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Abstract: Despite the fact that different biomaterials are widely used in many biomedical applications,
they can still cause side effects. Therefore, our aim was to assess neutrophil activity during the
inflammatory phase of the repair process and long-term interactions between circulating neutrophils
and Titanium (Ti) implants. Additionally, neutrophil in vitro response after stimulation by the extract
of antimicrobial peptides (AMP extract), pentoxifylline (PTX) and some platelet-rich (L-PRP and
PURE PRP) and platelet-poor (PPP) concentrates were tested. The study was conducted on eight
sheep after Ti implant insertion into the tibia and revealed that the Ti implant did not cause any side
effects during the course of experiment. After addition of L-PRP into neutrophils, culture activity of
these cells significantly increased (p < 0.01), whereas treatment with AMP extract, PURE PRP, PPP or
PTX caused decrease in neutrophil enzymatic response (on the basis of elastase, myeloperoxidase and
alkaline phosphatase release) and free radical generation. These effects were observed in neutrophils
isolated during the inflammatory phase as well as 4 and 10 months after implantation. Obtained
results will be useful in regulation of inflammatory response during implantation of biomaterial and
create possibility to modulate the cells response towards pro- or anti-inflammatory to reduce host
tissue damage.

Keywords: antimicrobial peptides; platelet-rich plasma; titanium implant; neutrophils; pentoxifylline

1. Introduction

Biomaterials are essential for a variety of healthcare applications and favored the
great improvements in tissue engineering, medical implants applications, drug delivery,
and immunotherapy [1]. In regenerative medicine, for evaluation of the bone substitute
behavior at the early stages of bone repair, combinations of biomaterials, such as autologous
human bone, porcine bone or a mixture of both were used in human clinical study [2].
However, the common property of biomaterials is the induction of adverse immune
reactions resulting in excessive inflammatory response, impaired healing process, fibrotic
encapsulation, and tissue destruction [1]. These adverse effects of bone implants are
widely recognized as a significant cause of aseptic implant failure. Within these effects,
osteolysis around the implant is caused by the activation of different cells and secretion of
pro-inflammatory cytokines. This deleterious response could be evoked by particulate wear
and corrosion debris, organo–metallic complexes, metal salt/oxides and free metal ions
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released from implant [3–5]. Titanium (Ti) is the most common metal used in orthopedics
and dentistry. Despite the fact that this metal is highly resistant to corrosion, Ti ions
might slowly diffuse into surrounding tissue and might be transported into plasma and
interact with circulating blood cells. It was confirmed that particles formed by Ti ions
can act as secondary stimuli to activate and release pro-inflammatory cytokines from
human macrophages; furthermore, after exposition to Ti particles macrophages are able to
cause neutrophil recruitment [6]. Due to the increasing use of titanium implants in clinical
practice, it should be borne in mind that complications rate will also increase. Therefore,
understanding the mechanisms responsible for the formation of aseptic implant rejection,
especially the role of immune cells in this process is of growing interest.

Polymorphonuclear neutrophils (PMNs) appeared to be a non-homogenous popula-
tion. Apart from their microbicidal role in the first-line defense they have been recently
recognized as effector cells responsible for regulation of inflammation [7]. On one hand
they can cause inflammatory injury of different tissues and organs and are not indicated
for some applications [8]; in particular, excessive enzyme release from neutrophils and
reactive oxygen species (ROS) generation can cause host tissue injury [9]. On the other
hand, the “regulatory” or “suppressor” neutrophils subtype can express some Toll-like
receptors (TLR) and can induce an anti-inflammatory response, either by interacting di-
rectly with other cells or by secreting factors that induce polarization of other cell types [7].
Therefore, PMNs greatly impact immune mechanisms of the host, thus they significantly
contribute to immune modulation, tissue repair and local inflammation which is necessary
in chronic wound repair or bone healing. For this reason, we evaluated some products as
potential modifiers of neutrophil response. Autologous neutrophil extract was previously
recognized as the source of antimicrobial peptides [10] and considered as the factor able
to decrease the excessive response of leukocytes [11,12]. Another potential modulator of
neutrophil activity, Pentoxifylline (PTX) is a competitive non-selective phosphodiesterase
inhibitor, which acts as an anti-inflammatory, enhances microcirculation, blood flow and tis-
sue oxygenation. PTX decreases superoxide generation and neutrophil degranulation [13].
It also stimulates bone formation and increases systemic bone mass in animal models; thus,
it could be considered in some approaches to improve osseointegration [14].

Platelet-rich plasma (PRP) and other platelet concentrates have been used in regen-
erative medicine for long time. In the light of fact that platelets can interact with PMNs
and are considered as regulators of inflammation through TLR expression, it seemed to be
interesting to evaluate the co-culture of both cell populations [9,15]. In veterinary medicine
the use of PRP started from the treatment of ligament and tendons injuries in horses with
osteoarthrosis, and currently it is used for many surgical procedures in human medicine
and in animals [16]. Some authors found that the combination of neutrophils and activated
platelets could have more positive than detrimental effects on tissue repair, especially in
the regenerative phase in the inflammatory process [17]. Generally, it was emphasized that
the effectiveness of PRP is attributed to an optimal balance between the anabolic effect of
growth factors and the catabolic effect of cytokines as well as a proper platelets/leukocytes
ratio, depending on the potential application [18]. To date there are no clear regulations
of the preparation and the content of PRP. The composition of this blood-derived product
varies greatly in platelets’, white blood cells’ (WBC) and red blood cells’ (RBC) contents.
Therefore, PRP has to be considered and evaluated as a few different products, such as
leukocyte-rich PRP (LR-PRP), leukocyte-poor PRP (LP-PRP), clinical PRP (C-PRP) amongst
others. Additionally, the PRP by-product named platelet poor plasma fraction (PPP) rich in
plasma proteins (fibrinogen, fibronectin, and thrombin) could be added to these products
and used in some applications, as it promotes wound healing, and accelerates cell migra-
tion and proliferation of fibroblasts [8,19]. Previously, leukocyte- and platelet-rich fibrin
(L-PRF) was successfully applied in treatment of periodontal disorders to enhance tissue
regeneration by stimulation of specific cell anabolic activities. This compound appeared to
be a low-cost, easy to use and effective platelet-derived concentrate [20].
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Platelet-related products including PRP, PPP and platelet-rich fibrin are widely used
to promote wound healing and tissue regeneration. Thus, it is important from the clinical
point of view to study the differences between these products in terms of composition and
their biologic effects [19]. In our study based on the platelet and leukocyte content, platelet-
related products have been classified as PURE-PRP containing a few or no leukocytes, LR-
PRP (leukocyte-rich PRP) that contains more leukocytes and PPP with a low concentration
of platelets [21].

In-depth understanding of the host/biomaterial interactions is strongly needed to
develop procedures to overcome side effects during the application of biomaterials, which
are still an important challenge in the regenerative medicine [1]. A part of this knowledge
is neutrophil interactions with Ti [22]. Previously, some authors stated that neutrophils as
the leading participants of the inflammatory phase have the potential to modulate inflam-
matory response to Ti implantation [23]. Kumazawa, in turn [6], examined the effect of Ti
on the function and morphology of the human neutrophils and tested their cytotoxicity and
biocompatibility in vitro and in vivo. We evaluated the potential of ovine PMNs as regula-
tory cells both in the inflammatory phase of repair process and on long-term interactions
with Ti implantation. We also assessed some products as potential regulators of neutrophil
inflammatory response. In this study AMP extract, PTX and different platelet-rich or
platelet-poor concentrates were evaluated in terms of their interactions with circulating
neutrophils after Ti implant insertion. Our aim was to assess PMNs response to overall
conditions involved in implantation of biomaterial into the tibia, including anesthesia,
implantation of a Ti implant and post-operative management. In the subsequent part of
the experiment the long-term interactions between Ti implant and circulating neutrophils
were evaluated. To our knowledge this is the first study describing these interactions on an
ovine model of the Ti implant insertion.

2. Results
2.1. Clinical Results

Over the course of the experiment, no adverse effects at the implantation site were
observed for up to 10 months after the implantation of Ti implants. All sheep were exam-
ined for possible implantation failure; clinical examinations did not reveal any pathological
signs and radiological findings confirmed proper implantation. Hematological and acute
phase proteins (APP) values were within the normal range (Table 1).

Table 1. Mean hematological and APP parameters (±SE) in sheep (n = 8) before (T0), after 24 h (T2),
after 4 months (T3) and after 10 months (T4) surgery.

Parameter T0 T2 T3 T4

WBC (109/L) 5.99 ± 1.22 5.9 ± 1.9 6.13 ± 1.46 5.95 ± 1.34

GRAN (109/L) 3.4 ± 1.1 3.35 ± 0.97 3.67 ± 1.46 3.42 ± 0.98

RBC (1012/L) 9.2 ± 0.91 9.06 ± 0.82 9.1 ± 0.79 9.15 ± 0.9

HCT (%) 27.45 ± 3.21 27.12 ± 2.45 27.57 ± 2.32 27.34 ± 3.11

HGB (g/L) 113.2 ± 1.22 117.9 ± 1.14 114.8 ± 1.03 117.5 ± 1.06

Fibrinogen (g/L) 4.10 ± 1.00 4.97 ± 0.51 4.52 ± 0.62 4.15 ± 0.86

Haptoglobin (g/L) 0.22 ± 0.20 0.61 ± 0.13 0.21 ± 0.15 0.28 ± 0.22

2.2. Activity of Neutrophils Isolated during the Inflammatory Phase of Repair after Implantation

We did not observe any significant differences between the activity of neutrophils
isolated 2 h and 24 h after implantation compared to neutrophils isolated at the same time
points from control animals (Figure 1).
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Figure 1. Activity of neutrophils isolated 7 days before, 2 h and 24 h after implantation (experimental: 8 sheep) compared
to control groups of neutrophils isolated at the same time points from animals from control groups (control: 4 sheep).
C: control group, E: experimental group. The neutrophil response to Ti implant insertion, with or without stimulation with
AMP extract; (a) ALP release from neutrophils, (b) NO generation release, (c) superoxide generation in the inflammatory
phase of the repair process assessed at two measurements, after 30 min and 22 h incubation at 37 ◦C and 5% CO2. Data
present mean values ± SE of at least three replicates for each bar. * p < 0.05 compared to cultures of neutrophils from the
control group at the same time points. ** p < 0.01.

AMP extract evoked insignificant decrease in the release of elastase and MPO from
primary neutrophil granules at all time points, 7 days before implantation, 2 h and 24 h
after implantation in both measurements, after 30 min and 20 h incubation at 37 ◦C and 5%
CO2 (Figure not shown). Significant (p < 0.01) decrease in enzymatic activity was noted
after measurement of the release of ALP from secondary neutrophil granules at both time
points after surgery (Figure 1a). Decrease in nitrite concentration (as an indicator of NO
generation) was significant after 30 min culture in all groups and at the second time point
after 20 h incubation (Figure 1b). Similar to the NO generation, superoxide generation
significantly diminished in neutrophil cultures isolated from experimental sheep 24 h
after implantation in cultures incubated for 30 min and for 20 h (Figure 1c). Together,
these results confirmed the inhibitory effect of autologous AMP extract on neutrophil
secretory activity.

We demonstrated that the effect of PTX on neutrophil response was concentration-
dependent. After stimulation with 1 µg/mL the significant decrease in neutrophils’ enzy-
matic response was noted. In cultures of neutrophils isolated from sheep two hours after
implantation, elastase release was 51.2 ± 0.2% of maximal release (p < 0.05) compared to
unstimulated culture of neutrophils from this measurement (54.8 ± 0.3%). Similar effects
were seen in the release of other studied neutrophil products, namely MPO, ALP, NO
and superoxide. On the other hand, the changes in neutrophil activity caused by PTX at a
concentration of 100 µg/mL were insignificant compared to unstimulated cultures (Figure 2).
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Figure 2. Activity of neutrophils isolated 7 days before, 2 h and 24 h after implantation (experimental: 8 sheep) compared
to control groups of neutrophils isolated at the same time points from animals from control groups (control: 4 sheep).
C: control group, E: experimental group. The response to implantation and treatment with two concentrations of PTX
(1 and 100 µg/mL); (a) elastase release from neutrophils, (b) MPO release, (c) ALP release, (d) NO generation, (e) superoxide
generation in the inflammatory phase of the repair process. Data present mean values ± SE of at least three replicates for
each bar. * p < 0.05 compared to cultures of neutrophils without stimulation (0 µg/mL) at the same time points.

To evaluate the interactions between platelets and neutrophils we prepared co-cultures
of neutrophils and platelets. Platelets were obtained from two systems for isolation of
PRP, namely L-PRP and PURE PRP. Neutrophils were isolated from sheep at all stud-
ied time points, before implantation, 2 h after implantation and 24 h after implantation.
All co-cultures of each PRP were incubated for 4 h and for 20 h at 37 ◦C and 5% CO2.
The activity of cultures was assessed on the basis of elastase, MPO, ALP release, as well
as NO and superoxide generation by neutrophils isolated from sheep in all studied time
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points; before implantation (Figure 3), 2 h after implantation (Figure 4) and 24 h after im-
plantation (Figure 5). All results of cultures stimulated with L-PRP, PURE PRP, or PPP from
L-PRP system and PPP from PURE PRP system (all with or without stimulation with LPS),
were compared to values obtained in cultures without stimulation. Comparison between
experimental and control groups was also conducted at each measurement (4 h and 20 h
incubation). Our study revealed that L-PRP after addition to neutrophils culture evoked
increased release of elastase in all measurements both 2 h and 24 h after implantation
(marked as the experimental group) in comparison with samples without implantation
(marked as the control group). At the time point 24 h after implantation (Figure 5), elastase
release from the experimental group (4 h incubation) after stimulation with L-PRP rose
from 53.1 ± 0.33% to 59.00 ± 0.4% (p < 0.05). Conversely, the value after treatment with
PRP-PURE decreased to 45.00 ± 0.45%. All values in cultures treated additionally with
LPS were higher. Superoxide generation in cultures of neutrophils isolated 24 h after
implantation and stimulated with L-PRP generated 9.62 ± 0.2 nM of superoxide compared
to a value of 5.3 ± 0.43 nM in cultures without stimulation (p < 0.05). Conversely, after
stimulation with PURE-PRP, the obtained results were significantly lower than in L-PRP
(p < 0.05) and similar to the unstimulated values (Figure 5). In all cultures treated with
LPS, obtained values of superoxide generation were higher than in groups without ad-
dition of LPS. Additionally, as shown in Figure 3 to Figure 5, treatment of neutrophil
cultures with PPP from both systems with or without addition of LPS caused decrease in
neutrophil activity.

Figure 3. Cont.
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Figure 3. The response of neutrophils isolated before implantation with different PRP-derived products with or without
additional stimulation with LPS. Legends: cultures were incubated for 4 h or for 20 h at 37 ◦C and 5% CO2. Data present
mean values ± SE of at least three replicates for each bar. The neutrophil response was assessed with respect to: (a) elastase
release from neutrophils, (b) MPO release, (c) ALP release, (d) NO generation, (e) superoxide generation. Values marked
with different letters differed significantly (p < 0.05). Legends: 1—neutrophil without stimulation, 2—after stimulation
LPS, 3—after stimulation PPP from L-PRP, 4—after stimulation PPP from PURE PRP, 5—after stimulation PPP from L-PRP
with LPS, 6—after stimulation PPP from PURE PRP with LPS, 7—after stimulation L-PRP, 8—after stimulation PURE PRP,
9—after stimulation L—PRP with LPS, 10—after stimulation PURE PRP with LPS.
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Figure 4. The response of neutrophils isolated 2 h after implantation with different PRP-derived products with or without
additional stimulation with LPS. Cultures were incubated for 4 h or for 20 h at 37 ◦C and 5% CO2. Data present mean
values ± SE of at least three replicates for each bar. The neutrophil response was assessed with respect to: (a) elastase
release from neutrophils, (b) MPO release, (c) ALP release, (d) NO generation, (e) superoxide generation. Values marked
with different letters differed significantly (p < 0.05). Legends: 1—neutrophil without stimulation, 2— after stimulation
LPS, 3—after stimulation PPP from L-PRP, 4—after stimulation PPP from PURE PRP, 5—after stimulation PPP from L-PRP
with LPS, 6—after stimulation PPP from PURE PRP with LPS, 7—after stimulation L-PRP, 8—after stimulation PURE PRP,
9—after stimulation L-PRP with LPS, 10—after stimulation PURE PRP with LPS.

Figure 5. Cont.
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Figure 5. The response of neutrophils isolated 24 h after implantation with different PRP-derived products with or without
additional stimulation with LPS. Cultures were incubated for 4 h or for 20 h at 37 ◦C and 5% CO2. Data present mean
values ± SE of at least three replicates for each bar. The neutrophil response was assessed with respect to: (a) elastase
release from neutrophils, (b) MPO release, (c) ALP release, (d) NO generation, (e) superoxide generation. Values marked
with different letters differed significantly (p < 0.05). Legends: 1—neutrophil without stimulation, 2—after stimulation
LPS, 3—after stimulation PPP from L-PRP, 4—after stimulation PPP from PURE PRP, 5—after stimulation PPP from L-PRP
with LPS, 6—after stimulation PPP from PURE PRP with LPS, 7—after stimulation L-PRP, 8—after stimulation PURE PRP,
9—after stimulation L-PRP with LPS, 10—after stimulation PURE PRP with LPS.

Our study revealed that, in L-PRP, previous contact of platelets with leukocytes results
in increase in PMN response, whereas PURE-PRP acts as an anti-inflammatory, similarly to
PPP. The responses of PMNs isolated before implantation, 2 h and 24 h after Ti implant
insertion were similar. At all time points the experimental group was compared to control
groups and differences between these groups were insignificant.

2.3. Assessment of Long-Term Interactions between Circulating Neutrophils and Ti Implants

The response of circulating neutrophils to implantation was examined 4 months and
10 months after insertion of Ti implant into the ovine tibia and compared to control group.
We did not observe significant differences between results obtained in experimental group
and control group of sheep with respect to neutrophil activity at both time points. Similarly,
as in the first part of the experiment, the treatment of neutrophil cultures with AMP extract
for 30 min and 20 h evoked decreased release of MPO, nitrite concentration and superoxide
generation in comparison to unstimulated cells (Figure 6a–c).

As shown in Figure 6b the concentration of nitrite in medium significantly (p < 0.05)
decreased after stimulation of neutrophils with AMP extract in measurements 4 and
10 months after implantation compared to the control (Figure 6b). Superoxide genera-
tion decreased significantly (p < 0.05) in cultures obtained 10 months after implantation
(Figure 6c).

The effect of PTX on neutrophil response was concentration-dependent, as in the
previous experiment on the inflammatory phase of the repair process. After stimulation
with 1 µg/mL the significant decrease in elastase, MPO and ALP release as well as NO and
superoxide generation was noted, whereas at a concentration of 100 µg/mL the changes
were insignificant in cultures 4 months after implantation. Measurements repeated after
10 months gave the similar effect depicted in Figure 7.
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Figure 6. Activity of neutrophils isolated 4 and 10 months after implantation (experimental: 8 sheep) compared to control
groups of neutrophils isolated at the same time points from animals from control groups (control: 4 sheep). The neutrophil
response to Ti implant insertion, with or without stimulation with AMP extract; (a) MPO release from neutrophils, (b) NO
generation, (c) superoxide generation assessed at two time points: 4 and 10 months after implantation. Two measurements,
after 30 min and 20 h incubation at 37 ◦C and 5% CO2 were conducted. Data present mean values ± SE of at least three
replicates for each bar. * p < 0.05 compared to cultures of neutrophils from the control group at the same time points.
Legends: C0—control group before surgery, E0—experimental group before surgery, C 4m—control group 4 months after,
E 4m—experimental group 4 months after, C 10m—control group 10 months after, E 10m—experimental group 10 months
after insertion of a titanium implant.

L-PRP after addition to neutrophils culture evoked increased release of elastase in all
measurements both 4 months (Figure 8a) and 10 months (Figure 9a) after implantation in
comparison with cultures of unstimulated neutrophils. After stimulation with LPS, higher
response of the neutrophil/platelets co-cultures was observed. Treatment with PURE-PRP,
in turn, caused diminished elastase release at both time points after 4 months (Figure 8a)
and after 10 months (Figure 9a). In the case of the other studied PMNs parameters, namely
enzymatic response and reactive oxygen and nitrogen species (RONS) generation, we
noted increased response to addition of L-PRP. All values were higher after stimulation of
cultures with LPS (Figures 8 and 9). Contrary to this, PURE-PRP caused a decrease in these
activities. Morphological assay of neutrophil/platelet coculture indicated the presence
of activated PMNs both in L-PRP and PURE-PRP compared to isolated PMNs without
platelets (Figure 10A–C).
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Figure 7. Activity of neutrophils isolated 4 and 10 months after implantation (experimental—8 sheep) compared to control
groups of neutrophils isolated at the same time points from animals from control groups (control: 4 sheep). C—control group,
E—experimental group. The response to implantation and treatment with two concentrations of PTX (1 and 100 µg/mL);
(a) elastase release from neutrophils, (b) MPO release, (c) ALP release, (d) NO generation, (e) superoxide generation assessed
at two time points: 4 and 10 months after implantation. Data present mean values ± SE of at least three replicates for each
bar. * p < 0.05 compared to cultures of neutrophils without stimulation (0 µg/mL) at the same time points.
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Figure 8. The response of neutrophils isolated 4 months after implantation to different PRP-derived products with or
without additional stimulation with LPS. Cultures were incubated for 4 h or for 20 h at 37 ◦C and 5% CO2. Data present
mean values ± SE of at least three replicates for each bar. The neutrophil response was assessed with respect to: (a) elastase
release from neutrophils, (b) MPO release, (c) ALP release, (d) NO generation, (e)-superoxide generation. Values marked
with different letters differed significantly (p < 0.05). Legends: 1—neutrophil without stimulation, 2—after stimulation
LPS, 3—after stimulation PPP from L-PRP, 4—after stimulation PPP from PURE PRP, 5—after stimulation PPP from L-PRP
with LPS, 6—after stimulation PPP from PURE PRP with LPS, 7—after stimulation L-PRP, 8—after stimulation PURE PRP,
9—after stimulation L-PRP with LPS, 10—after stimulation PURE PRP with LPS.
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Figure 9. The response of neutrophils isolated 10 months after implantation to different PRP-derived products with or
without additional stimulation with LPS. Cultures were incubated for 4 h or for 20 h at 37 ◦C and 5% CO2. Data present
mean values ± SE of at least three replicates for each bar. The neutrophil response was assessed with respect to: (a) elastase
release from neutrophils, (b) MPO release, (c) ALP release, (d) NO generation, (e) superoxide generation. Values marked
with different letters differed significantly (p < 0.05). Legends: 1—neutrophil without stimulation, 2—after stimulation
LPS, 3—after stimulation PPP from L-PRP, 4—after stimulation PPP from PURE PRP, 5—after stimulation PPP from L-PRP
with LPS, 6—after stimulation PPP from PURE PRP with LPS, 7—after stimulation L-PRP, 8—after stimulation PURE PRP,
9—after stimulation L—PRP with LPS, 10—after stimulation PURE PRP with LPS.
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Figure 10. Representative phase contrast microscopical images. (A) Isolated neutrophils, (B) co-culture of activated PMNs
with platelets after addition of PURE PRP, (C) co-culture of activated PMNs with platelets after addition of L-PRP. Original
magnification × 40 (Olympus-CK40).

3. Discussion

Our study revealed that Ti implant insertion into the ovine tibia did not evoke any
side effects neither at the inflammatory phase of repair process nor at long-time treatment
4 and 10 months after surgery. According to some authors, implantation of biomaterial
elicits an immune response that causes tissue damage and activation of neutrophils which
initiate a cascade of inflammatory events [24]. However, the interactions between neu-
trophils and implanted biomaterials varied depending on many factors, especially the
material used for implantation. Previously, Kumazawa et al. [6] assessed neutrophil func-
tions after contact of neutrophils with Ti particles for 1 month at 37 ◦C. Their study revealed
different response depending on Ti particles size, namely fine Ti particles below 10 µm in
diameter induced cytotoxicity both in vivo and in vitro, whereas large particles, as used
in implants, are biocompatible. Abaricia et al. analyzed in vitro response of neutrophils
to different surfaces of the Ti discs [22]. These authors confirmed that the biomaterial
surface modulates cell activation. Neutrophils were differentially activated after contact
with smooth, rough, or rough–hydro Ti surfaces and different secretion of inflammatory
molecules, enzymes, and formation of NETs was observed. Additionally, they show that
activated neutrophils are key cells for macrophage polarization [22]. In our study, circu-
lating neutrophils were not activated neither at the inflammatory phase nor after long
term evaluation of host/Ti implants interactions. These findings were confirmed with a
lack of systemic inflammatory response on the basis of hematological results and APP
response. To our knowledge, this is a first study on the first inflammatory phase and
long-term interactions between circulating neutrophils and Ti implant on ovine model of
surgical procedures.

We estimated that addition of autologous AMP extract caused a decrease in neutrophil
in vitro activity to a different extend, enzymatic activity of primary granules of cultured
neutrophils decreased insignificantly, whereas enzyme release from secondary granules
and RONS generation were significantly diminished. Previous findings indicated that
autologous rabbit AMP extract decreased neutrophils and macrophages activity during
osteochondral graft implantation [12], whereas heterologous (porcine) AMP extract stimu-
lated ovine macrophages to increase pro-inflammatory response after implantation of a Ti
implant [11]. Moreover, Huiwen et al. indicated that some AMPs, apart from well known
antimicrobial activity, also exert a potent anti-inflammatory effect [25]. Our results show
that an autologous ovine AMP extract did not cause strong inhibition of PMNs’ activity,
it rather modulated them towards diminished response. Other authors demonstrated
the role of short natural peptides in enhancement of neurogenic differentiation capacity
in vitro [26]; this research paves the way for clinical studies on the application of natural
peptides in regenerative medicine.

We observed that PTX in a concentration of 1 µg/mL significantly decreased enzyme
release and RONS generation in measurements before and after Ti plate implantation in an
ovine model. Some previous studies indicated the potential of PTX as immunomodulatory
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and anti-inflammatory factor, that suppresses production of TNF by human and murine
leukocytes as well as superoxide production by neutrophils and their degranulation [27].
Previous studies about the therapeutic potential of PTX in regenerative medicine are contra-
dictory. Some authors did not confirm the influence of PTX on histological changes during
the tissue repair process [28]; conversely, others stated that PTX improved bone healing
in rats [14]. Additionally, Chalmeth described the effectiveness of the anti-inflammatory
effect of PTX on sheep and underlined its therapeutic potential in serious inflammatory
disorders [29].

We found that different neutrophil responses to platelets depended on the PRP sys-
tem used for preparation of platelet concentrates. L-PRP activated neutrophils, whereas
PRP PURE decreased their enzymatic response and RONS generation. In our experiment,
after addition of L-PRP, we observed increased enzyme release as well as production
of NO and superoxide in these co-cultures, especially after stimulation with LPS. It is
known that platelets are important regulators of inflammation, they express Toll-like
receptors, and can enhance leukocyte effector functions including pro-inflammatory ac-
tivity [9]. Previously, some authors have shown that PRP reach in leukocytes stimulated
some functions of neutrophils and activated platelets, contributing to pro-inflammatory
activities [8,30]. Gros et al. underlined the role of activated platelets in regulation of neu-
trophil functions such as the ROS generation, the secretion of neutrophil granule content,
phagocytosis, or the formation of neutrophil extracellular traps [30]. We supposed that the
increased activity of neutrophils in co-cultures with platelets from L-PRP resulted from
previous crosstalk with leukocytes present in this platelet concentrate. This statement could
be confirmed by observation that platelets derived from PRP PURE without leukocytes
caused decreased inflammatory response in neutrophils in co-culture, as estimated on de-
creased enzyme release and RONS generation, both with or without stimulation with LPS.
Additionally, some authors [15] noted that neutrophil activation is reduced in the presence
of platelets. Anti-inflammatory potential of the interactions of platelets and neutrophils
was also found by Lana et al. [17]. They estimated that the combination of neutrophils
with platelets could have a more beneficial than detrimental effect on tissue repair process.
Activated platelets release arachidonic acid which is captured by neutrophils and converted
into leukotriene and prostaglandins. Alternatively, platelets in association with neutrophils
can pick up leukotrienes and covert them into lipoxin, a potent anti-inflammatory protein
capable of limiting neutrophil activation and preventing diapedesis, thereby promoting
the resolution phase of the healing cascade. Thus, these interactions seem to be beneficial
for resolution of inflammation.

We observed the inhibitory effect of PURE PRP on neutrophil enzymatic response in
all the studied time points. Additionally, other authors found that platelets can inhibit
the release of elastase and MPO from neutrophils [31]. The anti-inflammatory effect of
PRP seems to rely in different mechanisms and could dampen elastase secretion as a mech-
anism to prevent inflammatory host damage [15]. It is possible that tromboxane (TXA)
from activated platelets affects the oxygen metabolism of neutrophils, which lack this
enzyme. This indicated the significant influence of platelets on neutrophils’ function [32].
However, it should be taken into account that the pro- or anti-inflammatory effect of
platelets concentrate depends on experimental conditions such as the platelet and neu-
trophil stimulators and other factors [30]. Thus, it appeared that platelets regulate neu-
trophil degranulation and ROS production in a stimulus-specific manner and many differ-
ent conditions should be taken into account. It appeared that the pro- or anti-inflammatory
effect of platelets is highly dependent on such factors as the cause of inflammation, which
defines the pathways and extent of leukocytes’, platelets’, and endothelial cells’ activation [30].
Hence, the differences in neutrophil response depend on the PRP preparation used.

It should be underlined that the overall impact of platelets on inflammatory process
can either be beneficial or deleterious depending on the pathophysiological context [30].
Some authors stressed the key role of PRP in inflammatory aspects of tissue healing
involved in release of major anti-inflammatory growth factors, as shown in the experiment
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on PRP treatment of tendon cells in vitro described by Zhou and Wang [21]. PRP could
also decrease the release of pro-inflammatory cytokines. However, leukocytes in PRP
could potentially enhance inflammation because they significantly increased the gene
and protein expression of IL-1β, IL-6, and TNF-α in tendon cells. This demonstrates that
leukocytes can exacerbate inflammation in tendon cells but pure PRP without leukocytes
can be anti-inflammatory [21]. Generally, different methods of action of different platelet
concentrates are useful in different applications in regenerative medicine. Exacerbated
tissue inflammatory levels can be necessary in chronic wound treatments. However,
neutrophils can also cause tissue damage and, thus, should not be used in some applications.
Zhou and Wang [21] found that the PRP used together with neutrophils may change the
collagen type III/type I ratio, leading to fibrosis and decreased tendon strength.

Our study revealed that, depending on the system used for isolation of platelets,
we could obtain different effects of PRP concentrates on neutrophil response and dif-
ferent pro- or anti-inflammatory responses of cultured cells. The stimulation with LPS
generated higher values in all studied groups. The immune functions of platelets are
various and diverse and depend on the combination of different stimuli received by the
neutrophil/platelet populations. These responses can cause either augmentation or attenu-
ation of neutrophil functions both in the absence and presence of TLR stimulation with
LPS [9]. The inflammatory phase is necessary for healing process, especially the remodel-
ing and tissue contraction phase [17]. To summarize, platelet–leukocyte interactions can
regulate inflammation, wound healing and tissue repair. TLR-4 on platelets stimulates
platelet–neutrophil interactions and modulates neutrophil response [33].

In our study, addition of PPP±LPS into neutrophil cultures caused decrease in their
activity both in comparison with unstimulated cultures and in comparison with cul-
tures stimulated with both systems of PRP preparation. Some active biological factors,
both anabolic and catabolic were found in PPP and could be used in regenerative medicine,
especially in treatment of some musculoskeletal disorders involved in exacerbated inflam-
matory response [34]. The anti-inflammatory potential of AMP extract, PTX, and PURE
PRP could be used to prevent excessive inflammation, which could lead to aseptic implant
loosening and graft rejection. Otherwise, pro-inflammatory action could be applied in
treatment of chronic conditions and in defective inflammatory response to enhance healing.

Generally, it is a concern that therapeutic inhibition of neutrophil activity, because
of their antimicrobial role, will trigger infections. However, some reports suggest the
therapeutic window of attenuation neutrophil-mediated inflammatory process without in-
terfering with host defense depended on neutrophils response [35]. Our research described
possible modifications of neutrophil activity and broadens understanding of interactions
neutrophils/biomaterial beyond the required biocompatibility assays, enabling further
reduction in side effects involved in implantation of biomaterials. This is only prelimi-
nary study on limited number of animals. Evaluated compounds before introducing into
clinical practice will need careful clinical trials. It should be also taken into account that
in patients all interactions organism/biomaterial could additionally affect the studied
response. However, the results obtained during in vitro studies constitute a promising
basis for further research.

4. Materials and Methods
4.1. Animal Model and Surgical Procedure

The study was conducted in a group of 12 healthy (based on clinical examination
and blood analysis) female sheep (Ovis aries, BCP local breed), aged 4 months (weight
about 20 kg), from the Bezek Experimental Farm of University of Life Sciences in Lublin
(Poland). The animals were randomly divided into two groups, a control group (n = 4)
and an experimental group (n = 8). All animals were fed, housed and cared for in ac-
cordance with the directive concerning the protection of animals. The experiment was
approved by the local Ethics Committee number II in Lublin (No 84/2019). All animals
from the experimental group had a Ti implant inserted into the tibia (Figure 11A–C).
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Figure 11. A clinical photographs of implant insertion on the ovine tibia: (A) dissection of soft tissue and (B) periosteum.
(C) implants installed in the right tibia.

The sheep were premedicated with intramuscular injection of xylazine (0.1 mg/kg)
and Butorphanol (0.1 mg/kg). The surgical area was aseptically cleaned, and the standard
surgical approach for proximal tibia was prepared then, after periosteal elevation, a Ti
eight-plate implant with two screws was implanted. Postoperative medication included
Melovem (Meloxicam 5%, Dopharma Research B.V. 1.2 mL SC) as analgesic and Combi-ject
(200 000 IU/mL Penicillin and 200 mg/mL Streptomycin) to prevent infection. All animals
were monitored postoperatively for ten days in terms of the condition of the animal,
assessment of breathing, heart rate, and body temperature. Additionally, monitoring of the
area of the postoperative wound and examination of the skeletal system to exclude motor
disorders of the operated limb was performed.

Peripheral blood for preparation of AMP extract and for hematological assays was
drawn from the jugular vein seven days before the experimental procedure.

Hematological parameters in all sheep were within the reference ranges, as estimated
after blood count analysis using an Abacus Junior Vet analyzer (Diatron, Budapest, Hun-
gary). Acute phase response on the basis of two indicative proteins namely haptoglobin
and fibrinogen concentration in plasma were conducted as described earlier [36].

AMP extract was prepared as previously described [37]. Briefly, after isolation from
whole blood, neutrophils were centrifuged and homogenized to obtain neutrophil granules.
Isolated granules were then stirred in 10% acetic acid at 4 ◦C overnight. The solution of
AMP was lyophilized and stored at −70 ◦C. The peptide content was assessed spectropho-
tometrically on the basis of absorbance of Tyr at 280 nm using an extinction coefficient of
1450 M−1 cm−1 [38].

4.2. Neutrophils Isolation, Culture and Stimulation

For evaluation of the circulating neutrophils during the inflammatory phase re-
sponse, blood samples were collected into EDTA tubes at the following time points: first
T0: 7 days before surgery, second T1: 2 h after surgery and last T2: 24 h after surgery.
For evaluation of long-term neutrophil/implant interactions, blood was also drawn 4 months
(T3) and 10 months (T4) after implantation. Blood from control sheep was obtained at the
same time points (Figure 12).
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Figure 12. Timeline for clinical evaluation, surgery and blood sampling.

Once neutrophils had been isolated from the blood, the number and viability of the
obtained cells were determined using an R1 Automated Cell Counter (Olympus, Warsaw,
Poland) and then the cells (98% viable) were plated at a density of 2.0 × 106 cells/mL.
The neutrophils were 85% pure, as under staining with Giemsa–May Grunewald,
the contamination of platelets was less than 1 platelet per 10 neutrophils. Then, the cell sus-
pensions were supplemented as follows: the control group with phosphate-buffered saline
(PBS) (marked as unstimulated) and the stimulated group with AMP at a concentration of
20 µg/mL (marked as stimulated). Then, both stimulated and unstimulated cultures were
incubated for 30 min and for 22 h at 37 ◦C in the presence of 5% CO2. Other groups were
treated with different concentrations of pentoxifylline (Polfillin Polpharma Poland) added
to final concentrations of 0, 1, and 100 µg/mL of culture and incubated for one hour at
37 ◦C in the presence of 5% CO2.

4.3. Platelet-Rich and Platelet-Poor Products

Platelet-rich plasma and platelet-poor plasma were isolated using two commercial
systems. System 1 (CURASAN) was used to prepare L-PRP. Blood samples of 8.5 mL
were collected from the jugular vein into a monovette containing citrate phosphate, dex-
trose, and adenosine (CPDA) from a PRP kit (Curasan AG, Kleinostheim, Germany).
A two-step procedure according to the manufacturer’s instructions was applied. The top
layer (platelet-poor plasma (PPP)) was collected; the remaining volume was platelet-rich
plasma (PRP) [36]. The second system was a XERTHRA PRP kit used to prepare PURE
PRP and PPP according to the manufacturer’s instructions.

The cell content in both systems was evaluated with a hematological analyzer. Hema-
tological evaluation confirmed data provided by the manufacturers of the PRP systems.
The platelet number was determined using a B‚urker chamber. Morphological studies
showed discoid, solitary platelets displaying no signs of activation due to the preparation
procedure. PRP was adjusted to 2.5 × 108 platelets/mL in phosphate-buffered saline (PBS).
PPP was diluted in a similar volume of PBS.

Neutrophil/Platelets Coculture

Isolated neutrophils were cultured with autologous platelets obtained from one of
two systems in a ratio of 1:250 neutrophils:platelets. An equal amount of PPP was added
to neutrophil cultures; cultures of neutrophils without other platelet related products
were used as control. All cultures of neutrophils ± platelets obtained from each of the
two systems were left unstimulated or were stimulated with 1 ng/mL lipopolysaccharide
(LPS) from E. coli serotype 055:B5 (Sigma-Aldrich, Poland) as a TLR4 agonist. The cultures
were incubated for 4 h and for 20 h at 37 ◦C and 5% CO2 [9].

4.4. Evaluation of Cells and their Function

The studied cultures’ neutrophils (1 × 106/mL) ± platelets were incubated at 37 ◦C in
5% CO2 in 96-well plates for 4 h in the presence of buffer or LPS. Then, neutrophil ± platelets
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cultures were subjected to microscopic analysis of the morphology using an inverted
microscope (Olympus) at 40 × magnification.

For functional analysis, enzyme release from azurophilic granules was assayed on
the basis of elastase and myeloperoxidase (MPO) release and compared to the maxi-
mum enzyme content obtained after the treatment of the cells with 0.5% Triton X-100
(Sigma–Aldrich, Poznan, Poland). The elastase activity was determined using a specropho-
tometric method with a substrate azocasein (Sigma-Aldrich). Myeloperoxidase (MPO)
release was determined by measuring the absorbance at 490 nm after 10 min incubation of
the sample with an equal volume of o-phenylendiamine (Sigma-Aldrich, Poznan, Poland).
A marker of specific granule response, alkaline phosphatase (ALP) activity was measured
at 405 nm after 10 min incubation at 25 ◦C with 4-nitrophenyl phosphate disodium salt
hexahydrate (Sigma-Aldrich, Poznan, Poland).

Nitric oxide (NO) level was determined by means of the Griess reaction [36]. Briefly,
equal volumes of the culture supernatant and Griess reagent (0.1% N-[1-naphtyl] ethylen-
diamine dihydrochloride 1% sulphanilamide and 2.5% H3PO4) were mixed and incubated
at room temperature for 10 min and absorbance was measured. The values obtained were
expressed as nitrite concentration (a stable breakdown product of NO, which accumulates
in the medium). Absorbance was converted into micromoles (µM) based on a NaNO2
standard curve. Superoxide anion (O2

−) production per 106 neutrophils was assayed after
incubating neutrophils with 0.1% nitroblue tetrazolium solution (Sigma-Aldrich, Poznan,
Poland) at room temperature for 10 min by reading absorbance at 545 nm. Generation of
superoxide was assessed using the extinction coefficient 21.1 nM.

Measurements were performed as follows: for estimation of the influence of AMP
on neutrophils, after 30 min and 20 h incubation; for assessment of PTX influence on
neutrophils, after 1 h; and in neutrophil/platelets co-cultures, after 4 h and 20 h incubation
in 37 ◦C at 5% CO2.

4.5. Statistical Analysis

Statistical analysis was performed using Statistica 13.1 Software (StatSoft, Poland).
The experimental results were expressed as the mean ± standard error (SE). Multiple-group
comparisons were made using either Student’s t test or one-way ANOVA analysis. p values
less than 0.05 were considered significant.

5. Conclusions

Over the course of this long-term evaluation of interactions between circulating
neutrophils and an implanted Ti plate, we estimated that neither in the inflammatory phase
of the repair process nor during next 10 months was deleterious neutrophil activity seen.
Moreover, we did not detect any adverse effects at the implant site or systemic inflammatory
response. We also evaluated some products as potential modifiers of neutrophils and
inflammatory response. Our study revealed that PTX, AMP extract, PURE PRP and
PPP acted as anti-inflammatories and decreased neutrophil response, whereas L-PRP
enhanced this response, thus acting as a pro-inflammatory. These findings are applicable
in modulation of inflammatory response during implantation of biomaterial and create the
possibility of modulating the cells response towards pro- or anti-inflammatory actions in
order to reduce host tissue damage. Simultaneously, these results broaden our knowledge
about biomaterial–host interactions.
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