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Abstract: Oxidative stress plays an important role in the pathogenesis of many serious diseases,
including cancer, atherosclerosis, coronary artery disease, Parkinson’s disease, Alzheimer’s dis-
ease, stroke and myocardial infarction. In the body’s natural biochemical processes, harmful
free radicals are formed, which can be removed with the help of appropriate enzymes, a bal-
anced diet or the supply of synthetic antioxidant substances such as flavonoids, vitamins or an-
thocyanins to the body. Due to the growing demand for antioxidant substances, new complex
compounds of transition metal ions with potential antioxidant activity are constantly being sought.
In this study, four oxovanadium(IV) and dioxovanadium(V) dipicolinate (dipic) complexes with
1,10-phenanthroline (phen), 2,2′-bipyridyl (bipy) and the protonated form of 2-phenylpyridine
(2-phephyH): (1) [VO(dipic)(H2O)2]·2 H2O, (2) [VO(dipic)(phen)]·3 H2O, (3) [VO(dipic)(bipy)]·H2O
and (4) [VOO(dipic)](2-phepyH)·H2O were synthesized including one new complex, so far un-
known and not described in the literature, i.e., [VOO(dipic)](2-phepyH)·H2O. The oxovanadium(IV)
dipicolinate complexes with 1,10-phenanthroline and 2,2′-bipyridyl have been characterized by
several physicochemical methods: NMR, MALDI-TOF-MS, IR, but new complex [VOO(dipic)](2-
phepyH)·H2O has been examined by XRD to confirm its structure. The antioxidant activities of four
complexes have been examined by the nitrotetrazolium blue (NBT) method towards superoxide an-
ion. All complexes exhibit high reactivity with superoxide anion and [VOO(dipic)](2-phepyH)·H2O
has higher antioxidant activity than L-ascorbic acid. Our studies confirmed that high basicity of the
auxiliary ligand increases the reactivity of the complex with the superoxide radical.

Keywords: oxovanadium(IV) complexes; 2-phenylpyridine; superoxide anion; antioxidant activity

1. Introduction

The human body has many defense mechanisms that neutralize the harmful effects
of reactive oxygen species. Antioxidants play an important role in reducing oxidative
damage in the human body [1–5]. These are compounds which, even at a very low
concentration, compared to the substrate, can delay or prevent its oxidation. Antioxidants
can be divided into two groups. The first are antioxidants that interrupt radical reactions
by donating hydrogen atoms or electrons to radicals, which leads to the formation of
compounds with greater stability. Such compounds include: tocopherols [6,7], phenols [8],
hydroquinones [9]. The second group includes substances whose action is synergistic.
They are capable of scavenging oxygen and chelating ions involved in the formation of
radicals [10].

According to the reaction mechanism, methods for measuring antioxidant capacity
can be divided into methods based on hydrogen atom transfer (HAT), electron transfer (ET),
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and both. In the methods based on the transfer of the hydrogen atom, the result depends
on the dissociation energy of the bond and the ionization potential in the group that is the
donor of the hydrogen atom. HAT reactions are usually fast and independent of the solvent
and the pH of the environment. Electron transfer reactions depend on the ionization
potential of the active functional group in the antioxidant molecule, and therefore also
depend on the pH. The value of the ionization potential decreases with increasing pH, as
the electron-donor capacity increases [11–14]. Antioxidants have multiple effects: inter
alia, they prevent the formation of oxidants, i.e., free radicals, inhibit the initiation of the
oxidation process of metals such as cadmium, mercury, copper and lead, which is associated
with supporting the immune system, or they intercept the reactive oxidants—oxidants and
inhibit reactions chain—which threaten the formation of radicals [15].

Recently, there has been increasing interest in complex compounds containing d-block
metal ions with organic ligands exhibiting antioxidant properties. The literature describes the
antioxidant properties of copper(II) complex compounds with heterocyclic and polycarboxylate
ligands: e.g., [Cu(ida)(phen)(H2O)]·2 H2O; [Cu(dipic)(4-pic)]n, [Cu(oda)(4-pic)H2O]·2 H2O,
[Cu(oda)(bipy)(H2O)]·4 H2O (ida denotes iminodiacetate, oda = oxydiacetate, 4-pic = 4-
picolinate, phen = 1,10-phenanthroline, bipy = 2,2′-bipyridyl). Studies have shown that
copper(II) coordination compounds are antioxidants, but unfortunately in a concentration
that is about 450–1550 times greater than superoxide dismutase [16]. Therefore, our interests
focused on the antioxidant properties of oxovanadium(IV) and dioxovanadium(V) complex
compounds. The methods of synthesis, characterization and biological properties of
dioxovanadium(V) OH-substituted dipicolinate complexes have been previously described
in the literature [17]. These complexes exhibit insulin-like activity. The Crans group
conducted research on Cl-substituted dipicolinate complexes of vanadium(III, IV, V) and
they confirmed that these compounds cause anti-diabetic effect on rats [18]. Studies
have confirmed that the oxygenation state of vanadium has an impact on the insulin-like
properties of complexes [18]. The antioxidant properties of the vanadium complexes can be
directed towards the two-electron transfer reactions then their toxicity is lowered [19,20].

In this study, four oxovanadium(IV) and dioxovanadium(V) dipicolinate (dipic) com-
plexes with 1,10-phenanthroline (phen), 2,2′-bipyridyl (bipy) and the protonated form of
2-phenylpyridine (2-phephyH): (1) [VO(dipic)(H2O)2]·2 H2O, (2) [VO(dipic)(phen)]·3 H2O,
(3) [VO(dipic)(bipy)]·H2O and (4) [VOO(dipic)](2-phepyH)·H2O were synthesized including
one new complex, so far unknown and not described in the literature, i.e., [VOO(dipic)](2-
phepyH)·H2O. The oxovanadium(IV) dipicolinate complexes with
1,10-phenanthroline and 2,2′-bipyridyl have been characterized by several physicochemi-
cal methods: NMR, MALDI-TOF-MS, IR, but new complex [VOO(dipic)](2-phepyH)·H2O
has been examined by XRD to confirm its structure. All four complexes have been tested
towards antioxidant activities by the nitrotetrazolium blue (NBT) method against the super-
oxide anion. The purpose of the studies was the examination of the impact of heterocyclic
ligands on the reactivity of the complex with superoxide anion.

2. Results and Discussion

The four complex compounds were synthesized: (1) [VO(dipic)(H2O)2]·2 H2O,
(2) [VO(dipic)(phen)]·3 H2O, (3) [VO(dipic)(bipy)]·H2O and (4) [VOO(dipic)](2-phepyH)·H2O
(Figure 1). The complexes (1)-(3) are known in the literature [21,22]. [VOO(dipic)]
(2-phepyH)·H2O is a new complex compound previously not described in the literature.
Single-crystal XRD measurements show that [VOO(dipic)](2-phepyH)·H2O crystallize
in the monoclinic P21/c space group with one 2-phenylpyridinium cation, one dioxo-
(pyridine-2,6-dicarboxylato)-vanadium(V) anion and one water molecule in the asymmet-
ric unit (Figure 1, Table 1). The bond lengths and angles characterizing the geometry of the
dioxo-(pyridine-2,6-dicarboxylato)-vanadium(V) cation are similar to those observed in
the other crystal structures containing this ion [23,24]. In the crystal of the title compound,
ions and water molecules are linked via N–H···O(water), O(water)–H···O and C–H···O hy-
drogen bonds to form blocks along b-axis (Figure 2—highlighted in yellow, Table 2). The
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neighbouring blocks are linked via π–π interactions between 2-phenylpyridinium cations
to form a 3D framework structure.

Figure 1. Molecular structure of [VOO(dipic)](2-phepyH)·H2O, showing the atom-labelling scheme
(hydrogen bonds are represented by dashed lines).

Table 1. Crystal data and structure refinement for [VOO(dipic)](2-phepyH)·H2O.

Chemical Formula C18H15N2O7V

Formula weight/g·mol−1 422.26
Crystal system monoclinic

Space group P21/c
a/Å 11.7061(9)
b/Å 10.6882(5)
c/Å 15.3271(11)
α/◦ 90
β/◦ 111.967(8)
γ/◦ 90

V/Å3 1778.5(2)
Z 2

T/K 295(2)
λMo/Å 0.71073

ρcalc/g·cm–3 1.577
F(000) 864

µ/mm−1 0.603
θ range/◦ 3.35–25.00

Completeness θ/% 99.8
Reflections collected 11911
Reflections unique 3121 [Rint = 0.0525]

Data/restraints/parameters 3121/3/262
Goodness of fit on F2 1.058

Final R1 value (I > 2σ(I)) 0.0468
Final wR2 value (I > 2σ(I)) 0.0992

Final R1 value (all data) 0.0655
Final wR2 value (all data) 0.1069

CCDC number 2087422

The results of elemental analysis of [VO(dipic)(H2O)2]·2 H2O, [VO(dipic)(phen)]·3 H2O,
[VO(dipic)(bipy)]·H2O are as follows: [VO(dipic)(H2O)2]·2 H2O showed 27.64% C, 3.60% H,
and 4.70% N; and analysis calculations included 27.63% C, 2.96% H, and 4.61% N. Sample of
[VO(dipic)(phen)]·3 H2O exhibited 48.94% C, 3.68% H, and 8.89% N; analysis calculations
showed 48.93% C, 3.65% H, and 9.01% N. Sample of [VO(dipic)(bipy)]·H2O showed 49.99%
C, 3.35% H, and 10.29% N; analysis calculations included 50.25% C, 3.20% H, 10.34% N. IR
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analysis confirmed the structure of the following complexes: [VO(dipic)(H2O)2]·2 H2O,
[VO(dipic)(phen)]·3 H2O, [VO(dipic)(bipy)]·H2O (Table 3, Figures S1–S3).

Figure 2. Crystal packing of [VOO(dipic)](2-phepyH)·H2O viewed along b-axis.

Table 2. Hydrogen bonds geometry in the crystal of [VOO(dipic)](2-phepyH)·H2O.

D–H···A d(D–H) [Å] d(H···A) [Å] d(D· · ·A) (Å) ∠D–H· · ·A (◦)

O1W–H1WA···O12 i 0.95(2) 1.91(2) 2.811(3) 158(4)
O1W–H1WB···O13 0.95(2) 1.91(2) 2.826(3) 161(4)

N21–H21···O1W 0.87(3) 1.86(3) 2.699(4) 161(4)
C3–H3···O9 ii 0.93 2.40 3.330(4) 177
C5–H5···O9 iii 0.93 2.38 3.250(4) 157

C26–H26···O11 i 0.93 2.35 3.135(4) 142
C28–H28···O1W 0.93 2.44 3.345(4) 165
C29–H29···O14 0.93 2.58 3.389(5) 145

Symmetry code: (i) x, 1
2 − y, 1

2 + z; (ii) 1 − x,2 − y,1 − z; (iii) x,3/2 − y, − 1
2 + z.

Table 3. IR data of [VO(dipic)(H2O)2]·2 H2O, [VO(dipic)(phen)]·3 H2O, [VO(dipic)(bipy)]·H2O.

[VO(dipic)(H2O)2] · 2 H2O [VO(dipic)(phen)] · 3 H2O [VO(dipic)(bipy)] · H2O

V=O stretching frequency 983 cm−1 980 cm−1 977 cm−1

v(COO) of dipic [18] 1352 cm−1 1319 cm−1 1335 cm−1

1665 cm−1 1666 cm−1 1649 cm−1

v(OH) [18] 3571 cm−1 3427 cm−1 3536 cm−1

stretching vibration of the V-N 452 cm−1 416 cm−1 442 cm−1

MALDI-TOF-MS spectra allowed to identify the fragmentation of the studied com-
plexes. For [VO(dipic)(H2O)2]·2 H2O: [M+H]+ 303.94 m/z; [M–2H2O+H]+ 268.11 m/z;
[M–4H2O+H]+ 231.89 m/z; for [VO(dipic)(phen)]·3 H2O: [M+H]+ 407.00 m/z; [M–H2O+H]+

388.97 m/z; and for [VO(dipic)(bipy)]·H2O: [M+H]+ 303.94 m/z; [M–2H2O+H]+ 268.11 m/z;
[M–4H2O+H]+ 231.89 m/z (Figures S4–S9).

Due to the too high water content in the coordination compounds [VO(dipic)(H2O)2]·2
H2O and [VO(dipic)(phen)]·3 H2O it was impossible to obtain good quality NMR spectra
for these compounds. Only for the complex [VO(dipic)(bipy)]·H2O 1H NMR and 13C NMR
spectra was obtained in good quality. The results of NMR showed that the peaks observed
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on 1H NMR spectrum: 7.46, 7.95, 8.40, 8.70 ppm correspond to the peaks protons from
dipic and the peak at 3.38 ppm means H2O presence. 13C NMR spectrum showed the
peaks at: 155.68, 149.76, 137.81, 124.69, 120.92 ppm which correspond to C atoms from
dipic (Figures S10 and S11).

Antioxidant properties of [VO(dipic)(H2O)2]·2 H2O, [VO(dipic)(phen)]·3 H2O, [VO(di-
pic)(bipy)]·H2O and [VOO(dipic)](2-phepyH)·H2O have been investigated towards super-
oxide anion radical by NBT method. The obtained results were presented in Figure 3.

Figure 3. Inhibition of superoxide anion radical by (1) [VO(dipic)(H2O)2]·2 H2O, (2) [VO(dipic)(phen)]·3
H2O, (3) [VO(dipic)(bipy)]·H2O and (4) [VOO(dipic)](2-phepyH)·H2O.

All tested compounds showed antioxidant properties, and the best antioxidant (even
better than L-ascorbic acid) turned out to be the complex [VOO(dipic)](2-phepyH)·H2O,
the calculated equivalent towards L-ascorbic acid for it is 0.68. On the other hand, the
complexes [VO(dipic)(bipy)]·H2O and [VO(dipic)(phen)]·3 H2O exhibit antioxidant prop-
erties similar to L-ascorbic acid, when their equivalents are 0.936 and 1.032, respectively.
The weakest antioxidant against the superoxide radical anion among the synthesized
coordination compounds turned out to be [VO(dipic)(H2O)2]·2 H2O, whose equivalent
is 2.359. The results of the research allowed us to draw a conclusion that the greater the
basicity of the auxiliary ligand, the better the antioxidant properties against the superoxide
anion radical (Figure 4). 2-Phenylpyridine is the strongest basic and thus the complex
which contains this ligand in the coordination sphere of vanadium(IV) shows the strongest
antioxidant properties, whereas 1,10-phenanthroline is the least basic and thus the complex
which contains this ligand in the coordination sphere of vanadium(IV) shows the weak-
est antioxidant properties, of course, except for the complex which does not contain any
auxiliary heterocyclic ligand at all ([VO(dipic)(H2O)2]·2 H2O).
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Figure 4. The auxiliary heterocyclic ligand used in the synthesis of dipicolinate oxo- and dioxo- vanadium(IV) com-
plexes [25–27].

3. Materials and Methods

To synthesize [VO(dipic)(H2O)2]·2 H2O, 2.65 g of vanadyl acetylacetonate was mixed
with 1.67 g of dipicolinic acid (H2dipic) and 50 mL of distilled water was added. The
result was the green solution. The resulting solution was heated to reflux for about 30 min.
After cooling, blue crystals of the complex compound [VO(dipic)(H2O)2]·2 H2O were
precipitated [22]. IR (KBr, cm−1): 3618, 3571, 3087, 2035, 1955, 1890, 1666, 1597, 1470, 1435,
1352, 1263, 1177, 1149, 1074, 1034, 984, 928, 853, 833, 767, 684, 595, 452.

To synthesize [VO(dipic)(phen)]·3 H2O, 2.65 g (0.01 mol) of vanadyl acetylacetonate
was mixed with 1.67 g (0.01 mol) of dipicolinic acid and 1.98 g (0.01 mol) of 1,10-phe-
nanthroline monohydrate and all reagents were dissolved in 50 mL of distilled water. The
result was a brownish-orange solution. The resulting solution was heated until the solution
changed color for about 3 min. After cooling, a red-brown crystals of [VO(dipic)(phen)]·3
H2O were obtained [22]. IR (KBr, cm−1 ): 3428, 3069, 3047, 3003, 1978, 1953, 1694, 1666,
1649, 1627, 1596, 1517, 1493, 1467, 1422, 1319, 1225, 1158, 1106, 1081, 1037, 980, 909, 868, 847,
800, 769, 741, 723, 693, 680, 644, 594, 444, 417.

To synthesize [VO(dipic)(bipy)]·H2O, 2.65 g (0.01 mol) of vanadyl acetylacetonate was
mixed with 1.67 g (0.01 mol) of dipicolinic acid and 1.56 g (0.01 mol) of 2,2′-bipyridyl (bipy).
All reagents were dissolved in 50 mL of distilled water. The result was a yellow—green
solution was obtained. The resulting solution was heated until the solution changed color
for about 4 min. Upon cooling the solution, a dark brown precipitate appeared, which was
a complex [VO(dipic)(bipy)]·H2O [22]. IR (KBr, cm−1): 3537, 3422, 3278, 3104, 3075, 3054,
1946, 1917, 1681, 1649, 1598, 1572, 1496, 1476, 1444, 1427, 1356, 1335, 1319, 1245, 1185, 1166,
1086, 1040, 1023, 977, 914, 861, 824, 775, 743, 685, 651, 632, 617, 596, 442. 1H NMR (298 K)
500.13 MHz (DMSO-d6, δ): 8.70 ppm, 8.40 ppm, 7.95 ppm, 7.46 ppm, 3.38 ppm (H2O), 2.51
ppm (DMSO). 13C NMR (298 K) 125.76 MHz (DMSO-d6, δ): 155.68, 149.76, 137.81, 124.69,
120.92 ppm, 40.19 ppm.

The complex [VOO(dipic)](2-phepyH)·H2O synthesis was carried out according to
the following procedure: vanadyl acetylacetonate (2.65 g, 0.01 mol), dipicolinic acid (1.67 g,
0.01 mol) and 2.86 mL (0.02 mol, density 1.086 g·mL−1) of 2-phenylpyridine were mixed
with 50 mL of water. It was heated to reflux until the solution changed color. After cooling,
brown crystals of the complex [VOO(dipic)](2-phepyH)·H2O were formed.

All materials used in this work have been purchased from Merck.
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Diffraction data were collected on an Oxford Diffraction Gemini R ULTRA Ruby
CCD diffractometer (T = 295(2) K, MoKα (λ = 0.71073 Å), CrysAlis RED software (ver.
1.171.41.16a) [28]. The structures were refined and solved using the SHELX package
(ver. 2017/1) [29]. H-atoms from water molecules were located on a difference Fourier map
and refined with restraints (DFIX command) with d(O–H) = 0.95 Å and Uiso(H) = 1.5Ueq(O),
while H–atoms bound to C–atoms were placed geometrically and refined using a riding
model with d(C–H) = 0.93 Å and Uiso(H) = 1.2Ueq(C). All interactions were identified using
the PLATON program (ver. 181115) [30]. The ORTEPII [31], PLUTO-78 [32] and Mercury
(ver. 2020.2.0) [33] programs were used to prepare the molecular graphics.

Full crystallographic details for the title compound have been deposited in the Cam-
bridge Crystallographic Data Center (deposition No. CCDC 2087422) and they may
be obtained from http://www.ccdc.cam.ac.uk (accessed on 6 June 2021), e-mail: de-
posit@ccdc.cam.ac.uk or The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK.

Elemental analysis of the complex compounds was performed using the Vario EL Cube
analyzer and the percentage of carbon, nitrogen and hydrogen in the tested compound
was determined.

MALDI-TOF-MS spectra were obtained using a Bruker Biflex spectrometer III. The fol-
lowing matrices were used: 2,5-hydroxybenzoic acid and α- cyano-4-hydroxycinnamic acid.

The IR spectra were recorded on a KBr tablet using a BRUKER IFS 66 spectrophotome-
ter. Measurements were carried out in the range from 4000 cm−1 to 650 cm−1.

The NMR spectra were recorded on a Bruker Avance III 500 instrument. DMSO-d6
was used as a solvent.

The NBT test: a solution containing the superoxide anion radical was prepared.
Initially, 6.5 mg of KO2 and 90 mg of 18-crown-6 were dissolved in 50 mL of DMSO.
The solution was then placed under ultrasound for 7 min. In the next step, an NBT
solution with a concentration of 1 mg/mL was prepared. The next step was to prepare
solutions of complex compounds in DMSO. Depending on the solubility of a given complex
compound, a 1mM stock solution was prepared, and then subsequent solutions of the
complex compounds were prepared by diluting the stock solution. The measurement
samples were prepared by mixing 1.5 mL of the radical solution in DMSO, 0.5 mL of the
complex compound solution, and 0.1 mL of NBT. Control samples contained 1.5 mL of
superoxide anion solution, 0.5 mL of DMSO and 0.1 mL of NBT solution. The reaction of the
superoxide anion radical with NBT was monitored spectrophotometrically at a wavelength
of 560 nm. The reference substance was L-ascorbic acid. Measurement of absorbance was
carried out approximately 30 min after mixing the reactants. Measurement of absorbance
during NBT testing was carried out on a Perkin-Elmer Lambda 45 spectrophotometer.
The apparatus used is characterized by a Peltier system with a reading accuracy of 1 nm
and a gap width of 1 nm at a scanning speed of 120.00 nm min−1 combined with a
thermostatic system.

4. Conclusions

The structure of the new complex [VOO(dipic)](2-phepyH)·H2O was described for
the first time. Moreover, the performed spectroscopic analyzes and elemental analysis con-
firmed the composition of the obtained series of dipicolinate oxovanadium(IV) coordination
compounds. The conducted research confirmed that the synthesized complex compounds
(1) [VO(dipic)(H2O)2]·2 H2O, (2) [VO(dipic)(phen)]·3 H2O, (3) [VO(dipic)(bipy)]·H2O and
(4) [VOO(dipic)](2-phepyH)·H2O exhibit antioxidant properties against superoxide anion
radical. The best reactivity towards the superoxide radical of the synthesized oxo- and
dioxo- vanadium(IV) complex compounds showed [VOO(dipic)](2-phepyH)·H2O, while
the weakest antioxidant with of the synthesized coordination compounds turned out to be
[VO(dipic)(H2O)2]·2 H2O. Moreover, the results of this study showed that the high basicity
of the auxiliary ligand increases the reactivity of the complex with the superoxide radical.
The studied group of compounds may be further investigated in the future for the potential
use of these complexes as superoxide dismutase mimetics.

http://www.ccdc.cam.ac.uk
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