments
on a small laboratory scale such as for calcium alginate filaments [161], polychromatic
filaments [162], and silk filaments [163], although spinning would also be feasible using
standard wet-spinning methods. Unlike standard wet spinning, microfluidic wet spinning
is not currently used to produce multifilament yarns because the flat two-dimensional
microfluidic systems are not suitable for producing multicomponent multifilament threads.

6.2. Chitosan Filament Yarns

Standard spinning methods are applied to produce chitosan filament yarns. Chitosan
can be dissolved in aqueous acidic solutions with a pH below 6.7 [164]. The solubility of
chitosan is based on a protonation of the amino groups. The extruded chitosan threads
are precipitated into continuous filaments within an alkaline coagulation bath (e.g., by
sodium hydroxide) for wet spinning [165–167] and within an alkaline ammonia gas phase
for dry spinning [168] by deprotonating the amino groups of the chitosan. To improve
the mechanical characteristics of chitosan yarns, spinning solutions can be prepared using
ionic liquids [169] and incorporating additives such as chitin [170] and nanocellulose
particles [171]. Additionally, it is possible to convert chitosan filaments into chitin (chitosan
is derived from the non-soluble chitin) filaments after spinning using acetylation [172].

Chitosan filament yarns are commercially available, for example, from Saturn Bio
Tech Co., Ltd. (Gangwon-do, Korea) [173], ChiPro GmbH (Bremen, Germany) [174], and
Hismer Bio-Technology Co., Ltd. (Shandong, China) [174].

6.3. Collagen Filament Yarns

To produce collagen filaments, acid soluble collagen is dissolved in aqueous acid
solutions with a pH of 2 to 3. The extruded collagen threads are precipitated within
neutral coagulation media. Precipitation is based on the fibrillogenesis of collagen, which is
initiated by increasing the ionic strength and increasing the pH. Since the spinning solution
has a low viscosity and the filament solidification or fibrillogenesis takes several minutes
(about 5 to 45 min, depending on the method), standard wet spinning methods cannot be
applied for filament formation.

The state-of-the-art of collagen spinning is much less advanced when compared to
chitosan spinning. Various technical approaches for collagen filament formation have
been described in the literature: for discontinuous fiber formation, extruded collagen
threads are deposited within a coagulation bath for several minutes [175–182]. However,
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these short collagen fibers are not suitable for textile processing. Continuous spinning
processes are necessary for collagen filament production. Therefore, technical approaches
have been developed in which collagen is extruded into the flowing coagulation medium.
For technical implementation, conveyor belts [183], pumps generating a flow within the
coagulation bath [184], core-sheath-spinnerets with connected tubes in which the collagen
thread and the coagulation medium flow simultaneously [185,186] and microfluidic sys-
tems in which the thread and coagulation medium also flow simultaneously [159] are used.
Likewise, fibrillogenesis of the spinning solution can be initiated by an electric field only.
For the technical implementation of filament formation, the spinning solution is extruded
onto a rotating pair of electrodes [187]. With all these methods, only single filaments or
monofilaments can be produced. However, only multifilament yarns are suitable for further
mechanical textile processing since monofilament yarns cannot withstand the forces of
further processing and the mass throughput is also limited.

For the production of collagen multifilament yarns, the monofilament-core-sheath-
spinneret has to be duplicated into a multifilament-core-sheath-spinneret (analogous to
melt spinning packages with multifilament-core-sheath-spinneret, Figure 6D–F). In such
a spinneret, the distribution of the spinning solution and the coagulation medium are
designed to ensure a homogenous pressure distribution within the multifil.-core-sheath-
spinneret and enable simultaneous thread extrusion (Figure 7). Through a connected
coagulation tube, the threads are flowing parallel and without sticking to each other as a
protective skin is formed as soon as the collagen solution make contact with the coagulation
medium. Within the tube, threads are drawn into filaments as a roller or winder pulls the
filaments to the exit of the tube. After exiting the tube, the solidified filament bundle passes
washing baths, a drying section, and the yarn is finally wound on a spool (Figure 8). These
yarns can then be used for further processing such as the production of scaffolds by means
of textile technology processing.
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6.4. Fiber Based Scaffolds by Textile Technologies

Yarns are further processed into 1D, 2D, or 3D textiles using textile technologies by
weaving [188], weft knitting [189], warp knitting [190], braiding [191], flocking [192], and
fiber based additive manufacturing methods [193] (Figure 9). Due to the application of
these textile technologies, the textile structures consist of a spatially defined fiber structure.
This is another reason why textile technologies are applied, for example, as efficient
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manufacturing technologies for lightweight structures with load-adapted fiber orientation
based on the spatially defined molecular structure [124].
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In weaving, scaffolds are produced by crossing monofilament or multifilament yarns.
For example, woven scaffolds are made of polylactide monofilaments (thickness 2.4 mm,
pore size 224 µm, by hand loom) [194], alginate multifilaments (thickness 0.4 mm, pore
dimensions 390 µm × 320 µm × 104 µm, by weaving machine) [195], and collagen monofil-
aments (no thickness and pore size specification, by hand) [196]. In the case of weft and
warp knitting, scaffolds are produced by creating multiple and connected yarn loops.
Compared to woven fabrics, these structures are more elastic due to their deformable loop
structure. For example, knitted scaffolds are made of polylactide monofilaments (pore size
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600 to 1100 µm, by knitting machine) [197], silk multifilaments (no pore size specification,
by knitting machine) [198], and collagen-coated silk monofilaments (pore size 10 to 310 µm,
by knitting machine) [199]. Braiding is used to produce tubular structures by crossing
filament yarns analogous to weaving. For example, these tubes consist of polylactide
multifilaments (pore size 5 to 25 µm) [200], polylactide multifilaments (pore size 150 to
250 µm) [201], and polylactide-co-glycolide filaments (pore sizes 175 to 233 µm) [202]. In
contrast to the aforementioned textile technologies, for fiber-based additive manufacturing
and flocking, only cut filaments or short fibers with a length of a few millimeters are
used. Fiber-based additive manufacturing is based on a similar mechanism as seen in
“3D printing”. However, instead of a powder, short fibers are bonded with an adhesive
or binder. For example, fiber-based 3D printing can be used to produce chitosan fiber
scaffolds with a thickness of 3 mm and a pore size of 100 µm [203]. Electrostatic flocking
enables the fabrication of compressively elastic structures consisting of vertically aligned
short fibers bonded onto a substrate. This process can be applied, for example, in the
fabrication of polyamide fiber scaffolds with a thickness of 1 mm [204] and chitosan fiber
scaffolds with a thickness of 2 mm and a pore size of 65 to 310 µm (Figure 10) [205,206].
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7. Cell and Tissue Alignment in Anisotropic Scaffolds

Typically, cell biological studies regarding the anisotropy of scaffolds evaluate the
orientation of cultured cells after a few days or weeks using electrospun fiber membranes.
Yi et al. studied cell orientation of smooth muscle cells after they were cultured for three
days on an electrospun anisotropic polylactide nanofiber scaffold [207]. It was shown that
the cells exhibited an orientation analogous to the fiber orientation of the scaffold. Xie
et al. determined a similar relationship of cell orientation and fiber orientation after stem
cells were cultured for seven days on an electrospun anisotropic polylactide nanofiber
scaffold [208].

In a few preclinical studies, the anisotropy of the newly formed ECM is shown.
Garrison et al. fabricated a multilayered electrospun anisotropic nanofiber scaffold [209].
After fibroblast culture for seven days, it was found that the newly formed ECM had an
orientation analogous to the fiber orientation of the scaffold (analysis based on fibronectin
orientation). Uiterwijk et al. conducted a study using an electrospun nanofiber scaffold
in a large animal model (sheep) to analyze a scaffold for tissue engineering of a heart
valve. However, in contrast to the hypothesis, a long-term study of 12 months failed
to show any effect of fiber orientation on tissue formation (analysis based on collagen
orientation) [210]. Owida et al. prepared a three-layered electrospun polylactide nanofiber
scaffold resembling the layered structure of natural articular cartilage of the knee [211].
After culturing chondrocytes in each layer for 14 days, both orientation of the cells and
orientation of the newly formed ECM resembled the orientation of the respective layer.
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Presently, no studies are available regarding the evaluation of the anisotropy of newly
formed tissue on open porous anisotropic fiber based scaffolds prepared from yarns and
textile processing.

8. Conclusions

Many biomedical treatments within the field of TERM are based on the use of scaffolds.
Scaffolds play an important role, but still show a large potential for improvement, especially
with respect to their biomimetics. The biomimetics and other important parameters such as
pore size of the scaffolds can be influenced by both the biomaterial used and the fabrication
method. Therefore, scaffold fabrication methods have been established, which can be
used to produce complex and open-pore scaffolds. However, most established fabrication
methods (3D printing, freeze drying, phase separation, salt leaching, and gas foaming)
cannot generate anisotropic properties in the scaffold, which are essentially required for
biomimetics. Textile technologies can be applied to generate anisotropic scaffolds. Some
approaches for anisotropic scaffold fabrication have already been described in the literature,
however, the application of textile technologies has not gained widespread popularity
in the field of TERM. Suitable biopolymer yarns (e.g. collagen and chitosan) and textile
technologies (weaving, weft knitting, warp knitting, braiding, flocking, and fiber-based
additive manufacturing methods) are readily available for the fabrication of scaffolds.
Through appropriate combinations of yarns and textile technology, anisotropic fiber based
scaffolds can exhibit properties similar to native tissues. Due to the defined fiber placement
during fabrication, fiber based scaffolds can be designed hierarchically and according
to the load-case of the final application. Especially in contrast to electro-spun scaffolds,
cells can migrate into the fiber based structure due to the larger pore size. Nevertheless,
there is a continued need for research on studies regarding the effect of anisotropic fiber
based structures on cell behavior and tissue growth. With the appropriate yarns and
textile technologies, a wide range of three-dimensional open porous anisotropic fiber based
scaffolds may be fabricated for analysis of their effect on anisotropic tissue formation.

Author Contributions: Conceptualization, R.T.; Writing—original draft preparation, R.T.; Writing—
review and editing, R.T. and D.A.; Supervision, D.A. and C.C. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors are grateful to Jara Marder for language editing of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ambrose, C.T. An Amended History of Tissue Culture: Concerning Harrison, Burrows, Mall, and Carrel. J. Med. Biogr. 2019, 27,

95–102. [CrossRef]
2. Katari, R.; Peloso, A.; Orlando, G. Tissue Engineering and Regenerative Medicine: Semantic Considerations for an Evolving

Paradigm. Front. Bioeng. Biotechnol. 2015, 2, 57. [CrossRef]
3. Andrzejewska, A.; Lukomska, B.; Janowski, M. Concise Review: Mesenchymal Stem Cells: From Roots to Boost. Stem Cells 2019,

37, 855–864. [CrossRef] [PubMed]
4. Lanza, R.; Rosenthal, N. The Stem Cell Challenge. Sci. Am. 2004, 290, 92–99. [CrossRef]
5. Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by

Defined Factors. Cell 2006, 126, 663–676. [CrossRef] [PubMed]
6. Lee, K.; Silva, E.A.; Mooney, D.J. Growth Factor Delivery-Based Tissue Engineering: General Approaches and a Review of Recent

Developments. J. R. Soc. Interface 2011, 8, 153–170. [CrossRef] [PubMed]
7. Qu, M.; Jiang, X.; Zhou, X.; Wang, C.; Wu, Q.; Ren, L.; Zhu, J.; Zhu, S.; Tebon, P.; Sun, W.; et al. Stimuli-Responsive Delivery of

Growth Factors for Tissue Engineering. Adv. Healthc. Mater. 2020, 9, 1901714. [CrossRef]
8. Wang, Z.; Wang, Z.; Lu, W.W.; Zhen, W.; Yang, D.; Peng, S. Novel Biomaterial Strategies for Controlled Growth Factor Delivery

for Biomedical Applications. NPG Asia Mater. 2017, 9, e435. [CrossRef]

http://doi.org/10.1177/0967772016685033
http://doi.org/10.3389/fbioe.2014.00057
http://doi.org/10.1002/stem.3016
http://www.ncbi.nlm.nih.gov/pubmed/30977255
http://doi.org/10.1038/scientificamerican0604-92
http://doi.org/10.1016/j.cell.2006.07.024
http://www.ncbi.nlm.nih.gov/pubmed/16904174
http://doi.org/10.1098/rsif.2010.0223
http://www.ncbi.nlm.nih.gov/pubmed/20719768
http://doi.org/10.1002/adhm.201901714
http://doi.org/10.1038/am.2017.171


Int. J. Mol. Sci. 2021, 22, 9561 18 of 25

9. Caballero Aguilar, L.M.; Silva, S.M.; Moulton, S.E. Growth Factor Delivery: Defining the next Generation Platforms for Tissue
Engineering. J. Control. Release 2019, 306, 40–58. [CrossRef]

10. Sanchez-Adams, J.; Leddy, H.A.; McNulty, A.L.; O’Conor, C.J.; Guilak, F. The Mechanobiology of Articular Cartilage: Bearing the
Burden of Osteoarthritis. Curr. Rheumatol. Rep. 2014, 16, 451. [CrossRef]

11. Fahy, N.; Alini, M.; Stoddart, M.J. Mechanical Stimulation of Mesenchymal Stem Cells: Implications for Cartilage Tissue
Engineering: Mechanics and Cartilage Tissue Engineering. J. Orthop. Res. 2017, 36, 52–63. [CrossRef]

12. Sheng, R.; Jiang, Y.; Backman, L.J.; Zhang, W.; Chen, J. The Application of Mechanical Stimulations in Tendon Tissue Engineering.
Stem Cells Int. 2020, 2020, 1–14. [CrossRef]

13. Guo, J.; Huebsch, N. Modeling the Response of Heart Muscle to Mechanical Stimulation In Vitro. Curr. Tissue Microenviron. Rep.
2020, 1, 61–72. [CrossRef]

14. Loh, Q.L.; Choong, C. Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size. Tissue
Eng. Part B Rev. 2013, 19, 485–502. [CrossRef]

15. Zhao, C.; Tan, A.; Pastorin, G.; Ho, H.K. Nanomaterial Scaffolds for Stem Cell Proliferation and Differentiation in Tissue
Engineering. Biotechnol. Adv. 2013, 31, 654–668. [CrossRef]

16. Ghasemi-Mobarakeh, L. Structural Properties of Scaffolds: Crucial Parameters towards Stem Cells Differentiation. World J. Stem
Cells 2015, 7, 728. [CrossRef] [PubMed]

17. Amani, H.; Arzaghi, H.; Bayandori, M.; Dezfuli, A.S.; Pazoki-Toroudi, H.; Shafiee, A.; Moradi, L. Controlling Cell Behavior
through the Design of Biomaterial Surfaces: A Focus on Surface Modification Techniques. Adv. Mater. Interfaces 2019, 6, 1900572.
[CrossRef]

18. Godbey, W.; Atala, A. In Vitro Systems for Tissue Engineering. Ann. N. Y. Acad. Sci. 2002, 961, 10–26. [CrossRef] [PubMed]
19. McCullen, S.D.; Chow, A.G.; Stevens, M.M. In Vivo Tissue Engineering of Musculoskeletal Tissues. Curr. Opin. Biotechnol. 2011,

22, 715–720. [CrossRef]
20. Lee, C.H.; Cook, J.L.; Mendelson, A.; Moioli, E.K.; Yao, H.; Mao, J.J. Regeneration of the Articular Surface of the Rabbit Synovial

Joint by Cell Homing: A Proof of Concept Study. Lancet 2010, 376, 440–448. [CrossRef]
21. Vanden Berg-Foels, W.S. In Situ Tissue Regeneration: Chemoattractants for Endogenous Stem Cell Recruitment. Tissue Eng. Part

B Rev. 2014, 20, 28–39. [CrossRef]
22. Ko, I.K.; Lee, S.J.; Atala, A.; Yoo, J.J. In Situ Tissue Regeneration through Host Stem Cell Recruitment. Exp. Mol. Med. 2013, 45,

e57. [CrossRef]
23. Gaharwar, A.K.; Singh, I.; Khademhosseini, A. Engineered Biomaterials for in Situ Tissue Regeneration. Nat. Rev. Mater. 2020, 5,

686–705. [CrossRef]
24. Maddaluno, L.; Urwyler, C.; Werner, S. Fibroblast Growth Factors: Key Players in Regeneration and Tissue Repair. Development

2017, 144, 4047–4060. [CrossRef] [PubMed]
25. Stoica, A.E.; Grumezescu, A.M.; Hermenean, A.O.; Andronescu, E.; Vasile, B.S. Scar-Free Healing: Current Concepts and Future

Perspectives. Nanomaterials 2020, 10, 2179. [CrossRef]
26. Ud-Din, S.; Volk, S.W.; Bayat, A. Regenerative Healing, Scar-Free Healing and Scar Formation across the Species: Current

Concepts and Future Perspectives. Exp. Dermatol. 2014, 23, 615–619. [CrossRef]
27. Han, F.; Wang, J.; Ding, L.; Hu, Y.; Li, W.; Yuan, Z.; Guo, Q.; Zhu, C.; Yu, L.; Wang, H.; et al. Tissue Engineering and Regenerative

Medicine: Achievements, Future, and Sustainability in Asia. Front. Bioeng. Biotechnol. 2020, 8, 83. [CrossRef]
28. Zhao, Z.; Fan, C.; Chen, F.; Sun, Y.; Xia, Y.; Ji, A.; Wang, D. Progress in Articular Cartilage Tissue Engineering: A Review on

Therapeutic Cells and Macromolecular Scaffolds. Macromol. Biosci. 2020, 20, 1900278. [CrossRef] [PubMed]
29. Kargozar, S.; Ramakrishna, S.; Mozafari, M. Chemistry of Biomaterials: Future Prospects. Curr. Opin. Biomed. Eng. 2019, 10,

181–190. [CrossRef]
30. Prasad, K.; Bazaka, O.; Chua, M.; Rochford, M.; Fedrick, L.; Spoor, J.; Symes, R.; Tieppo, M.; Collins, C.; Cao, A.; et al. Metallic

Biomaterials: Current Challenges and Opportunities. Materials 2017, 10, 884. [CrossRef] [PubMed]
31. Kaur, G.; Kumar, V.; Baino, F.; Mauro, J.C.; Pickrell, G.; Evans, I.; Bretcanu, O. Mechanical Properties of Bioactive Glasses,

Ceramics, Glass-Ceramics and Composites: State-of-the-Art Review and Future Challenges. Mater. Sci. Eng. C 2019, 104, 109895.
[CrossRef] [PubMed]

32. Balakrishnan, P.; Geethamma, V.G.; Sreekala, M.S.; Thomas, S. Polymeric Biomaterials: State-of-the-Art and New Challenges. In
Fundamental Biomaterials: Polymers; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–20. ISBN 9780081021941.

33. Islam, M.M.; Shahruzzaman, M.; Biswas, S.; Nurus Sakib, M.; Rashid, T.U. Chitosan Based Bioactive Materials in Tissue
Engineering Applications-A Review. Bioact. Mater. 2020, 5, 164–183. [CrossRef]

34. Sun, J.; Tan, H. Alginate-Based Biomaterials for Regenerative Medicine Applications. Materials 2013, 6, 1285–1309. [CrossRef]
35. Collins, M.N.; Birkinshaw, C. Hyaluronic Acid Based Scaffolds for Tissue Engineering—A Review. Carbohydr. Polym. 2013, 92,

1262–1279. [CrossRef] [PubMed]
36. Hickey, R.J.; Pelling, A.E. Cellulose Biomaterials for Tissue Engineering. Front. Bioeng. Biotechnol. 2019, 7, 45. [CrossRef]
37. Sun, W.; Gregory, D.A.; Tomeh, M.A.; Zhao, X. Silk Fibroin as a Functional Biomaterial for Tissue Engineering. Int. J. Mol. Sci.

2021, 22, 1499. [CrossRef] [PubMed]
38. Mondal, D.; Griffith, M.; Venkatraman, S.S. Polycaprolactone-Based Biomaterials for Tissue Engineering and Drug Delivery:

Current Scenario and Challenges. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 255–265. [CrossRef]

http://doi.org/10.1016/j.jconrel.2019.05.028
http://doi.org/10.1007/s11926-014-0451-6
http://doi.org/10.1002/jor.23670
http://doi.org/10.1155/2020/8824783
http://doi.org/10.1007/s43152-020-00007-8
http://doi.org/10.1089/ten.teb.2012.0437
http://doi.org/10.1016/j.biotechadv.2012.08.001
http://doi.org/10.4252/wjsc.v7.i4.728
http://www.ncbi.nlm.nih.gov/pubmed/26029344
http://doi.org/10.1002/admi.201900572
http://doi.org/10.1111/j.1749-6632.2002.tb03041.x
http://www.ncbi.nlm.nih.gov/pubmed/12081857
http://doi.org/10.1016/j.copbio.2011.05.001
http://doi.org/10.1016/S0140-6736(10)60668-X
http://doi.org/10.1089/ten.teb.2013.0100
http://doi.org/10.1038/emm.2013.118
http://doi.org/10.1038/s41578-020-0209-x
http://doi.org/10.1242/dev.152587
http://www.ncbi.nlm.nih.gov/pubmed/29138288
http://doi.org/10.3390/nano10112179
http://doi.org/10.1111/exd.12457
http://doi.org/10.3389/fbioe.2020.00083
http://doi.org/10.1002/mabi.201900278
http://www.ncbi.nlm.nih.gov/pubmed/31800166
http://doi.org/10.1016/j.cobme.2019.07.003
http://doi.org/10.3390/ma10080884
http://www.ncbi.nlm.nih.gov/pubmed/28773240
http://doi.org/10.1016/j.msec.2019.109895
http://www.ncbi.nlm.nih.gov/pubmed/31500047
http://doi.org/10.1016/j.bioactmat.2020.01.012
http://doi.org/10.3390/ma6041285
http://doi.org/10.1016/j.carbpol.2012.10.028
http://www.ncbi.nlm.nih.gov/pubmed/23399155
http://doi.org/10.3389/fbioe.2019.00045
http://doi.org/10.3390/ijms22031499
http://www.ncbi.nlm.nih.gov/pubmed/33540895
http://doi.org/10.1080/00914037.2015.1103241


Int. J. Mol. Sci. 2021, 22, 9561 19 of 25

39. Morent, R.; Geyter, N.D.; Desmet, T.; Dubruel, P.; Leys, C. Plasma Surface Modification of Biodegradable Polymers: A Review.
Plasma Process. Polym. 2011, 8, 171–190. [CrossRef]

40. Khan, F.; Tanaka, M. Designing Smart Biomaterials for Tissue Engineering. Int. J. Mol. Sci. 2017, 19, 17. [CrossRef]
41. Zhang, J.; Jiang, X.; Wen, X.; Xu, Q.; Zeng, H.; Zhao, Y.; Liu, M.; Wang, Z.; Hu, X.; Wang, Y. Bio-Responsive Smart Polymers and

Biomedical Applications. J. Phys. Mater. 2019, 2, 032004. [CrossRef]
42. Rahaman, M.N.; Day, D.E.; Sonny Bal, B.; Fu, Q.; Jung, S.B.; Bonewald, L.F.; Tomsia, A.P. Bioactive Glass in Tissue Engineering.

Acta Biomater. 2011, 7, 2355–2373. [CrossRef] [PubMed]
43. Zhou, H.; Lee, J. Nanoscale Hydroxyapatite Particles for Bone Tissue Engineering. Acta Biomater. 2011, 7, 2769–2781. [CrossRef]
44. Stenzel, K.H.; Miyata, T.; Rubin, A.L. Collagen as a Biomaterial. Ann. Rev. Biophys. Bioeng. 1974, 3, 231–253. [CrossRef]
45. Chaignaud, B.E.; Langer, R.; Vacanti, J.P. The History of Tissue Engineering Using Synthetic Biodegradable Polymer Scaffolds and

Cells. In Synthetic Biodegradable Polymer Scaffolds; Atala, A., Mooney, D.J., Eds.; Birkhäuser: Boston, MA, USA, 1997; pp. 1–14.
ISBN 9781461241546.

46. Ricard-Blum, S. The Collagen Family. Cold Spring Harb. Perspect. Biol. 2011, 3, a004978. [CrossRef]
47. Shoulders, M.D.; Raines, R.T. Collagen Structure and Stability. Ann. Rev. Biochem. 2009, 78, 929–958. [CrossRef] [PubMed]
48. Sun, M.; Chen, S.; Adams, S.M.; Florer, J.B.; Liu, H.; Kao, W.W.-Y.; Wenstrup, R.J.; Birk, D.E. Collagen V Is a Dominant Regulator

of Collagen Fibrillogenesis: Dysfunctional Regulation of Structure and Function in a Corneal-Stroma-Specific Col5a1-Null Mouse
Model. J. Cell Sci. 2011, 124, 4096–4105. [CrossRef] [PubMed]

49. Kadler, K.E.; Hill, A.; Canty-Laird, E.G. Collagen Fibrillogenesis: Fibronectin, Integrins, and Minor Collagens as Organizers and
Nucleators. Curr. Opin. Cell Biol. 2008, 20, 495–501. [CrossRef]

50. Asgari, M.; Latifi, N.; Heris, H.K.; Vali, H.; Mongeau, L. In Vitro Fibrillogenesis of Tropocollagen Type III in Collagen Type I
Affects Its Relative Fibrillar Topology and Mechanics. Sci. Rep. 2017, 7, 1392. [CrossRef]

51. Wallace, J.M.; Chen, Q.; Fang, M.; Erickson, B.; Orr, B.G.; Banaszak Holl, M.M. Type I Collagen Exists as a Distribution of
Nanoscale Morphologies in Teeth, Bones, and Tendons. Langmuir 2010, 26, 7349–7354. [CrossRef]

52. Leikina, E.; Mertts, M.V.; Kuznetsova, N.; Leikin, S. Type I Collagen Is Thermally Unstable at Body Temperature. Proc. Natl. Acad.
Sci. USA 2002, 99, 1314–1318. [CrossRef]

53. Suwa, Y.; Nam, K.; Ozeki, K.; Kimura, T.; Kishida, A.; Masuzawa, T. Thermal Denaturation Behavior of Collagen Fibrils in Wet
and Dry Environment. J. Biomed. Mater. Res. B Appl. Biomater. 2016, 104, 538–545. [CrossRef]

54. Veres, S.P.; Harrison, J.M.; Lee, J.M. Mechanically Overloading Collagen Fibrils Uncoils Collagen Molecules, Placing Them in a
Stable, Denatured State. Matrix Biol. 2014, 33, 54–59. [CrossRef]

55. Zeugolis, D.I.; Khew, S.T.; Yew, E.S.Y.; Ekaputra, A.K.; Tong, Y.W.; Yung, L.-Y.L.; Hutmacher, D.W.; Sheppard, C.; Raghunath,
M. Electro-Spinning of Pure Collagen Nano-Fibres—Just an Expensive Way to Make Gelatin? Biomaterials 2008, 29, 2293–2305.
[CrossRef]

56. Ross-Murphy, S.B. Structure and Rheology of Gelatin Gels. Imaging Sci. J. 1997, 45, 205–209. [CrossRef]
57. Davidenko, N.; Schuster, C.F.; Bax, D.V.; Farndale, R.W.; Hamaia, S.; Best, S.M.; Cameron, R.E. Evaluation of Cell Binding to

Collagen and Gelatin: A Study of Theeffect of 2D and 3D Architecture and Surface Chemistry. J. Mater. Sci. Mater. Med. 2016, 27,
148. [CrossRef] [PubMed]

58. Mousavi, S.; Khoshfetrat, A.B.; Khatami, N.; Ahmadian, M.; Rahbarghazi, R. Comparative Study of Collagen and Gelatin in
Chitosan-Based Hydrogels for Effective Wound Dressing: Physical Properties and Fibroblastic Cell Behavior. Biochem. Biophys.
Res. Commun. 2019, 518, 625–631. [CrossRef]

59. Taubenberger, A.V.; Woodruff, M.A.; Bai, H.; Muller, D.J.; Hutmacher, D.W. The Effect of Unlocking RGD-Motifs in Collagen I on
Pre-Osteoblast Adhesion and Differentiation. Biomaterials 2010, 31, 2827–2835. [CrossRef] [PubMed]

60. Mhanna, R.; Öztürk, E.; Vallmajo-Martin, Q.; Millan, C.; Müller, M.; Zenobi-Wong, M. GFOGER-Modified MMP-Sensitive
Polyethylene Glycol Hydrogels Induce Chondrogenic Differentiation of Human Mesenchymal Stem Cells. Tissue Eng. Part A
2013, 20, 1165–1174. [CrossRef] [PubMed]

61. Wojtowicz, A.M.; Shekaran, A.; Oest, M.E.; Dupont, K.M.; Templeman, K.L.; Hutmacher, D.W.; Guldberg, R.E.; García, A.J.
Coating of Biomaterial Scaffolds with the Collagen-Mimetic Peptide GFOGER for Bone Defect Repair. Biomaterials 2010, 31,
2574–2582. [CrossRef]

62. Jiang, L.-B.; Su, D.-H.; Liu, P.; Ma, Y.-Q.; Shao, Z.-Z.; Dong, J. Shape-Memory Collagen Scaffold for Enhanced Cartilage
Regeneration: Native Collagen versus Denatured Collagen. Osteoarthr. Cartil. 2018, 26, 1389–1399. [CrossRef] [PubMed]

63. Dulnik, J.; Kołbuk, D.; Denis, P.; Sajkiewicz, P. The Effect of a Solvent on Cellular Response to PCL/Gelatin and PCL/Collagen
Electrospun Nanofibres. Eur. Polym. J. 2018, 104, 147–156. [CrossRef]

64. Rittié, L. Type I Collagen Purification from Rat Tail Tendons. In Fibrosis: Methods and Protocols; Rittié, L., Ed.; Methods in Molecular
Biology; Springer: New York, NY, USA, 2017; pp. 287–308. ISBN 9781493971138.

65. Rauterberg, J.; Kühn, K. Acid Soluble Calf Skin Collagen. Characterization of the Peptides Obtained by Cyanogen Bromide
Cleavage of Its Alpha-1-Chain. Eur. J. Biochem. 1971, 19, 398–407. [CrossRef] [PubMed]

66. Salvatore, L.; Gallo, N.; Aiello, D.; Lunetti, P.; Barca, A.; Blasi, L.; Madaghiele, M.; Bettini, S.; Giancane, G.; Hasan, M.; et al. An
Insight on Type I Collagen from Horse Tendon for the Manufacture of Implantable Devices. Int. J. Biol. Macromol. 2020, 154,
291–306. [CrossRef] [PubMed]

http://doi.org/10.1002/ppap.201000153
http://doi.org/10.3390/ijms19010017
http://doi.org/10.1088/2515-7639/ab1af5
http://doi.org/10.1016/j.actbio.2011.03.016
http://www.ncbi.nlm.nih.gov/pubmed/21421084
http://doi.org/10.1016/j.actbio.2011.03.019
http://doi.org/10.1146/annurev.bb.03.060174.001311
http://doi.org/10.1101/cshperspect.a004978
http://doi.org/10.1146/annurev.biochem.77.032207.120833
http://www.ncbi.nlm.nih.gov/pubmed/19344236
http://doi.org/10.1242/jcs.091363
http://www.ncbi.nlm.nih.gov/pubmed/22159420
http://doi.org/10.1016/j.ceb.2008.06.008
http://doi.org/10.1038/s41598-017-01476-y
http://doi.org/10.1021/la100006a
http://doi.org/10.1073/pnas.032307099
http://doi.org/10.1002/jbm.b.33418
http://doi.org/10.1016/j.matbio.2013.07.003
http://doi.org/10.1016/j.biomaterials.2008.02.009
http://doi.org/10.1080/13682199.1997.11736407
http://doi.org/10.1007/s10856-016-5763-9
http://www.ncbi.nlm.nih.gov/pubmed/27582068
http://doi.org/10.1016/j.bbrc.2019.08.102
http://doi.org/10.1016/j.biomaterials.2009.12.051
http://www.ncbi.nlm.nih.gov/pubmed/20053443
http://doi.org/10.1089/ten.tea.2013.0519
http://www.ncbi.nlm.nih.gov/pubmed/24134736
http://doi.org/10.1016/j.biomaterials.2009.12.008
http://doi.org/10.1016/j.joca.2018.06.004
http://www.ncbi.nlm.nih.gov/pubmed/29944927
http://doi.org/10.1016/j.eurpolymj.2018.05.010
http://doi.org/10.1111/j.1432-1033.1971.tb01329.x
http://www.ncbi.nlm.nih.gov/pubmed/5102923
http://doi.org/10.1016/j.ijbiomac.2020.03.082
http://www.ncbi.nlm.nih.gov/pubmed/32173436


Int. J. Mol. Sci. 2021, 22, 9561 20 of 25

67. Coppola, D.; Oliviero, M.; Vitale, G.A.; Lauritano, C.; D’Ambra, I.; Iannace, S.; de Pascale, D. Marine Collagen from Alternative
and Sustainable Sources: Extraction, Processing and Applications. Mar. Drugs 2020, 18, 214. [CrossRef]

68. Ruggiero, F.; Exposito, J.-Y.; Bournat, P.; Gruber, V.; Perret, S.; Comte, J.; Olagnier, B.; Garrone, R.; Theisen, M. Triple Helix
Assembly and Processing of Human Collagen Produced in Transgenic Tobacco Plants. FEBS Lett. 2000, 469, 132–136. [CrossRef]

69. Hsieh, D.-J.; Srinivasan, P. Protocols for Accelerated Production and Purification of Collagen Scaffold and Atelocollagen from
Animal Tissues. BioTechniques 2020, 69, 220–225. [CrossRef]

70. Lynn, A.K.; Yannas, I.V.; Bonfield, W. Antigenicity and Immunogenicity of Collagen. J. Biomed. Mater. Res. B Appl. Biomater. 2004,
71B, 343–354. [CrossRef]

71. Wakuda, Y.; Nishimoto, S.; Suye, S.; Fujita, S. Native Collagen Hydrogel Nanofibres with Anisotropic Structure Using Core-Shell
Electrospinning. Sci. Rep. 2018, 8, 6248. [CrossRef]

72. Kitsara, M.; Joanne, P.; Boitard, S.E.; Ben Dhiab, I.; Poinard, B.; Menasché, P.; Gagnieu, C.; Forest, P.; Agbulut, O.; Chen, Y.
Fabrication of Cardiac Patch by Using Electrospun Collagen Fibers. Microelectron. Eng. 2015, 144, 46–50. [CrossRef]

73. Nocera, A.D.; Comín, R.; Salvatierra, N.A.; Cid, M.P. Development of 3D Printed Fibrillar Collagen Scaffold for Tissue Engineering.
Biomed. Microdevices 2018, 20, 26. [CrossRef]

74. Bavaresco, B.; Comín, R.; Salvatierra, N.A.; Cid, M.P. Three-Dimensional Printing of Collagen and Hyaluronic Acid Scaffolds
with Dehydrothermal Treatment Crosslinking. Compos. Commun. 2020, 19, 1–5. [CrossRef]

75. Abbas, Y.; Brunel, L.G.; Hollinshead, M.S.; Fernando, R.C.; Gardner, L.; Duncan, I.; Moffett, A.; Best, S.; Turco, M.Y.; Burton, G.J.;
et al. Generation of a Three-Dimensional Collagen Scaffold-Based Model of the Human Endometrium. Interface Focus 2020, 10,
20190079. [CrossRef]

76. Chen, L.; Wu, Z.; Zhou, Y.; Li, L.; Wang, Y.; Wang, Z.; Chen, Y.; Zhang, P. Biomimetic Porous Collagen/Hydroxyapatite Scaffold
for Bone Tissue Engineering. J. Appl. Polym. Sci. 2017, 134, 45271. [CrossRef]

77. Munir, N.; Callanan, A. Novel Phase Separated Polycaprolactone/Collagen Scaffolds for Cartilage Tissue Engineering. Biomed.
Mater. 2018, 13, 051001. [CrossRef]

78. Liu, L.; Zhang, L.; Ren, B.; Wang, F.; Zhang, Q. Preparation and Characterization of Collagen–Hydroxyapatite Composite Used
for Bone Tissue Engineering Scaffold. Artif. Cells Blood Substit. Biotechnol. 2003, 31, 435–448. [CrossRef]

79. Kane, R.J.; Weiss-Bilka, H.E.; Meagher, M.J.; Liu, Y.; Gargac, J.A.; Niebur, G.L.; Wagner, D.R.; Roeder, R.K. Hydroxyapatite
Reinforced Collagen Scaffolds with Improved Architecture and Mechanical Properties. Acta Biomater. 2015, 17, 16–25. [CrossRef]

80. Ahn, S.; Lee, S.; Cho, Y.; Chun, W.; Kim, G. Fabrication of Three-Dimensional Collagen Scaffold Using an Inverse Mould-Leaching
Process. Bioprocess. Biosyst. Eng. 2011, 34, 903. [CrossRef]
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